1
|
Cardoso MF, Machado MV. The Changing Face of Hepatitis Delta Virus Associated Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3723. [PMID: 39594679 PMCID: PMC11591730 DOI: 10.3390/cancers16223723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatitis delta virus (HDV) infection requires the presence of hepatitis B virus (HBV), and chronic HBV-HDV coinfection is considered the most severe form of viral hepatitis. When compared with HBV mono-infection, HBV-HDV coinfection is associated with higher rates of liver cirrhosis and hepatocellular carcinoma (HCC). In this review, we aim to elucidate the complex relationship between HDV infection and the development of HCC. The exact mechanisms underlying the carcinogenic potential of HDV remain to be fully elucidated. Evidence suggests that HDV has both indirect and direct oncogenic effects. Indirect effects promote accelerated progression to liver cirrhosis, which results in a different tumor microenvironment. Direct oncogenic effects are suggested by a distinct molecular signature. The recent epidemiological data regarding HBV-HDV coinfection should make us reconsider the HCC screening strategy, with special focus in younger non-cirrhotic patients. Finally, treating HCC in patients with chronic HDV poses unique challenges due to the complex interplay between HBV and HDV and the severity of liver disease. An in-depth understanding of the epidemiology and pathophysiology of HDV infection and carcinogenesis is essential to improve disease management in this high-risk population.
Collapse
Affiliation(s)
- Mariana Ferreira Cardoso
- Gastroenterology Department, Hospital Prof. Doutor Fernando Fonseca, 2720-276 Amadora, Portugal;
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mariana Verdelho Machado
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Gastroenterology Department, Hospital de Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| |
Collapse
|
2
|
Lombardo D, Franzè MS, Caminiti G, Pollicino T. Hepatitis Delta Virus and Hepatocellular Carcinoma. Pathogens 2024; 13:362. [PMID: 38787214 PMCID: PMC11124437 DOI: 10.3390/pathogens13050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The hepatitis D virus (HDV) is a compact, enveloped, circular RNA virus that relies on hepatitis B virus (HBV) envelope proteins to initiate a primary infection in hepatocytes, assemble, and secrete new virions. Globally, HDV infection affects an estimated 12 million to 72 million people, carrying a significantly elevated risk of developing cirrhosis, liver failure, and hepatocellular carcinoma (HCC) compared to an HBV mono-infection. Furthermore, HDV-associated HCC often manifests at a younger age and exhibits more aggressive characteristics. The intricate mechanisms driving the synergistic carcinogenicity of the HDV and HBV are not fully elucidated but are believed to involve chronic inflammation, immune dysregulation, and the direct oncogenic effects of the HDV. Indeed, recent data highlight that the molecular profile of HCC associated with HDV is unique and distinct from that of HBV-induced HCC. However, the question of whether the HDV is an oncogenic virus remains unanswered. In this review, we comprehensively examined several crucial aspects of the HDV, encompassing its epidemiology, molecular biology, immunology, and the associated risks of liver disease progression and HCC development.
Collapse
Affiliation(s)
| | | | | | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98124 Messina, Italy; (D.L.); (M.S.F.); (G.C.)
| |
Collapse
|
3
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
4
|
Stephenson-Tsoris S, Liang TJ. Hepatitis Delta Virus-Host Protein Interactions: From Entry to Egress. Viruses 2023; 15:1530. [PMID: 37515216 PMCID: PMC10383234 DOI: 10.3390/v15071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatitis delta virus (HDV) is the smallest known human virus and causes the most severe form of human viral hepatitis, yet it is still not fully understood how the virus replicates and how it interacts with many host proteins during replication. This review aims to provide a systematic review of all the host factors currently known to interact with HDV and their mechanistic involvement in all steps of the HDV replication cycle. Finally, we discuss implications for therapeutic development based on our current knowledge of HDV-host protein interactions.
