1
|
Manda V, Pavelka J, Lau E. Proteomics applications in next generation induced pluripotent stem cell models. Expert Rev Proteomics 2024; 21:217-228. [PMID: 38511670 PMCID: PMC11065590 DOI: 10.1080/14789450.2024.2334033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Induced pluripotent stem (iPS) cell technology has transformed biomedical research. New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for basic biology investigations and clinical translations. AREAS COVERED We discuss the utility of proteomics for attaining an unbiased view into protein expression changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived organoids is helping to realize the goal of bridging in vitro and in vivo systems. EXPERT OPINIONS We discuss some current challenges of proteomics in iPS cell research and future directions, including the integration of proteomic and transcriptomic data for systems-level analysis.
Collapse
Affiliation(s)
- Vyshnavi Manda
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jay Pavelka
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Edward Lau
- Department of Medicine, Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
3
|
Wilson RS, Nairn AC. Cell-Type-Specific Proteomics: A Neuroscience Perspective. Proteomes 2018; 6:51. [PMID: 30544872 PMCID: PMC6313874 DOI: 10.3390/proteomes6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific analysis has become a major focus for many investigators in the field of neuroscience, particularly because of the large number of different cell populations found in brain tissue that play roles in a variety of developmental and behavioral disorders. However, isolation of these specific cell types can be challenging due to their nonuniformity and complex projections to different brain regions. Moreover, many analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein extracted from specific cell populations. Despite these challenges, methods to improve proteomic yield and increase resolution continue to develop at a rapid rate. In this review, we highlight the importance of cell-type-specific proteomics in neuroscience and the technical difficulties associated. Furthermore, current progress and technological advancements in cell-type-specific proteomics research are discussed with an emphasis in neuroscience.
Collapse
Affiliation(s)
- Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, 300 George St., New Haven, CT 06511, USA.
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT 06511, USA.
| |
Collapse
|
4
|
Cheng DD, Zhang HZ, Yuan JQ, Li SJ, Yang QC, Fan CY. Minichromosome maintenance protein 2 and 3 promote osteosarcoma progression via DHX9 and predict poor patient prognosis. Oncotarget 2018; 8:26380-26393. [PMID: 28460433 PMCID: PMC5432265 DOI: 10.18632/oncotarget.15474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/04/2023] Open
Abstract
A label free quantitative proteomic approach (SWATH™ experiment) was performed to identify tumor-associated nuclear proteins that are differentially expressed between osteosarcoma cells and osteoblast cells. By functional screening, minichromosome maintenance protein 2 (MCM2) and minichromosome maintenance protein 3 (MCM3) were found to be related to osteosarcoma cell growth. Here, we show that knockdown of MCM2 or MCM3 inhibits osteosarcoma growth in vitro and in vivo. In co-immunoprecipitation and co-localization experiments, MCM2 and MCM3 were found to interact with DExH-box helicase 9 (DHX9) in osteosarcoma cells. A rescue study showed that the decreased growth of osteosarcoma cells by MCM2 or MCM3 knockdown was reversed by DHX9 overexpression, indicating that MCM2 and MCM3 activity was DHX9-dependent. In addition, the depletion of DHX9 hindered osteosarcoma cell proliferation. Notably, MCM2 and MCM3 expression levels were positively correlated with the DHX9 expression level in tumor samples and were associated with a poor prognosis in patients with osteosarcoma. Taken together, these results suggest that the MCM2/MCM3–DHX9 axis has an important role in osteosarcoma progression.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hui-Zhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jun-Qing Yuan
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-Jie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cun-Yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
5
|
Combining membrane proteomics and computational three-way pathway analysis revealed signalling pathways preferentially regulated in human iPSCs and human ESCs. Sci Rep 2017; 7:15055. [PMID: 29118436 PMCID: PMC5678157 DOI: 10.1038/s41598-017-15347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Owing to the clinical potential of human induced pluripotent stem cells (hiPSCs) in regenerative medicine, a thorough examination of the similarities and differences between hiPSCs and human embryonic stem cells (hESCs) has become indispensable. Moreover, as the important roles of membrane proteins in biological signalling, functional analyses of membrane proteome are therefore promising. In this study, a pathway analysis by the bioinformatics tool GSEA was first performed to identify significant pathways associated with the three comparative membrane proteomics experiments: hiPSCs versus precursor human foreskin fibroblasts (HFF), hESCs versus precursor HFF, and hiPSCs versus hESCs. A following three-way pathway comparison was conducted to identify the differentially regulated pathways that may contribute to the differences between hiPSCs and hESCs. Our results revealed that pathways related to oxidative phosphorylation and focal adhesion may undergo incomplete regulations during the reprogramming process. This hypothesis was supported by another public proteomics dataset to a certain degree. The identified pathways and their core enriched proteins could serve as the starting point to explore the possible ways to make hiPSCs closer to hESCs.
