1
|
Fan S, Li Y, Wang Q, Jin M, Yu M, Zhao H, Zhou C, Xu J, Li B, Li X. The role of cis-zeatin in enhancing high-temperature resistance and fucoxanthin biosynthesis in Phaeodactylum tricornutum. Appl Environ Microbiol 2024; 90:e0206823. [PMID: 38786362 PMCID: PMC11218622 DOI: 10.1128/aem.02068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Phaeodactylum tricornutum a prominent source of industrial fucoxanthin production, faces challenges in its application due to its tolerance to high-temperature environments. This study investigates the physiological responses of P. tricornutum to high-temperature stress and its impact on fucoxanthin content, with a specific focus on the role of cis-zeatin. The results reveal that high-temperature stress inhibits P. tricornutum's growth and photosynthetic activity, leading to a decrease in fucoxanthin content. Transcriptome analysis shows that high temperature suppresses the expression of genes related to photosynthesis (e.g., psbO, psbQ, and OEC) and fucoxanthin biosynthesis (e.g., PYS, PDS1, and PSD2), underscoring the negative effects of high temperature on P. tricornutum. Interestingly, genes associated with cis-zeatin biosynthesis and cytokinesis signaling pathways exhibited increased expression under high-temperature conditions, indicating a potential role of cis-zeatin signaling in response to elevated temperatures. Content measurements confirm that high temperature enhances cis-zeatin content. Furthermore, the exogenous addition of cytokinesis mimetics or inhibitors significantly affected P. tricornutum's high-temperature resistance. Overexpression of the cis-zeatin biosynthetic enzyme gene tRNA DMATase enhanced P. tricornutum's resistance to high-temperature stress, while genetic knockout of tRNA DMATase reduced its resistance to high temperatures. Therefore, this research not only uncovers a novel mechanism for high-temperature resistance in P. tricornutum but also offers a possible alga species that can withstand high temperatures for the industrial production of fucoxanthin, offering valuable insights for practical utilization.IMPORTANCEThis study delves into Phaeodactylum tricornutum's response to high-temperature stress, specifically focusing on cis-zeatin. We uncover inhibited growth, reduced fucoxanthin, and significant cis-zeatin-related gene expression under high temperatures, highlighting potential signaling mechanisms. Crucially, genetic engineering and exogenous addition experiments confirm that the change in cis-zeatin levels could influence P. tricornutum's resistance to high-temperature stress. This breakthrough deepens our understanding of microalgae adaptation to high temperatures and offers an innovative angle for industrial fucoxanthin production. This research is a pivotal step toward developing heat-resistant microalgae for industrial use.
Collapse
Affiliation(s)
- Sizhe Fan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yixuan Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Qi Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Mengjie Jin
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Mange Yu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hejing Zhao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
3
|
Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Res Int 2022; 157:111455. [DOI: 10.1016/j.foodres.2022.111455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 01/13/2023]
|
4
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
5
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
6
|
Aghdam MS, Alikhani-Koupaei M, Khademian R. Delaying Broccoli Floret Yellowing by Phytosulfokine α Application During Cold Storage. Front Nutr 2021; 8:609217. [PMID: 33869261 PMCID: PMC8047079 DOI: 10.3389/fnut.2021.609217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
During postharvest life, broccoli suffers from floret yellowing confining its economic and nutritional value. The objective of the present study was to explore the mechanisms employed by phytosulfokine α (PSKα) at 150 nM for delaying floret yellowing in broccoli during storage at 4°C for 28 days. Our results showed that the higher endogenous accumulation of hydrogen sulfide (H2S) resulting from the higher gene expression and activities of l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) in broccoli floret treated with 150 nM PSKα may serve as an endogenous signaling molecule for delaying senescence. Moreover, the suppressed ethylene biosynthesis in broccoli floret treated with 150 nM PSKα might be ascribed to lower gene expression and activities of ACC synthase (ACS) and ACC oxidase (ACO). Furthermore, lower gene expression and activities of Mg2+ dechelatase (MDC), pheophytinase (PPH), and pheophorbide a oxygenase (PaO) might be the reasons for the higher accumulation of chlorophyll in broccoli floret treated with 150 nM PSKα. Based on our findings, exogenous PSKα application could be employed as signaling bioactive hormone for retarding floret yellowing of broccoli during storage at 4°C for 28 days.
