1
|
Qin H, Luo S, Zuo W, Cao Z, Assaraf YG, Kwok HF. Targeted eradication of glioblastoma via venom decapeptide-conjugated dendrimers: Inducing nuclear translocation and autophagic cell death. J Control Release 2025; 383:113780. [PMID: 40315960 DOI: 10.1016/j.jconrel.2025.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) neoplasm. Herein, we developed a nanoparticle (NP) drug delivery system by conjugating a scorpion venom-derived decapeptide Ctir9495 (C9) to a polyamidoamine (PAMAM) dendrimer, where 4-(bromomethyl) phenylboronic acid (PBA) modified PAMAM is used as a drug carrier due to its small size and favorable tumor penetration. This decapeptide-conjugated dendrimer, G5C9, targeted human GBM cells and displayed enhanced cell internalization. The G5C9 complex targeted GBM cells presumably by binding to the overexpressed surface sialic acid, resulting in rapid endocytosis and endolysosome formation. This induced cell cycle arrest, blocked tumor cell proliferation, colony formation and migration, resulting in autophagosome lysosome-based apoptotic GBM cell death. G5C9 suppressed GBM cell proliferation via enhanced nuclear translocation of the transcription factor EB (TFEB), a master regulator of the autophagosome lysosome pathway, by disrupting mTORC1 activity and downregulating the PI3K/AKT/mTOR signaling axis. This G5C9 complex exhibited potent activity against GBM xenografts in vivo. Hence, our delivery strategy not only enhances the uptake of this venom decapeptide-conjugated dendrimers into GBM, but also offers a novel modality to target and eradicate GBM.
Collapse
Affiliation(s)
- Haixin Qin
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Siyuan Luo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Weimin Zuo
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Zhijian Cao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei Province, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Avenida da Universidade, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| |
Collapse
|
2
|
Sharma PP, Gavish-Regev E. The Evolutionary Biology of Chelicerata. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:143-163. [PMID: 39259983 DOI: 10.1146/annurev-ento-022024-011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chelicerata constitutes an ancient, biodiverse, and ecologically significant group of Arthropoda. The study of chelicerate evolution has undergone a renaissance in the past decade, resulting in major changes to our understanding of the higher-level phylogeny and internal relationships of living orders. Included among these conceptual advances are the discoveries of multiple whole-genome duplication events in a subset of chelicerate orders, such as horseshoe crabs, spiders, and scorpions. As a result, longstanding hypotheses and textbook scenarios of chelicerate evolution, such as the monophyly of Arachnida and a single colonization of land by the common ancestor of arachnids, have come into contention. The retention of ancient, duplicated genes across this lineage also offers fertile ground for investigating the role of gene duplication in chelicerate macroevolution. This new frontier of investigation is paralleled by the timely establishment of the first gene editing protocols for arachnid models, facilitating a new generation of experimental approaches.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology and Zoological Museum, University of Wisconsin, Madison, Wisconsin, USA;
| | - Efrat Gavish-Regev
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
3
|
Guo Y, Zhu W, Yuan P, Huang X, Lu S, Cao Z, Zhao X, Wu Y. Similar neurotoxin expression profiles of traditional Chinese scorpion medicine material between juvenile and adult Mesobuthus martensii scorpions revealed by multiple strategic proteomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118338. [PMID: 38759762 DOI: 10.1016/j.jep.2024.118338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays. AIM OF STUDY The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials. MATERIALS AND METHODS The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis. RESULTS Based on the known 107 scorpion neurotoxins from the genomic and transcriptomic analysis of adult Mesobuthus martensii scorpions, the multiple strategic proteomics first revealed that neurotoxins exhibited more stability in telson extract than secreted venom. In the reported transcripts of scorpion neurotoxins, approximately 53%, 56%, 66% and 78% of neurotoxins were detected through undigested scorpion venom, the endopeptidase Arg-C-, Lys-C-digested telson extract, and undigested telson extract strategies, respectively. Nearly 79% of scorpion neurotoxins detected in third-instar Mesobuthus martensii scorpions represent the largest number of scorpion neurotoxins from proteomic analysis to date. Moreover, a total of 84% of scorpion neurotoxins were successfully identified at the protein level, and similar neurotoxin expression profiles in second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were first revealed by the multiple strategic proteomics. CONCLUSION These findings for the first time demonstrate the similar neurotoxin expression profiles between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicinal material, which would serve as a paradigm for further toxin analysis from different venomous animals.