Collapse
Affiliation(s)
- Susannah Stephenson-Tsoris
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Baskiran A, Atay A, Baskiran DY, Akbulut S. Hepatitis B/D-Related Hepatocellular Carcinoma. A Clinical Literature Review. J Gastrointest Cancer 2021; 52:1192-1197. [PMID: 34611832 DOI: 10.1007/s12029-021-00714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
AIM Given the current literature data, this article aims to shed light on the epidemiological and clinical effects of HBV, as well as its impact on the development of hepatocellular carcinoma (HCC). METHODS A review of the English language literature based on a MEDLINE (PubMed) database was searched. The keywords were cirrhosis, hepatocellular carcinoma, epidemiology, hepatitis delta virus, hepatitis B virus, and co-infection. All references from retrieved papers were reviewed systematically to find additional collection of reports. RESULTS The study has broadly confirmed the contribution of HDV viremia to liver disease and cirrhosis. However, uncertainty over the mechanism of action on HCC development remains. As the recent data has demonstrated, the HCC-HDV has a unique molecular profile which is distinct from that of HBV-HCC. CONCLUSION Owing to the dependence of HDV on HBV, it is not clear whether HCC is a consequence of the cumulative effect of both HBV and HDV, an effect of the underlying cirrhosis, or a direct oncogenic effect of HDV. Many questions concerning the oncogenic role of HDV remain unanswered. To better understand the role of HDV in carcinogenesis, studies at the molecular level that consider genotype differences should be increased. Multicenter, high-volume, and prospective studies that compare HBV/HDV co-infected and HBV-infected individuals will be pivotal in determining the oncogenic role of HDV.
Collapse
Affiliation(s)
- A Baskiran
- Department of General Surgery, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Institute of Liver Transplantation, Malatya, Turkey
| | - A Atay
- Department of General Surgery, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey.
| | - D Y Baskiran
- Department of Public Health, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Malatya, Turkey
| | - S Akbulut
- Department of General Surgery, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Institute of Liver Transplantation, Malatya, Turkey
| |
Collapse
|
6
|
Abstract
Hepatitis D virus (HDV) is a small, defective RNA virus that depends on hepatitis B virus (HBV) for virion assembly and transmission. It replicates within the nucleus of hepatocytes and interacts with several cellular proteins. Chronic hepatitis D is a severe and progressive disease, leading to cirrhosis in up to 80% of cases. A high proportion of patients die of liver decompensation or hepatocellular carcinoma (HCC), but the lack of large prospective studies has made it difficult to precisely define the rate of these long-term complications. In particular, the question of whether HDV is an oncogenic virus has been a matter of debate. Studies conducted over the past decade provided evidence that HDV is associated with a significantly higher risk of developing HCC compared to HBV monoinfection. However, the mechanisms whereby HDV promotes liver cancer remain elusive. Recent data have demonstrated that the molecular profile of HCC-HDV is unique and distinct from that of HBV-HCC, with an enrichment of upregulated genes involved in cell-cycle/DNA replication, and DNA damage and repair, which point to genome instability as an important mechanism of HDV hepatocarcinogenesis. These data suggest that HBV and HDV promote carcinogenesis by distinct molecular mechanisms despite the obligatory dependence of HDV on HBV.
Collapse
|
7
|
HDV Pathogenesis: Unravelling Ariadne's Thread. Viruses 2021; 13:v13050778. [PMID: 33924806 PMCID: PMC8145675 DOI: 10.3390/v13050778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis Delta virus (HDV) lies in between satellite viruses and viroids, as its unique molecular characteristics and life cycle cannot categorize it according to the standard taxonomy norms for viruses. Being a satellite virus of hepatitis B virus (HBV), HDV requires HBV envelope glycoproteins for its infection cycle and its transmission. HDV pathogenesis varies and depends on the mode of HDV and HBV infection; a simultaneous HDV and HBV infection will lead to an acute hepatitis that will resolve spontaneously in the majority of patients, whereas an HDV super-infection of a chronic HBV carrier will mainly result in the establishment of a chronic HDV infection that may progress towards cirrhosis, liver decompensation, and hepatocellular carcinoma (HCC). With this review, we aim to unravel Ariadne’s thread into the labyrinth of acute and chronic HDV infection pathogenesis and will provide insights into the complexity of this exciting topic by detailing the different players and mechanisms that shape the clinical outcome.