Collapse
Affiliation(s)
| | - Majid Alikhani-Koupaei
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Higher Education Complex of Saravan, Saravan, Iran
| | - Raheleh Khademian
- Department of Genetic and Plant Breeding, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
7
|
Aghdam MS, Flores FB. Employing phytosulfokine α (PSKα) for delaying broccoli florets yellowing during cold storage. Food Chem 2021; 355:129626. [PMID: 33780792 DOI: 10.1016/j.foodchem.2021.129626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/01/2023]
Abstract
The yellowing of florets limits the economic and nutritional value of broccoli during postharvest. We investigated mechanisms of action of 150 nM phytosulfokine α (PSKα) for delaying florets yellowing in broccoli during cold storage. Our results showed that SUMO E3 ligase (SIZ1) gene expression was higher in florets treated with PSKα, which may prevent endogenous H2O2 accumulation, resulting from the higher activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Besides, higher expression of methionine sulfoxide reductase and cysteine peroxiredoxin genes, concomitant with higher expression of heat shock proteins 70/90 genes, may arise from higherexpression of SIZ1 gene. Lower expression and activity of phospholipase D and lipoxygenase may be liable for membrane integrity protection featured by lower malondialdehyde accumulation in florets treated with PSKα. Additionally,florets treated with PSKα exhibited higher endogenous cytokinin accumulation which may arise from higher expression of isopentenyl transferase gene, concomitant with lower expression of cytokinin oxidase gene.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran.
| | | |
Collapse
|
8
|
Xiang W, Wang HW, Sun DW. Phytohormones in postharvest storage of fruit and vegetables: mechanisms and applications. Crit Rev Food Sci Nutr 2020; 61:2969-2983. [PMID: 33356468 DOI: 10.1080/10408398.2020.1864280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a ubiquitous and essential part of phytophysiology, phytohormones have attracted tremendous attention for effective regulation of development and senescence of agricultural products. However, the postharvest mechanisms of phytohormones have not been thoroughly understood. This review provides an overview of common phytohormones for extending the shelf life of fruit and vegetables. The modulation principles are discussed in detail based on defence gene expression activation, sensitivity of senescence-related phytohormones inhibition, antioxidant enzymes activity stimulation, and cell membrane integrity maintenance. The applications of jasmonates, salicylic acids, cytokinins, gibberellins, polyamines, and brassinosteroids in preserving fruit and vegetables based on defence signaling network stimulation, senescence-related phytohormones expression or sensitivity repression, as well as antioxidant system enhancement and cell membrane integrity sustentation are introduced. The challenges and problems to be solved are discussed, and new trends of expanding lifespan by combining phytohormones with other treatments are also suggested. Although phytohormones have been demonstrated to have promising efforts in maintaining agricultural products, more novel and effective combination treatments should be developed to complement each other.
Collapse
Affiliation(s)
- Wenjuan Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hsiao-Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| |
Collapse
|
9
|
Luo F, Fang H, Wei B, Cheng S, Zhou Q, Zhou X, Zhang X, Zhao Y, Ji S. Advance in yellowing mechanism and the regulation technology of post-harvested broccoli. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Yellowing is one of the main problems of quality deterioration in the storage, transportation, and sales of post-harvested broccoli, which seriously affects the commodity value of broccoli. Therefore, it is of significance to understand the mechanism of the process and develop effective regulation technology. In this review, we expounded the changes in the appearance of the flower ball, bud morphology, and calyx cell structure, as well as endogenous pigment metabolism, accompanying the yellowing process of broccoli. In addition, recent research on the molecular mechanism of yellowing was summarized from the aspects of transcriptome analysis and transcription regulation. Finally, the progress on the control technology of broccoli yellowing was reviewed.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huixin Fang
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Baodong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - shunchang Cheng
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuan Zhang
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yingbo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shujuan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Li X, Xie L, Zheng H, Cai M, Cheng Z, Bai Y, Li J, Gao J. Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. TREE PHYSIOLOGY 2019; 39:2027-2044. [PMID: 31595958 DOI: 10.1093/treephys/tpz100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The juvenile shoots of Phyllostachys edulis have been used as a food source for thousands of years, and it is recognized as a potential source of nutraceuticals. However, its rapid senescence restricts bamboo production and consumption, and the underlying molecular mechanisms of rapid shoot senescence remain largely unclear. In the present study, transcriptome profiling was employed to investigate the molecular regulation of postharvest senescence in shoots, along with physiological assays and anatomical dissections. Results revealed a distinct shift in expression postharvest, specifically transitions from cellular division and differentiation to the relocation of nutrients and programmed cell death. A number of regulatory and signaling factors were induced during postharvest senescence. Moreover, transcription factors, including NAM, ATAF and CUC (NAC) transcription factors, basic helix-loop-helix transcription factors, basic region/leucine zipper transcription factors, MYB transcription factors and WRKY transcription factors, were critical for shoot postharvest senescence, of which NACs were the most abundant. PheNAP2 and PheNAP3 were induced in postharvest shoots and found to promote leaf senescence in Arabidopsis by inducing the expression of AtSAG12 and AtSAG113. PheNAP2 and PheNAP3 could both restore the stay-green Arabidopsis nap to the wild-type phenotype either under normal growth condition or under abscisic acid treatment. Collectively, these results suggest that PheNAPs may promote shoot senescence. These findings provide a systematic view of shoot senescence and will inform future studies on the underlying molecular mechanisms responsible for shoot degradation during storage.