Collapse
Affiliation(s)
- Yiyuan Guo
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenzhuo Zhu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixin Yuan
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sijia Lu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaolu Zhao
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Santibáñez-López CE, Ojanguren-Affilastro AA, Graham MR, Sharma PP. Congruence between ultraconserved element-based matrices and phylotranscriptomic datasets in the scorpion Tree of Life. Cladistics 2023; 39:533-547. [PMID: 37401727 DOI: 10.1111/cla.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher-level taxa to be non-monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.g. family Chactidae). In the same line, it has been shown that some nodes in the Arachnid Tree of Life show disagreement between hypotheses generated using transcritptomes and other genomic sources such as the ultraconserved elements (UCEs). Here, we compared the phylogenetic signal of transcriptomes vs. UCEs by retrieving UCEs from new and previously published scorpion transcriptomes and genomes, and reconstructed phylogenies using both datasets independently. We reexamined the monophyly and phylogenetic placement of Chactidae, sampling an additional chactid species using both datasets. Our results showed that both sets of genome-scale datasets recovered highly similar topologies, with Chactidae rendered paraphyletic owing to the placement of Nullibrotheas allenii. As a first step toward redressing the systematics of Chactidae, we establish the family Anuroctonidae (new family) to accommodate the genus Anuroctonus.
Collapse
Affiliation(s)
| | | | - Matthew R Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, CT, 06226, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Miguel Ruano G, Leal Quiñones F, Arribas Sánchez C, Álvarez Avello JM. Ultrasound-guided sciatic popliteal block performed at the Emergency Department in a patient with a scorpion bite and severe pain. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2023; 70:358-361. [PMID: 37276965 DOI: 10.1016/j.redare.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/26/2022] [Indexed: 06/07/2023]
Abstract
We report the case of a paediatric patient who presented at the Emergency Department with severe pain in the right lower extremity caused by a scorpion sting. Analgesics were ineffective, so we decided to perform an ultrasound-guided popliteal block, which provided complete analgesia and allowed the patient to be followed up in the outpatient department, with no adverse effects. The sting of the species of scorpion found in Spain is not dangerous to human life; however, it causes self-limiting localised pain that lasts for 24-48h, and can be severe. The first-line treatment is effective analgesia. Regional anaesthesia techniques are useful in the control of acute pain, and are an example of effective collaboration between the Anaesthesiology and Emergency services.
Collapse
Affiliation(s)
- G Miguel Ruano
- Departamento de Anestesia-UCI, Clínica Universidad de Navarra, Madrid, Spain.
| | - F Leal Quiñones
- Departamento de Anestesia-UCI, Clínica Universidad de Navarra, Madrid, Spain
| | - C Arribas Sánchez
- Departamento de Pediatría, Clínica Universidad de Navarra, Madrid, Spain
| | - J M Álvarez Avello
- Departamento de Anestesia-UCI, Clínica Universidad de Navarra, Madrid, Spain
| |
Collapse
|
7
|
He D, Cao Z, Zhang R, Li W. Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus. Antibiotics (Basel) 2021; 10:antibiotics10080896. [PMID: 34438946 PMCID: PMC8388681 DOI: 10.3390/antibiotics10080896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Scorpion venom is a mixture of bioactive peptides, among which neurotoxins and antimicrobial peptides serve especially vital functions. Scorpion venom peptides in Buthidae species have been well described, but toxic peptides from non-Buthidae species have been under-investigated. Here, an antimicrobial peptide gene, Ctri9594, was cloned and functionally identified from the venom of the scorpion Chaerilus tricostatus. The precursor nucleotide sequence of Ctri9594 is 199 nt in length, including a 43 nt 5′ UTR, 115 nt 3′ UTR and 210 nt ORF. The ORF encodes 69 amino acid residues, containing a 21 aa signal peptide, 14 aa mature peptide, 3 aa C-terminal posttranslational processing signal and 31 aa propeptide. Multiple sequence alignment and evolutionary analyses show that Ctri9594 is an antimicrobial peptide in scorpion venom. The mature peptide of Ctri9594 was chemically synthesized with a purity greater than 95% and a molecular mass of 1484.4 Da. Minimum inhibitory concentrations (MICs) indicate that the synthesized mature peptide of Ctri9594 has inhibitory activity against Gram-positive bacteria (Bacillus thuringensis, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus) but not Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) or a fungus (Candida albicans). The antimicrobial mechanism of Ctri9594 is inferred to be related to its amphiphilic α-helix structure.
Collapse
Affiliation(s)
- Dangui He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Ruhong Zhang
- Renmin Hospital of Wuhan University, Wuhan 430200, China
- Correspondence: (R.Z.); (W.L.)