Collapse
|
8
|
Liu X, Haniff HS, Childs-Disney JL, Shuster A, Aikawa H, Adibekian A, Disney MD. Targeted Degradation of the Oncogenic MicroRNA 17-92 Cluster by Structure-Targeting Ligands. J Am Chem Soc 2020; 142:6970-6982. [PMID: 32233464 DOI: 10.1021/jacs.9b13159] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many RNAs are processed into biologically active transcripts, the aberrant expression of which can contribute to disease phenotypes. For example, the primary microRNA-17-92 (pri-miR-17-92) cluster contains six microRNAs (miRNAs) that collectively act in several disease settings. Herein, we used sequence-based design of structure-specific ligands to target a common structure in the Dicer processing sites of three miRNAs in the cluster, miR-17, miR-18a, and miR-20a, thereby inhibiting their biogenesis. The compound was optimized to afford a dimeric molecule that binds the Dicer processing site and an adjacent bulge, affording a 100-fold increase in potency. The dimer's mode of action was then extended from simple binding to direct cleavage by conjugation to bleomycin A5 in a manner that imparts RNA-selective cleavage or to indirect cleavage by recruiting an endogenous nuclease, or a ribonuclease targeting chimera (RIBOTAC). Interestingly, the dimer-bleomycin conjugate cleaves the entire pri-miR-17-92 cluster and hence functionally inhibits all six miRNAs emanating from it. The compound selectively reduced levels of the cluster in three disease models: polycystic kidney disease, prostate cancer, and breast cancer, rescuing disease-associated phenotypes in the latter two. Further, the bleomycin conjugate exerted selective effects on the miRNome and proteome in prostate cancer cells. In contrast, the RIBOTAC only depleted levels of pre- and mature miR-17, -18a, and 20a, with no effect on the primary transcript, in accordance with the cocellular localization of RNase L, the pre-miRNA targets, and the compound. These studies demonstrate a strategy to tune RNA structure-targeting compounds to the cellular localization of the target.
Collapse
Affiliation(s)
- Xiaohui Liu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Haruo Aikawa
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
Coppola N, Alessio L, Onorato L, Sagnelli C, Sagnelli E, Pisaturo M. HDV infection in immigrant populations. J Med Virol 2019; 91:2049-2058. [PMID: 31429940 DOI: 10.1002/jmv.25570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
AIMS Little data have been published so far on the epidemiological aspects of hepatitis D virus (HDV) infection in immigrant populations and even poorer is the information on the virological, phylogenetic, and clinical aspects of this infection in these populations. This review article, aimed primarily at physicians caring for immigrants, summarizes the information available on HDV infection and analyzes data on this topic concerning the immigrant populations. METHODS AND RESULTS The prevalence of HDV infection in HBsAg-positive immigrants varies according to the country of origin. For example, in immigrants from sub-Saharan Africa, this prevalence is higher in those born in Equatorial Guinea (24.4%) than those from other African countries (10.3%). The epidemiological impact of HDV infection linked to migratory flows is a function of the different endemicity between countries of origin and countries in which a new existence has been established. This impact is high when immigrants from areas endemic to HDV infection (eg, Equatorial Guinea) settle in areas of low endemicity (eg, Germany or England, with a prevalence of around 4%), while the impact is lesser or nonexistent if the migratory flows are directed toward countries with intermediate endemicity (eg, Italy and Greece, with a prevalence of around 10%). CONCLUSION This impact of immigration on HDV epidemiology can be strong when HDV endemicity is high in the country of origin and low in the host country and slight when immigrants move to high or medium endemic countries.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
- Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | | | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
- Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
10
|
Puigvehí M, Moctezuma-Velázquez C, Villanueva A, Llovet JM. The oncogenic role of hepatitis delta virus in hepatocellular carcinoma. JHEP Rep 2019; 1:120-130. [PMID: 32039360 PMCID: PMC7001537 DOI: 10.1016/j.jhepr.2019.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/18/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a small defective virus that needs hepatitis B virus (HBV) to replicate and propagate. HDV infection affects 20-40 million people worldwide and pegylated interferon (PegIFN) is the only recommended therapy. There is limited data on the contribution of HDV infection to HBV-related liver disease or liver cancer. Evidence from retrospective and cohort studies suggests that HBV/HDV coinfection accelerates progression to cirrhosis and is associated with an increased risk of hepatocellular carcinoma (HCC) development compared to HBV monoinfection. Although the life cycle of HDV is relatively well known, there is only ancillary information on the molecular mechanisms that can drive specific HDV-related oncogenesis. No thorough reports on the specific landscape of mutations or molecular classes of HDV-related HCC have been published. This information could be critical to better understand the uniqueness, if any, of HDV-related HCC and help identify novel targetable mutations. Herein, we review the evidence supporting an oncogenic role of HDV, the main reported mechanisms of HDV involvement and their impact on HCC development.