Collapse
Affiliation(s)
- Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Huifang Zheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Miaomiao Cai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Yucong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Juan Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Futong East Street NO.8, Chaoyang District, Beijing, 100102, People's Republic of China
| |
Collapse
|
11
|
Luo F, Cai JH, Kong XM, Zhou Q, Zhou X, Zhao YB, Ji SJ. Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing. HORTICULTURE RESEARCH 2019; 6:74. [PMID: 31231532 PMCID: PMC6544632 DOI: 10.1038/s41438-019-0155-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 05/08/2023]
Abstract
Postharvest broccoli is prone to yellowing during storage, which is the key factor leading to a reduction in value. To explore appropriate control methods, it is important to understand the mechanisms of yellowing. We analyzed the genes related to the metabolism of chlorophyll, carotenoids, and flavonoids and the transcription factors (TFs) involved in broccoli yellowing using transcriptome sequencing profiling. Broccoli stored at 10 °C showed slight yellowing on postharvest day 5 and serious symptoms on day 12. There were significant changes in chlorophyll fluorescence kinetics, mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching, during the yellowing process. Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6, 5, and 4 differentially expressed genes involved in chlorophyll metabolism, carotenoid biosynthesis, and flavonoid biosynthesis, respectively. The transcription factor gene ontology categories showed that the MYB, bHLH, and bZip gene families were involved in chlorophyll metabolism. In addition, the transcription factor families included NACs and ethylene response factors (ERFs) that regulated carotenoid biosynthesis. Reverse transcription polymerase chain reaction further confirmed that bHLH66, PIF4, LOB13, NAC92, and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process. The flavonoid biosynthetic pathway was mainly regulated by MYBs, NACs, WRKYs, MADSs, and bZips. The results of the differentially expressed gene (DEG) and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Jia-Hui Cai
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| |
Collapse
|
12
|
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci 2018; 19:E4045. [PMID: 30558142 PMCID: PMC6321018 DOI: 10.3390/ijms19124045] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
Collapse
Affiliation(s)
- Martin Hönig
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Alexandra Husičková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jaroslav Nisler
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Ahmed R, Kodgire S, Santhakumari B, Patil R, Kulkarni M, Zore G. Serum responsive proteome reveals correlation between oxidative phosphorylation and morphogenesis in Candida albicans ATCC10231. J Proteomics 2018; 185:25-38. [PMID: 29959084 DOI: 10.1016/j.jprot.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
To understand the impact of fetal bovine serum (FBS) on metabolism and cellular architecture in addition to morphogenesis, we have identified FBS responsive proteome of Candida albicans. FBS induced 34% hyphae and 60% pseudohyphae in C. albicans at 30 °C while 98% hyphae at 37 °C. LC-MS/MS analysis revealed that 285 proteins modulated significantly in response to FBS at 30 °C and 37 °C. Out of which 152 were upregulated and 62 were downregulated at 30 °C while 18 were up and 53 were downregulated at 37 °C. Functional annotation suggests that FBS may inhibit glycolysis and fermentative pathway and enhance oxidative phosphorylation (OxPhos), TCA cycle, amino acid and fatty acid metabolism indicating a use of alternative energy source by C. albicans. OxPhos inhibition assay using sodium azide corroborated the correlation between inhibition of glycolysis and enhanced OxPhos with pseudohyphae formation. C. albicans induced hyphae in response to FBS irrespective of down regulation of Ras1,Asr1/Asr2, indicates the possible involvement of MAPK and cAMP-PKA independent pathway. The Cell wall of cells grown in presence of FBS at 30 °C was rich in mannan, Beta 1,3-glucan and chitin while membranes were rich in ergosterol compared to those grown at 37 °C. SIGNIFICANCE OF THE STUDY This is the first study suggesting a correlation between OxPhos and morphogenesis especially pseudohyphae formation in C. albicans. Our data also indicate that fetal bovine serum (FBS) induced morphogenesis is multifactorial and may involve MAPK and cAMP-PKA independent pathway. In addition to morphogenesis, our study provides an insight in to the modulation of metabolism and cellular architecture of C. albicans in response to FBS.