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Correspondence: (R.Z.); (W.L.)
| |
Collapse
|
8
|
Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200173. [PMID: 34290759 PMCID: PMC8277192 DOI: 10.1590/1678-9199-jvatitd-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-like fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families - such as Scorpionidae - and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.
Collapse
Affiliation(s)
- Sebastian Estrada-Gómez
- Toxinology Research Group - Serpentarium, University of Antioquia (UdeA), Medellín, Antioquia, Colombia.,School of Pharmaceutical and Food Sciences, University of Antioquia (UdeA), Medellín, Antioquia, Colombia
| | | | | | - Arie van der Meijden
- Research Center in Biodiversity and Genetic Resources (CIBIO), University of Porto, Vila do Conde, Portugal
| |
Collapse
|
9
|
Luo J, Ding Y, Peng Z, Chen K, Zhang X, Xiao T, Chen J. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci Rep 2021; 11:3211. [PMID: 33547373 PMCID: PMC7865051 DOI: 10.1038/s41598-021-82668-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Heteropoda venatoria in the family Sparassidae is highly valued in pantropical countries because the species feed on domestic insect pests. Unlike most other species of Araneomorphae, H. venatoria uses the great speed and strong chelicerae (mouthparts) with toxin glands to capture the insects instead of its web. Therefore, H. venatoria provides unique opportunities for venom evolution research. The venom of H. venatoria was explored by matrix-assisted laser desorption/ionization tandem time-of-flight and analyzing expressed sequence tags. The 154 sequences coding cysteine-rich peptides (CRPs) revealed 24 families based on the phylogenetic analyses of precursors and cysteine frameworks in the putative mature regions. Intriguingly, four kinds of motifs are first described in spider venom. Furthermore, combining the diverse CRPs of H. venatoria with previous spider venom peptidomics data, the structures of precursors and the patterns of cysteine frameworks were analyzed. This work revealed the dynamic evolutionary trends of venom CRPs in H. venatoria: the precursor has evolved an extended mature peptide with more cysteines, and a diminished or even vanished propeptides between the signal and mature peptides; and the CRPs evolved by multiple duplications of an ancestral ICK gene as well as recruitments of non-toxin genes.
Collapse
Affiliation(s)
- Jie Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yiying Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihao Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Kezhi Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Tiaoyi Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China. .,Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha, 410128, People's Republic of China.
| |
Collapse
|
10
|
Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon 2020; 189:91-104. [PMID: 33181162 DOI: 10.1016/j.toxicon.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Several research groups have studied the components produced by the venom gland of the scorpion Tityus serrulatus, which has one of the most lethal venoms in the world. Various methodologies have been employed to clarify the complex mechanisms of action of these components, especially neurotoxins and enzymes. Transcriptomes and proteomes have provided important information for pharmacological, biochemical, and immunological research. Next-generation sequencing (NGS) has allowed the description of new transcripts and completion of partial sequence descriptions for peptides, especially those with low expression levels. In the present work, after NGS sequencing, we searched for new putative venom components. We present a total of nine new transcripts with neurotoxic potential (Ts33-41) and describe the sequences of one hyaluronidase (TsHyal_4); three enzymes involved in amidation (peptidyl-glycine alpha-amidating monooxygenase A, peptidyl-alpha-hydroxyglycine alpha-amidating lyase, and peptidylglycine alpha-hydroxylating monooxygenase), which increases the lethal potential of neurotoxins; and also the enzyme Ts_Chitinase1, which may be involved in the venom's digestive action. In addition, we determined the level of transcription of five groups: toxins, metalloproteases, hyaluronidases, chitinases and amidation enzymes, including new components found in this study. Toxins are the predominant group with an expression level of 91.945%, followed by metalloproteases with only 7.790% and other groups representing 0.265%.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Amanda S A Witt
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Marani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ana Paula Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortênsia Gomes Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Edimar Campos-Júnior
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 c/15 de Agosto, Asunción, Paraguay
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
11
|
Zhu W, Gao H, Luo X, Ye X, Ding L, Hao J, Shu Z, Li S, Li J, Chen Z. Cloning and identification of a new multifunctional Ascaris-type peptide from the hemolymph of Buthus martensii Karsch. Toxicon 2020; 184:167-174. [PMID: 32565098 DOI: 10.1016/j.toxicon.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8 nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000 nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500 nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Huanhuan Gao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Li Ding
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Zhan Shu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Jian Li
- Department of Human Parasitology, College of Basic Medical Sciences, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
12
|