Collapse
Affiliation(s)
- Marc Puigvehí
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Hepatology Section, Gastroenterology Department, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Moctezuma-Velázquez
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.,Denotes co-senior authorship
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.,Denotes co-senior authorship
| |
Collapse
|
11
|
Goodrum G, Pelchat M. Insight into the Contribution and Disruption of Host Processes during HDV Replication. Viruses 2018; 11:v11010021. [PMID: 30602655 PMCID: PMC6356607 DOI: 10.3390/v11010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/18/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is unique among animal viruses. HDV is a satellite virus of the hepatitis B virus (HBV), however it shares no sequence similarity with its helper virus and replicates independently in infected cells. HDV is the smallest human pathogenic RNA virus and shares numerous characteristics with viroids. Like viroids, HDV has a circular RNA genome which adopts a rod-like secondary structure, possesses ribozyme domains, replicates in the nucleus of infected cells by redirecting host DNA-dependent RNA polymerases (RNAP), and relies heavily on host proteins for its replication due to its small size and limited protein coding capacity. These similarities suggest an evolutionary relationship between HDV and viroids, and information on HDV could allow a better understanding of viroids and might globally help understanding the pathogenesis and molecular biology of these subviral RNAs. In this review, we discuss the host involvement in HDV replication and its implication for HDV pathogenesis.
Collapse
Affiliation(s)
- Gabrielle Goodrum
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Herrera-Uribe J, Jiménez-Marín Á, Lacasta A, Monteagudo PL, Pina-Pedrero S, Rodríguez F, Moreno Á, Garrido JJ. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Vet Res 2018; 49:90. [PMID: 30208957 PMCID: PMC6134756 DOI: 10.1186/s13567-018-0585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023] Open
Abstract
African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.
Collapse
Affiliation(s)
- Júber Herrera-Uribe
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Anna Lacasta
- International Livestock Research Intitute (ILRI), Nairobi, 00100, Kenya.,Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Paula L Monteagudo
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Fernando Rodríguez
- Centre de Recerca En Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ángela Moreno
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Instituto de Agricultura Sostenible, Campus Alameda del Obispo, 14080 CSIC, Córdoba, Spain
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
13
|
Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Nucleic Acids Res 2017; 45:10948-10968. [PMID: 28981723 PMCID: PMC5737393 DOI: 10.1093/nar/gkx805] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream—in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3–40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3’s impact on translational control in eukaryotic cells.