Collapse
|
6
|
Abazova N, Krijgsveld J. Advances in stem cell proteomics. Curr Opin Genet Dev 2017; 46:149-155. [PMID: 28806595 DOI: 10.1016/j.gde.2017.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
Abstract
Stem cells are at the basis of organismal development, characterized by their potential to differentiate towards specific lineages upon receiving proper signals. To understand the molecular principles underlying gain and loss of pluripotency, proteomics plays an increasingly important role owing to technical developments in mass spectrometry and implementation of innovative biochemical approaches. Here we review how quantitative proteomics has been used to investigate protein expression, localization, interaction and modification in stem cells both in vitro and in vivo, thereby complementing other omics approaches to study fundamental properties of stem cell plasticity.
Collapse
Affiliation(s)
- Nade Abazova
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Carmo LST, Murad AM, Resende RO, Boiteux LS, Ribeiro SG, Jorrín-Novo JV, Mehta A. Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. J Proteomics 2016; 151:284-292. [PMID: 27457268 DOI: 10.1016/j.jprot.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Tomato chlorotic mottle virus (ToCMoV) is a widespread bipartite Begomovirus species found in tomato fields in Brazil. In this study, plant responses and putative mechanisms associated with the 'Tyking'-derived recessive resistance to ToCMoV were investigated. Changes in the protein profile in the inoculated plants of two near isogenic tomato lines resistant ('LAM 157') and susceptible ('Santa Clara') to ToCMoV were analyzed. Seedlings were biolistically inoculated with an infectious ToCMoV clone. Leaves from infected plants (confirmed by PCR) were sampled at 15days after inoculation. Proteins were extracted using phenol and analyzed by shotgun MS (2D-nanoUPLC/HDMSE). Out of the 534 identified proteins, 82 presented statistically significant differences in abundance, including 35 unique proteins displayed in the resistant tomato inoculated with ToCMoV. Proteins associated to chromatin structure, cytoskeleton structure, cuticle biosynthesis, and ubiquitin pathway were identified and their putative roles during virus infection process were discussed. The protein profile analysis allowed for the development of a hypothetical model showing how the resistant host cell responds to ToCMoV infection. The data obtained provide a better understanding of resistant mechanisms used by the host plant to contain viral infection and could be the basis for further investigation in other plant-begomovirus pathosystems. BIOLOGICAL SIGNIFICANCE In this study we propose a model of resistance to begomovirus in tomato and highlight host proteins, which could be targets for future investigations in plant-begomovirus pathosystems.
Collapse
Affiliation(s)
- Lílian S T Carmo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Renato O Resende
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil.
| |
Collapse
|
8
|
Main H, Radenkovic J, Kosobrodova E, McKenzie D, Bilek M, Lendahl U. Cell surface antigen profiling using a novel type of antibody array immobilised to plasma ion-implanted polycarbonate. Cell Mol Life Sci 2014; 71:3841-57. [PMID: 24623559 PMCID: PMC11113427 DOI: 10.1007/s00018-014-1595-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/21/2014] [Indexed: 01/13/2023]
Abstract
To identify and sort out subpopulations of cells from more complex and heterogeneous assemblies of cells is important for many biomedical applications, and the development of cost- and labour-efficient techniques to accomplish this is warranted. In this report, we have developed a novel array-based platform to discriminate cellular populations based on differences in cell surface antigen expressions. These cell capture microarrays were produced through covalent immobilisation of CD antibodies to plasma ion immersion implantation-treated polycarbonate (PIII-PC), which offers the advantage of a transparent matrix, allowing direct light microscopy visualisation of captured cells. The functionality of the PIII-PC array was validated using several cell types, resulting in unique surface antigen expression profiles. PIII-PC results were compatible with flow cytometry, nitrocellulose cell capture arrays and immunofluorescent staining, indicating that the technique is robust. We report on the use of this PIII-PC cluster of differentiation (CD) antibody array to gain new insights into neural differentiation of mouse embryonic stem (ES) cells and into the consequences of genetic targeting of the Notch signalling pathway, a key signalling mechanism for most cellular differentiation processes. Specifically, we identify CD98 as a novel marker for neural precursors and polarised expression of CD9 in the apical domain of ES cell-derived neural rosettes. We further identify expression of CD9 in hitherto uncharacterised non-neural cells and enrichment of CD49e- and CD117-positive cells in Notch signalling-deficient ES cell differentiations. In conclusion, this work demonstrates that covalent immobilisation of antibody arrays to the PIII-PC surface provides faithful cell surface antigen data in a cost- and labour-efficient manner. This may be used to facilitate high throughput identification and standardisation of more precise marker profiles during stem cell differentiation and in various genetic and disease contexts.