Separation and Purification of Antioxidant Peptides from Enzymatically Prepared Scorpion (Buthus martensii Karsch) Protein Hydrolysates. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09976-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Optimization of Scorpion Protein Extraction and Characterization of the Proteins' Functional Properties. Molecules 2019; 24:molecules24224103. [PMID: 31766309 PMCID: PMC6891329 DOI: 10.3390/molecules24224103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/17/2022] Open
Abstract
Scorpion has long been used in traditional Chinese medicine, because whole scorpion body extract has anti-cancer, analgesic, anti-thrombotic blood anti-coagulation, immune modulating, anti-epileptic, and other functions. The purpose of this study was to find an efficient extraction method and investigate some of physical and chemical parameters, like water solubility, emulsification, foaming properties, and oil-holding capacity of obtained scorpion proteins. Response surface methodology (RSM) was used for the determination of optimal parameters of ultrasonic extraction (UE). Based on single factor experiments, three factors (ultrasonic power (w), liquid/solid (mL/g) ratio, and extraction time (min)) were used for the determination of scorpion proteins (SPs). The order of the effects of the three factors on the protein content and yield were ultrasonic power > extraction time > liquid/solid ratio, and the optimum conditions of extraction proteins were as follows: extraction time = 50.00 min, ultrasonic power = 400.00 w, and liquid/solid ratio = 18.00 mL/g. For the optimal conditions, the protein content of the ultrasonic extraction and yield were 78.94% and 24.80%, respectively. The solubility, emulsification and foaming properties, and water and oil holding capacity of scorpion proteins were investigated. The results of this study suggest that scorpion proteins can be considered as an important ingredient and raw material for the creation of water-soluble supramolecular complexes for drugs.
Collapse
|
14
|
Grashof DGB, Kerkkamp HMI, Afonso S, Archer J, Harris DJ, Richardson MK, Vonk FJ, van der Meijden A. Transcriptome annotation and characterization of novel toxins in six scorpion species. BMC Genomics 2019; 20:645. [PMID: 31409288 PMCID: PMC6693263 DOI: 10.1186/s12864-019-6013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Venom has evolved in parallel in multiple animals for the purpose of self-defense, prey capture or both. These venoms typically consist of highly complex mixtures of toxins: diverse bioactive peptides and/or proteins each with a specific pharmacological activity. Because of their specificity, they can be used as experimental tools to study cell mechanisms and develop novel medicines and drugs. It is therefore potentially valuable to explore the venoms of various animals to characterize their toxins and identify novel toxin-families. This study focuses on the annotation and exploration of the transcriptomes of six scorpion species from three different families. The transcriptomes were annotated with a custom-built automated pipeline, primarily consisting of Basic Local Alignment Search Tool searches against UniProt databases and filter steps based on transcript coverage. Results We annotated the transcriptomes of four scorpions from the family Buthidae, one from Iuridae and one from Diplocentridae using our annotation pipeline. We found that the four buthid scorpions primarily produce disulfide-bridged ion-channel targeting toxins, while the non-buthid scorpions have a higher abundance of non-disulfide-bridged toxins. Furthermore, analysis of the “unidentified” transcripts resulted in the discovery of six novel putative toxin families containing a total of 37 novel putative toxins. Additionally, 33 novel toxins in existing toxin-families were found. Lastly, 19 novel putative secreted proteins without toxin-like disulfide bonds were found. Conclusions We were able to assign most transcripts to a toxin family and classify the venom composition for all six scorpions. In addition to advancing our fundamental knowledge of scorpion venomics, this study may serve as a starting point for future research by facilitating the identification of the venom composition of scorpions and identifying novel putative toxin families. Electronic supplementary material The online version of this article (10.1186/s12864-019-6013-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Freek J Vonk
- IBL, Leiden University, Leiden, The Netherlands.,Naturalis Biodiversity Center Leiden, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
16
|
Zhao Y, Chen Z, Cao Z, Li W, Wu Y. Diverse Structural Features of Potassium Channels Characterized by Scorpion Toxins as Molecular Probes. Molecules 2019; 24:molecules24112045. [PMID: 31146335 PMCID: PMC6600638 DOI: 10.3390/molecules24112045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022] Open
Abstract
Scorpion toxins are well-known as the largest potassium channel peptide blocker family. They have been successfully proven to be valuable molecular probes for structural research on diverse potassium channels. The potassium channel pore region, including the turret and filter regions, is the binding interface for scorpion toxins, and structural features from different potassium channels have been identified using different scorpion toxins. According to the spatial orientation of channel turrets with differential sequence lengths and identities, conformational changes and molecular surface properties, the potassium channel turrets can be divided into the following three states: open state with less hindering effects on toxin binding, half-open state or half-closed state with certain effects on toxin binding, and closed state with remarkable effects on toxin binding. In this review, we summarized the diverse structural features of potassium channels explored using scorpion toxin tools and discuss future work in the field of scorpion toxin-potassium channel interactions.