Collapse
Affiliation(s)
- Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Zuzana Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| | - Yaser Hashem
- CNRS, Architecture et Réactivité de l'ARN UPR9002, Université de Strasbourg, 67084 Strasbourg, France
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague 142 20, the Czech Republic
| |
Collapse
|
14
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
15
|
Zenón F, Jorge I, Cruz A, Suárez E, Segarra AC, Vázquez J, Meléndez LM, Serrano H. 18O proteomics reveal increased human apolipoprotein CIII in Hispanic HIV-1+ women with HAART that use cocaine. Proteomics Clin Appl 2015; 10:144-55. [PMID: 26255783 DOI: 10.1002/prca.201400204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE Drug abuse is a major risk factor in the development and progression of HIV-1. This study defines the alterations in the plasma proteome of HIV-1-infected women that use cocaine. EXPERIMENTAL DESIGN Plasma samples from 12 HIV-seropositive Hispanic women under antiretroviral therapy were selected for this study. Six sample pairs were matched between nondrug users and cocaine users. After IgG and albumin depletion, SDS-PAGE, and in-gel digestion, peptides from nondrug users and cocaine users were labeled with (16) O and (18) O, respectively, and subjected to LC-MS/MS and quantitation using Proteome Discover and QuiXoT softwares and validated by ELISA. RESULTS A total of 1015 proteins were identified at 1% false discovery rates (FDR). Statistical analyses revealed 13 proteins with significant changes between the two groups, cocaine and noncocaine users (p < 0.05). The great majority pertained to protection defense function and the rest pertained to transport, homeostatic, regulation, and binding of ligands. Apolipoprotein CIII was increased in plasma of HIV+ Hispanic women positive for cocaine compared to HIV+ nondrug users (p ≤ 0.05). CONCLUSIONS AND CLINICAL RELEVANCE Increased human apolipoprotein CIII warrants that these patients be carefully monitored to avoid the increased risk of cardiovascular events associated with HIV, HAART, and cocaine use.
Collapse
Affiliation(s)
- Frances Zenón
- Department of Microbiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Inmaculada Jorge
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ailed Cruz
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Erick Suárez
- Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Loyda M Meléndez
- Department of Microbiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Horacio Serrano
- Department of Internal Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
16
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
17
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [PMID: 26275800 DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
18
|
Guo Z, King T. Therapeutic Strategies and New Intervention Points in Chronic Hepatitis Delta Virus Infection. Int J Mol Sci 2015; 16:19537-52. [PMID: 26295228 PMCID: PMC4581312 DOI: 10.3390/ijms160819537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis delta virus infection (CHD) is a condition arising from super-infection of hepatitis B virus (HBV)-infected patients, resulting in a more rapid advance in liver pathology and hepatocellular carcinoma than is observed for HBV mono-infection. Although hepatitis delta virus (HDV) is structurally simple, its life cycle involves the complex participation of host enzymes, HBV-derived surface antigen (HBsAg), and HDV-auto-ribozyme and hepatitis delta antigen (HDAg) activities. Unsatisfactory clinical trial results with interferon-based therapies are motivating researchers to adjust and redirect the approach to CHD drug development. This new effort will likely require additional structural and functional studies of the viral and cellular/host components involved in the HDV replication cycle. This review highlights recent work aimed at new drug interventions for CHD, with interpretation of key pre-clinical- and clinical trial outcomes and a discussion of promising new technological approaches to antiviral drug design.
Collapse
Affiliation(s)
- Zhimin Guo
- Huron Peak Ave., Superior, CO 80027, USA.
| | - Thomas King
- Allevagen, LLC, 4105 Perry St., Denver, CO 80212, USA.
| |
Collapse
|
19
|
Kumar P, van den Hurk J, Ayalew LE, Gaba A, Tikoo SK. Proteomic analysis of purified turkey adenovirus 3 virions. Vet Res 2015; 46:79. [PMID: 26159706 PMCID: PMC4497381 DOI: 10.1186/s13567-015-0214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Turkey adenovirus 3 (TAdV-3) causes high mortality and significant economic losses to the turkey industry. However, little is known about the molecular determinants required for viral replication and pathogenesis. Moreover, TAdV-3 does not grow well in cell culture, thus detailed structural studies of the infectious particle is particularly challenging. To develop a better understanding of virus-host interactions, we performed a comprehensive proteomic analysis of proteinase K treated purified TAdV-3 virions isolated from spleens of infected turkeys, by utilizing one-dimensional liquid chromatography mass spectrometry. Our analysis resulted in the identification of 13 viral proteins associated with TAdV-3 virions including a novel uncharacterized TaV3gp04 protein. Further, we detected 18 host proteins in purified virions, many of which are involved in cell-to cell spread, cytoskeleton dynamics and virus replication. Notably, seven of these host proteins have not yet been reported to be present in any other purified virus. In addition, five of these proteins are known antiviral host restriction factors. The availability of reagents allowed us to identify two cellular proteins (collagen alpha-1 (VI) chain and haemoglobin) in the purified TAdV-3 preparations. These results represent the first comprehensive proteomic profile of TAdV-3 and may provide information for illustrating TAdV-3 replication and pathogenesis.