Collapse
Affiliation(s)
- Radfan Ahmed
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Santosh Kodgire
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - B Santhakumari
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India.
| | - Mahesh Kulkarni
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
14
|
Großkinsky DK, Syaifullah SJ, Roitsch T. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:825-844. [PMID: 29444308 DOI: 10.1093/jxb/erx333] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Syahnada Jaya Syaifullah
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, v.v.i., Drásov, Czech Republic
| |
Collapse
|
15
|
|
16
|
Gupta R, Lee SJ, Min CW, Kim SW, Park KH, Bae DW, Lee BW, Agrawal GK, Rakwal R, Kim ST. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. J Proteomics 2016; 148:65-74. [PMID: 27474340 DOI: 10.1016/j.jprot.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Leaf senescence is the last stage of leaf development that re-mobilizes nutrients from the source to sink. Here, we have utilized the soybean as a model system to unravel senescence-associated proteins (SAPs). A comparative proteomics approach was used at two contrasting stages of leaf development, namely mature (R3) and senescent (R7). Selection criteria for these two stages were the contrasting differences in their biochemical parameters - chlorophyll, carotenoids and malondialdehyde contents. Proteome analysis involved subjecting the total leaf proteins to 15% poly-ethylene glycol (PEG) pre-fractional method to enrich the low-abundance proteins (LAPs) and their analyses by gel-based 2-DE and 1-DE shotgun proteomics approaches. 2-DE profiling of PEG-supernatant and -pellet fractions detected 153 differential spots between R3 and R7 stages, of which 102 proteins were identified. In parallel, 1-DE shotgun proteomics approach identified 598 and 534 proteins in supernatant and pellet fractions of R3 and R7 stages, respectively. MapMan and Gene Ontology analyses showed increased abundance and/or specific accumulation of proteins related to jasmonic acid biosynthesis and defense, while proteins associated with photosynthesis and ROS-detoxification were decreased during leaf senescence. These findings and the generated datasets further our understanding on leaf senescence at protein level, providing a resource for the scientific community. BIOLOGICAL SIGNIFICANCE Leaf senescence is a major biological event in the life cycle of plants that leads to the recycling of nutrients. However, the molecular mechanisms underlying leaf senescence still remain poorly understood. Here, we used a combination of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deeper into the leaf senescence proteome using soybean leaf as a model experimental material. For the identification of low-abundance proteins, polyethylene glycol (PEG) fractionation was employed and both PEG-supernatant and -pellet fractions were utilized for 2-DE and shotgun proteomic analysis. A total of 1234 (102 from 2-DE and 1132 from 1-DE shotgun proteome analysis) proteins were identified which were functionally annotated using GO and MapMan bioinformatics tools. Our results also emphasize the role of jasmonic acid in soybean leaf senescence.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Su Ji Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - So Wun Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Ki-Hun Park
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju, Republic of Korea
| | - Byong Won Lee
- Department of Functional Crops, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Miryang 627-803, Republic of Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
17
|
Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. Plant transcriptomics and responses to environmental stress: an overview. J Genet 2016; 94:525-37. [PMID: 26440096 DOI: 10.1007/s12041-015-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.
Collapse
Affiliation(s)
- Sameen Ruqia Imadi
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000,
| | | | | | | | | |
Collapse
|
18
|
Paudel B, Das A, Tran M, Boe A, Palmer NA, Sarath G, Gonzalez-Hernandez JL, Rushton PJ, Rohila JS. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence. FRONTIERS IN PLANT SCIENCE 2016; 7:293. [PMID: 27014316 PMCID: PMC4789367 DOI: 10.3389/fpls.2016.00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/24/2016] [Indexed: 05/03/2023]
Abstract
Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype in PCG. Overall, this study provides important data that can be utilized toward delaying senescence in both PCG and SG, and sets a foundational base for future improvement of perennial grass germplasm for greater aerial biomass productivity.