Collapse
Affiliation(s)
- Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zongyun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
- Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
18
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
19
|
Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2018; 187:1515-1538. [PMID: 30267287 DOI: 10.1007/s12010-018-2873-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Thermophiles have several beneficial properties for the conversion of biomass at high temperatures. Thermomyces lanuginosus is a thermophilic filamentous fungus that was shown to secrete 40 glycoside hydrolases and 25 proteases when grown on different carbon sources. Among the 13 identified glycoside hydrolases with high expression levels, 9 were reduced sugar glycosidases (RSGs) belonging to seven GH families, and 7 of the 10 identified proteases were exopeptidases belonging to six different protease families. High expression of RSGs and exopeptidases may allow the fungus to efficiently degrade oligosaccharides and oligopeptides in saprophytic habitats. There were no xylan side chain-degrading enzymes predicted in the genome of T. lanuginosus, and only one thermophilic GH11 xylanase (g4601.t1) and one GH43 xylosidase (g3706.t1) were detected by liquid chromatography-mass spectrometry/mass spectrometry when T. lanuginosus grown on xylan, which led to the accumulation of substituted xylooligosaccharides (SXOS) during corncob xylan degradation where SXOS output made up more than 8% of the total xylan. The SXOS are beneficial prebiotics and important inducers for enzymes secretion of microorganisms. Thus, T. lanuginosus exhibits distinct advantages in utilizing cheap raw materials producing one thermostable xylanase and the high value-added SXOS as well as microbial inoculants to compost by batch fermentation.
Collapse
|
20
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
21
|
de Oliveira UC, Nishiyama MY, dos Santos MBV, Santos-da-Silva ADP, Chalkidis HDM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo IDLM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One 2018; 13:e0193739. [PMID: 29561852 PMCID: PMC5862453 DOI: 10.1371/journal.pone.0193739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.
Collapse
Affiliation(s)
- Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: ,
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
22
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
23
|
Melo MMA, Daniele-Silva A, Teixeira DG, Estrela AB, Melo KRT, Oliveira VS, Rocha HAO, Ferreira LDS, Pontes DL, Lima JPMS, Silva-Júnior AA, Barbosa EG, Carvalho E, Fernandes-Pedrosa MF. Structure and in vitro activities of a Copper II-chelating anionic peptide from the venom of the scorpion Tityus stigmurus. Peptides 2017; 94:91-98. [PMID: 28552408 DOI: 10.1016/j.peptides.2017.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV-vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide's secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.
Collapse
Affiliation(s)
- Menilla M A Melo
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Andréia B Estrela
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karolline R T Melo
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Hugo A O Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Daniel L Pontes
- Laboratório de Química de Coordenação e Polímeros, UFRN, Natal, RN, Brazil
| | - João P M S Lima
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Arnóbio A Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Euzebio G Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil; Laboratório de Química Farmacêutica, UFRN, Natal, RN, Brazil
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil.
| |
Collapse
|
24
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
25
|
Wu W, Li Z, Ma Y. Adaptive evolution of insect selective excitatory β-type sodium channel neurotoxins from scorpion venom. Peptides 2017; 92:31-37. [PMID: 28363794 DOI: 10.1016/j.peptides.2017.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=dN/dS). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification.
Collapse
Affiliation(s)
- Wenlan Wu
- Medical School, Henan University of Science and Technology, Luoyang, Henan Province, PR China.
| | - Zhongjie Li
- Medical School, Henan University of Science and Technology, Luoyang, Henan Province, PR China
| | - Yibao Ma
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
26
|
Ding L, Chen J, Hao J, Zhang J, Huang X, Hu F, Wu Z, Liu Y, Li W, Cao Z, Wu Y, Li J, Li S, Liu H, Wu W, Chen Z. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 2017; 91:13-19. [PMID: 28300672 DOI: 10.1016/j.peptides.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022]
Abstract
Non-Buthidae venomous scorpions are huge natural sources of toxin peptides; however, only a few studies have been done to understand their toxin peptides. Herein, we describe three new potential immunomodulating toxin peptides, Ctri18, Ctry68 and Ctry2908, from two non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of the scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template toward Kv1.3 channels. Together, these studies discovered three new toxin peptides, Ctri18, Ctry68 and Ctry2908, with Kv1.3 channel and IL-2 cytokine-inhibiting activities from two scorpions, C. tricostatus and C. tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.