Collapse
Affiliation(s)
- Heather Main
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden,
| | | | | | | | | | | |
Collapse
|
9
|
Liu K, Wang F, Ye X, Wang L, Yang J, Zhang J, Liu L. KSR-based medium improves the generation of high-quality mouse iPS cells. PLoS One 2014; 9:e105309. [PMID: 25171101 PMCID: PMC4149410 DOI: 10.1371/journal.pone.0105309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Induced pluripotent stem (iPS) cells from somatic cells have great potential for regenerative medicine. The efficiency in generation of iPS cells has been significantly improved in recent years. However, the generation of high-quality iPS cells remains of high interest. Consistently, we demonstrate that knockout serum replacement (KSR)-based medium accelerates iPS cell induction and improves the quality of iPS cells, as confirmed by generation of chimeras and all iPS cell-derived offspring with germline transmission competency. Both alkaline phosphatase (AP) activity assay and expression of Nanog have been used to evaluate the efficiency of iPS cell induction and formation of ES/iPS cell colonies; however, appropriate expression of Nanog frequently indicates the quality of ES/iPS cells. Interestingly, whereas foetal bovine serum (FBS)-based media increase iPS cell colony formation, as revealed by AP activity, KSR-based media increase the frequency of iPS cell colony formation with Nanog expression. Furthermore, inhibition of MAPK/ERK by a specific inhibitor, PD0325901, in KSR- but not in FBS-based media significantly increases Nanog-GFP+ iPS cells. In contrast, addition of bFGF in KSR-based media decreases proportion of Nanog-GFP+ iPS cells. Remarkably, PD can rescue Nanog-GFP+ deficiency caused by bFGF. These data suggest that MAPK/ERK pathway influences high quality mouse iPS cells and that KSR- and PD-based media could enrich homogeneous authentic pluripotent stem cells.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingzhuo Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
10
|
SWATH™- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC. J Proteomics 2014; 102:125-36. [PMID: 24667143 DOI: 10.1016/j.jprot.2014.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
UNLABELLED To identify cancer-related proteins, we used isobaric tags in a relative and absolute quantitation (iTRAQ) proteomic approach and SWATH™ quantification approach to analyze the secretome of an isogenic pair of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines. In addition, we compared two groups of pooled serum samples (12 early-stage and 12 late-stage patients) to mine data for candidates screened by iTRAQ-labeled proteomic analysis. A total of 110 proteins and 71 proteins were observed to be significantly differentially expressed in the cell line secretome and NSCLC sera, respectively. Among these proteins, CD109 was found to be highly expressed in both the highly metastatic cell line secretome and the group of late-stage patients. A sandwich ELISA assay also demonstrated an elevation of serum CD109 levels in individual NSCLC patients (n=30) compared with healthy subjects (n=19). Furthermore, CD109 displayed higher expression in lung cancer tissues compared with their matched noncancerous lung tissues (n=72). In addition, the knockdown of CD109 influenced several NSCLC cell bio-functions, for instance, depressing cell growth, affecting cell cycle phases. These phenomena suggest that CD109 plays a critical role in NSCLC progression. BIOLOGICAL SIGNIFICANCE We simultaneously applied two quantitative proteomic approaches-iTRAQ-labeling and SWATH™-to analyze the secretome of metastatic cell lines, in order to explore the cancer-associated proteins in conditioned media. In this study, our results indicate that CD109 plays a critical role in non-small-cell lung cancer (NSCLC) progression, and is overexpressed in advanced NSCLC.
Collapse
|
11
|
Liu S, Chen X, Yan Z, Qin S, Xu J, Lin J, Yang C, Shui W. Exploring skyline for both MSE-based label-free proteomics and HRMS quantitation of small molecules. Proteomics 2014; 14:169-80. [DOI: 10.1002/pmic.201300352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/26/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Shanshan Liu
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Xin Chen
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Zhihui Yan
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Shanshan Qin
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Jinhua Xu
- College of Life Sciences; Nankai University; Tianjin P. R. China
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Jianping Lin
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin P. R. China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center; Tianjin Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin P. R. China
| | - Wenqing Shui
- College of Life Sciences; Nankai University; Tianjin P. R. China
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin P. R. China
| |
Collapse
|