Collapse
Affiliation(s)
- Pankaj Kumar
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac1), University of Saskatchewan, Saskatoon, S7N 5E3, SK, Canada.
| | - Jan van den Hurk
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac1), University of Saskatchewan, Saskatoon, S7N 5E3, SK, Canada.
| | - Lisanework E Ayalew
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac1), University of Saskatchewan, Saskatoon, S7N 5E3, SK, Canada.
| | - Amit Gaba
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac1), University of Saskatchewan, Saskatoon, S7N 5E3, SK, Canada.
| | - Suresh K Tikoo
- Vaccine and Infectious Disease Organization -International Vaccine Center (VIDO- InterVac1), University of Saskatchewan, Saskatoon, S7N 5E3, SK, Canada. .,Vaccinology & Immunotherapeutics program, School of Public Health, University of Saskatchewan, Saskatoon, S7N 5E5, SK, Canada.
| |
Collapse
|
20
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
21
|
Aldabe R, Suárez-Amarán L, Usai C, González-Aseguinolaza G. Animal models of chronic hepatitis delta virus infection host-virus immunologic interactions. Pathogens 2015; 4:46-65. [PMID: 25686091 PMCID: PMC4384072 DOI: 10.3390/pathogens4010046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/05/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that has an absolute requirement for a virus belonging to the hepadnaviridae family like hepatitis B virus (HBV) for its replication and formation of new virions. HDV infection is usually associated with a worsening of HBV-induced liver pathogenesis, which leads to more frequent cirrhosis, increased risk of hepatocellular carcinoma (HCC), and fulminant hepatitis. Importantly, no selective therapies are available for HDV infection. The mainstay of treatment for HDV infection is pegylated interferon alpha; however, response rates to this therapy are poor. A better knowledge of HDV–host cell interaction will help with the identification of novel therapeutic targets, which are urgently needed. Animal models like hepadnavirus-infected chimpanzees or the eastern woodchuck have been of great value for the characterization of HDV chronic infection. Recently, more practical animal models in which to perform a deeper study of host virus interactions and to evaluate new therapeutic strategies have been developed. Therefore, the main focus of this review is to discuss the current knowledge about HDV host interactions obtained from cell culture and animal models.
Collapse
Affiliation(s)
- Rafael Aldabe
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Lester Suárez-Amarán
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain
| | - Carla Usai
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra (UNAV), Pamplona 31008, Spain.
| |
Collapse
|
22
|
D'Aguanno S, Barcaroli D, Rossi C, Zucchelli M, Ciavardelli D, Cortese C, De Cola A, Volpe S, D'Agostino D, Todaro M, Stassi G, Di Ilio C, Urbani A, De Laurenzi V. p63 isoforms regulate metabolism of cancer stem cells. J Proteome Res 2014; 13:2120-36. [PMID: 24597989 DOI: 10.1021/pr4012574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
p63 is an important regulator of epithelial development expressed in different variants containing (TA) or lacking (ΔN) the N-terminal transactivation domain. The different isoforms regulate stem-cell renewal and differentiation as well as cell senescence. Several studies indicate that p63 isoforms also play a role in cancer development; however, very little is known about the role played by p63 in regulating the cancer stem phenotype. Here we investigate the cellular signals regulated by TAp63 and ΔNp63 in a model of epithelial cancer stem cells. To this end, we used colon cancer stem cells, overexpressing either TAp63 or ΔNp63 isoforms, to carry out a proteomic study by chemical-labeling approach coupled to network analysis. Our results indicate that p63 is implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than ΔNp63 cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry proteomics data of the study have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Department of Experimental and Clinical Sciences, "G. d'Annunzio University" , Via dei Vestini 31, Chieti-Pescara 66100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|