Collapse
Affiliation(s)
- Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Jing Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xuejun Huang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Fangfang Hu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zheng Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Hongyan Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Wenlong Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
27
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
28
|
Xiao M, Ding L, Yang W, Chai L, Sun Y, Yang X, Li D, Zhang H, Li W, Cao Z, Wu Y, Li J, Li S, Chen Z. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities. Toxicon 2017; 127:37-43. [PMID: 28077339 DOI: 10.1016/j.toxicon.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Peptide toxins from venomous animals are natural resources with diverse biological functions and therapeutic potential towards human diseases. For venomous scorpions, many valuable peptide toxins have been discovered from Buthidae scorpions, but few works were done about non-buthidae scorpions. Here, we cloned and characterized the first disulfide-bridged toxin peptide St20 from the non-buthidae scorpion Scorpiops tibetanus. St20 has a putative 23-residue signal peptide, followed by a presumed 34-residue mature peptide including 8 cysteines. Sequence alignments and structural analysis suggested that St20 is a new member of α-KTx23 scorpion toxin subfamily with a conserved CSα/β structural fold. Functional studies showed that St20 inhibited human T lymphocyte surface marker CD69 expression and cytokine IL-2 secretion. Beside this, St20 inhibited two important pro-inflammatory factors TNF-α and IFN-γ secretion in the activated human T lymphocyte. Animal experiments showed that the delayed-type hypersensitivity response in rat autoimmune disease model was ameliorated in the present of peptide toxin St20. Together, our results showed that St20 is the first disulfide-bridged toxin peptide from the non-buthidae scorpion Scorpiops tibetanus with immunosuppressive and anti-inflammatory activities, suggesting that toxins from non-buthidae scorpions might be a new source of peptide drug discovery towards human diseases.
Collapse
Affiliation(s)
- Min Xiao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Ding
- Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Lin Chai
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Yuwen Sun
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xianyi Yang
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Dandan Li
- Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Hua Zhang
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jian Li
- Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China; Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
29
|
The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125:123-130. [DOI: 10.1016/j.toxicon.2016.11.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
|
30
|
First venom gland transcriptomic analysis of Iranian yellow scorpion “Odonthubuthus doriae” with some new findings. Toxicon 2016; 120:69-77. [DOI: 10.1016/j.toxicon.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
31
|
Zhong J, Zeng XC, Zeng X, Nie Y, Zhang L, Wu S, Bao A. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2016; 150:40-62. [PMID: 27519694 DOI: 10.1016/j.jprot.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
Abstract
Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xin Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhang
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shifen Wu
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Aorigele Bao
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
32
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
33
|
Costal-Oliveira F, Guerra-Duarte C, Oliveira MS, Castro KLPD, Lopes-de-Sousa L, Lara A, Gomes ERDM, Bonilla C, Guatimosim S, Melo MM, Chávez-Olórtegui C. Cardiorespiratory alterations in rodents experimentally envenomed with Hadruroides lunatus scorpion venom. J Venom Anim Toxins Incl Trop Dis 2016; 23:2. [PMID: 27429609 PMCID: PMC4947318 DOI: 10.1186/s40409-016-0076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022] Open
Abstract
Background Hadruroides lunatus is the most abundant scorpion species in the Peruvian central coast, where most of the accidents involving humans are registered. In spite of its prevalence, there are only very few studies on H. lunatus envenomation. The aim of the present study was to analyze the cardiorespiratory alterations caused by H. lunatus envenomation in rodents. Methods Wistar rats injected with H. lunatus scorpion venom were submitted to electrocardiography. After euthanasia, rat lungs were collected and histopathologically analyzed. Mouse cardiomyocytes were used to perform immunofluorescence and calcium transient assays. Data were analyzed by ANOVA or Student’s t-test. The significance level was set at p < 0.05. Results It was observed that H. lunatus venom increased heart rate and caused arrhythmia, thereby impairing the heart functioning. Lungs of envenomed animals showed significant alterations, such as diffuse hemorrhage. In addition, immunofluorescence showed that H. lunatus venom was capable of binding to cardiomyocytes. Furthermore, mouse ventricular cardiomyocytes incubated with H. lunatus venom showed a significant decrease in calcium transient, confirming that H. lunatus venom exerts a toxic effect on heart. Conclusion Our results showed that H. lunatus venom is capable of inducing cardiorespiratory alterations, a typical systemic effect of scorpionism, stressing the importance of medical monitoring in envenomation cases.