Collapse
Affiliation(s)
- Bimal Paudel
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Aayudh Das
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Michaellong Tran
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| | - Arvid Boe
- Department of Plant Science, South Dakota State UniversityBrookings, SD, USA
| | - Nathan A. Palmer
- Grain, Forage and Bioenergy Research Unit, United States Department of Agriculture - Agricultural Research ServiceLincoln, NE, USA
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, United States Department of Agriculture - Agricultural Research ServiceLincoln, NE, USA
| | | | | | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
- Department of Plant Science, South Dakota State UniversityBrookings, SD, USA
| |
Collapse
|
19
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Lin HH, Lin KH, Chen SC, Shen YH, Lo HF. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses. BOTANICAL STUDIES 2015; 56:18. [PMID: 28510827 PMCID: PMC5432913 DOI: 10.1186/s40529-015-0098-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/29/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The production of broccoli (Brassica oleracea) is largely reduced by waterlogging and high temperature stresses. Heat-tolerant and heat-susceptible broccoli cultivars TSS-AVRDC-2 and B-75, respectively, were used for physiological and proteomic analyses. The objective of this study was to identify TSS-AVRDC-2 and B-75 proteins differentially regulated at different time periods in response to waterlogging at 40 °C for three days. RESULTS TSS-AVRDC-2 exhibited significantly higher chlorophyll content, lower stomatal conductance, and better H2O2 scavenging under stress in comparison to B-75. Two-dimensional liquid phase fractionation analyses revealed that Rubisco proteins in both varieties were regulated under stressing treatments, and that TSS-AVRDC-2 had higher levels of both Rubisco large and small subunit transcripts than B-75 when subjected to high temperature and/or waterlogging. CONCLUSIONS This report utilizes physiological and proteomic approaches to discover changes in the protein expression profiles of broccoli in response to heat and waterlogging stresses. Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Su-Ching Chen
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Yu-Hsing Shen
- Institute of plant and microbial biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Feng Lo
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Cortleven A, Schmülling T. Regulation of chloroplast development and function by cytokinin. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4999-5013. [PMID: 25873684 DOI: 10.1093/jxb/erv132] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A role of the plant hormone cytokinin in regulating the development and activity of chloroplasts was described soon after its discovery as a plant growth regulator more than 50 years ago. Its promoting action on chloroplast ultrastructure and chlorophyll synthesis has been reported repeatedly, especially during etioplast-to-chloroplast transition. Recently, a protective role of the hormone for the photosynthetic apparatus during high light stress was shown. Details about the molecular mechanisms of cytokinin action on plastids are accumulating from genetic and transcriptomic studies. The cytokinin receptors AHK2 and AHK3 are mainly responsible for the transduction of the cytokinin signal to B-type response regulators, in particular ARR1, ARR10, and ARR12, which are transcription factors of the two-component system mediating cytokinin functions. Additional transcription factors linking cytokinin and chloroplast development include CGA1, GNC, HY5, GLK2, and CRF2. In this review, we summarize early and more recent findings of the long-known relationship between the hormone and the organelle and describe crosstalk between cytokinin, light, and other hormones during chloroplast development.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| |
Collapse
|
22
|
Jiang L, Kang R, Zhang L, Jiang J, Yu Z. Differential protein profiles of postharvest Gynura bicolor D.C leaf treated by 1-methylcyclopropene and ethephon. Food Chem 2015; 176:27-39. [DOI: 10.1016/j.foodchem.2014.11.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/01/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
|
23
|
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S. Recent progress in the use of 'omics technologies in brassicaceous vegetables. FRONTIERS IN PLANT SCIENCE 2015; 6:244. [PMID: 25926843 PMCID: PMC4396356 DOI: 10.3389/fpls.2015.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Monika Schreiner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Melanie Wiesner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
24
|
Liu MS, Ko MH, Li HC, Tsai SJ, Lai YM, Chang YM, Wu MT, Chen LFO. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene. Int J Mol Sci 2014; 15:15188-209. [PMID: 25170807 PMCID: PMC4200750 DOI: 10.3390/ijms150915188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - Miau-Hwa Ko
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Hui-Chun Li
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - Shwu-Jene Tsai
- Unit, Taiwan Agricultural Research Institute, Wufeng, Taichung 41362, Taiwan.
| | - Ying-Mi Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| | - You-Ming Chang
- Department of Bioindustry Technology, Dayeh University No. 168, University Rd., Dacun, Changhua 51591, Taiwan.
| | - Min-Tze Wu
- Unit, Taiwan Agricultural Research Institute, Wufeng, Taichung 41362, Taiwan.
| | - Long-Fang O Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
25
|
Guo Y, Gan SS. Translational researches on leaf senescence for enhancing plant productivity and quality. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3901-13. [PMID: 24935620 DOI: 10.1093/jxb/eru248] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.
Collapse
Affiliation(s)
- Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Su-Sheng Gan
- Department of Horticulture and Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Affiliation(s)
- Jesús Jorrín-Novo
- Agricultural and Plant Proteomics, Biochemistry and Molecular Biology, University of Córdoba, Cordoba, Spain.
| | | |
Collapse
|