Collapse
Affiliation(s)
- Fernanda Costal-Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CP: 486 CEP: 31270-901 MG Brazil
| | - Clara Guerra-Duarte
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CP: 486 CEP: 31270-901 MG Brazil
| | - Maira Souza Oliveira
- College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Karen Larissa Pereira de Castro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CP: 486 CEP: 31270-901 MG Brazil
| | - Leticia Lopes-de-Sousa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CP: 486 CEP: 31270-901 MG Brazil
| | - Aline Lara
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Enéas Ricardo de Morais Gomes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Cesar Bonilla
- Instituto Nacional de Salud, Universidad Nacional Mayor de San Marcos y Universidad Científica del Sur, Lima, Peru
| | - Sílvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Marília Martins Melo
- College of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CP: 486 CEP: 31270-901 MG Brazil
| |
Collapse
|
34
|
Olamendi-Portugal T, Bartok A, Zamudio-Zuñiga F, Balajthy A, Becerril B, Panyi G, Possani LD. Isolation, chemical and functional characterization of several new K+-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2016; 115:1-12. [DOI: 10.1016/j.toxicon.2016.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
|
35
|
Ye F, Hu Y, Yu W, Xie Z, Hu J, Cao Z, Li W, Wu Y. The Scorpion Toxin Analogue BmKTX-D33H as a Potential Kv1.3 Channel-Selective Immunomodulator for Autoimmune Diseases. Toxins (Basel) 2016; 8:115. [PMID: 27104568 PMCID: PMC4848641 DOI: 10.3390/toxins8040115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/23/2023] Open
Abstract
The Kv1.3 channel-acting scorpion toxins usually adopt the conserved anti-parallel β-sheet domain as the binding interface, but it remains challenging to discover some highly selective Kv1.3 channel-acting toxins. In this work, we investigated the pharmacological profile of the Kv1.3 channel-acting BmKTX-D33H, a structural analogue of the BmKTX scorpion toxin. Interestingly, BmKTX-D33H, with its conserved anti-parallel β-sheet domain as a Kv1.3 channel-interacting interface, exhibited more than 1000-fold selectivity towards the Kv1.3 channel as compared to other K+ channels (including Kv1.1, Kv1.2, Kv1.7, Kv11.1, KCa2.2, KCa2.3, and KCa3.1). As expected, BmKTX-D33H was found to inhibit the cytokine production and proliferation of both Jurkat cells and human T cells in vitro. It also significantly improved the delayed-type hypersensitivity (DTH) responses, an autoreactive T cell-mediated inflammation in rats. Amino acid sequence alignment and structural analysis strongly suggest that the “evolutionary” Gly11 residue of BmKTX-D33H interacts with the turret domain of Kv1 channels; it appears to be a pivotal amino acid residue with regard to the selectivity of BmKTX-D33H towards the Kv1.3 channel (in comparison with the highly homologous scorpion toxins). Together, our data indicate that BmKTX-D33H is a Kv1.3 channel–specific blocker. Finally, the remarkable selectivity of BmKTX-D33H highlights the great potential of evolutionary-guided peptide drug design in future studies.
Collapse
Affiliation(s)
- Fang Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Youtian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jun Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
36
|
Kuzmenkov AI, Grishin EV, Vassilevski AA. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. BIOCHEMISTRY (MOSCOW) 2016; 80:1764-99. [DOI: 10.1134/s0006297915130118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Wang X, Gao B, Zhu S. A single-point mutation enhances dual functionality of a scorpion toxin. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:72-8. [PMID: 26358403 DOI: 10.1016/j.cbpc.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
Scorpion venom represents a tremendous, hitherto partially explored peptide library that has been proven to be useful not only for understanding ion channels but also for drug design. MeuTXKα3 is a functionally unknown scorpion toxin-like peptide. Here we describe new transcripts of this gene arising from alternative polyadenylation and its biological function as well as a mutant with a single-point substitution at site 30. Native-like MeuTXKα3 and its mutant were produced in Escherichia coli and their toxic function against Drosophila Shaker K(+) channel and its mammalian counterparts (rKv1.1-rKv1.3) were assayed by two-electrode voltage clamp technique. The results show that MeuTXKα3 is a weak toxin with a wide-spectrum of activity on both Drosophila and mammalian K(+) channels. The substitution of a proline at site 30 by an asparagine, an evolutionarily conserved functional residue in the scorpion α-KTx family, led to an increased activity on rKv1.2 and rKv1.3 but a decreased activity on the Shaker channel without changing the potency on rKv1.1, suggesting a key role of this site in species selectivity of scorpion toxins. MeuTXKα3 was also active on a variety of bacteria with lethal concentrations ranging from 4.66 to 52.01μM and the mutant even had stronger activity on some of these bacterial species. To the best of our knowledge, this is the first report on a bi-functional short-chain peptide in the lesser Asian scorpion venom. Further extensive mutations of MeuTXKα3 at site 30 could help improve its K(+) channel-blocking and antibacterial functions.
Collapse
Affiliation(s)
- Xueli Wang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China.
| |
Collapse
|
38
|
Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Bao A, Wu S, E G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128:231-50. [DOI: 10.1016/j.jprot.2015.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
|
39
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
40
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
41
|
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae
and determination of its disulfide bonding pattern. J Pept Sci 2015; 21:636-43. [DOI: 10.1002/psc.2778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|
42
|
Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc Biol Sci 2015; 282:20142953. [PMID: 25716788 PMCID: PMC4375871 DOI: 10.1098/rspb.2014.2953] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 01/22/2023] Open
Abstract
Scorpions represent an iconic lineage of arthropods, historically renowned for their unique bauplan, ancient fossil record and venom potency. Yet, higher level relationships of scorpions, based exclusively on morphology, remain virtually untested, and no multilocus molecular phylogeny has been deployed heretofore towards assessing the basal tree topology. We applied a phylogenomic assessment to resolve scorpion phylogeny, for the first time, to our knowledge, sampling extensive molecular sequence data from all superfamilies and examining basal relationships with up to 5025 genes. Analyses of supermatrices as well as species tree approaches converged upon a robust basal topology of scorpions that is entirely at odds with traditional systematics and controverts previous understanding of scorpion evolutionary history. All analyses unanimously support a single origin of katoikogenic development, a form of parental investment wherein embryos are nurtured by direct connections to the parent's digestive system. Based on the phylogeny obtained herein, we propose the following systematic emendations: Caraboctonidae is transferred to Chactoidea new superfamilial assignment: ; superfamily Bothriuroidea revalidated: is resurrected and Bothriuridae transferred therein; and Chaerilida and Pseudochactida are synonymized with Buthida new parvordinal synonymies: .
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Rosa Fernández
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Lauren A Esposito
- Essig Museum of Entomology, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - Edmundo González-Santillán
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigaciones y de Estudios Avanzados del Instituto Politecnico Nacional, and Laboratorio de Aracnología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, C.P. 04510, México DF, México
| | - Lionel Monod
- Département des Arthropodes et d'Entomologie I, Muséum d'Histoire Naturelle de la Ville de Genève, Route de Malagnou 1, Genève 1208, Switzerland
| |
Collapse
|
43
|
Kuzmenkov AI, Vassilevski AA, Kudryashova KS, Nekrasova OV, Peigneur S, Tytgat J, Feofanov AV, Kirpichnikov MP, Grishin EV. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY. J Biol Chem 2015; 290:12195-209. [PMID: 25792741 DOI: 10.1074/jbc.m115.637611] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,
| | - Kseniya S Kudryashova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Oksana V Nekrasova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Alexey V Feofanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Mikhail P Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Eugene V Grishin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
44
|
The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon 2015; 95:52-61. [DOI: 10.1016/j.toxicon.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/23/2022]
|
45
|
Xu L, Li T, Liu H, Yang F, Liang S, Cao Z, Li W, Wu Y. Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus. Toxicon 2014; 90:318-25. [DOI: 10.1016/j.toxicon.2014.08.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
46
|
Ren Y, Wu H, Lai F, Yang M, Li X, Tang Y. Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein. Food Res Int 2014; 64:931-938. [PMID: 30011736 DOI: 10.1016/j.foodres.2014.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 11/30/2022]
Abstract
An enzymatic hydrolysis approach was proposed for the preparation of bioactive hydrolysate of scorpion Buthus martensii Karsch (BmK) protein. Results showed that the anticoagulant activity of the hydrolysates of BmK protein was closely related to both the enzyme type and the degree of hydrolysis. Alcalase AF showed to be the best enzymes for the hydrolysis. And the hydrolysis degree (DH) was closely related with the anticoagulant activity of the hydrolyzate. At a DH value of 18% with Alcalase AF, the hydrolyzate exhibited the highest activity. The hydrolysate was then separated and purified by consecutive chromatographic procedures, giving a novel anticoagulant peptide consisting of ten amino acids (MW: 1119.8Da) with its sequence of Val-Glu-Pro-Val-Thr-Val-Asn-Pro- His-Glu identified by MALDI-TOF/TOF MS. The negatively charged amino acids and hydrophobic amino acids may contribute to the anticoagulant activity of the prepared peptides. And the Val residue in N-terminal was also critical for the anticoagulant activity of the BmK peptide. Furthermore, the anticoagulant activity kept stable after in vitro digestive simulation. This research provided a promising bioprocessing route for production of anticoagulant peptides using BmK protein as a potentially valuable bioresource.
Collapse
Affiliation(s)
- Yao Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Hui Wu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Furao Lai
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Meiyan Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Yuqian Tang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
47
|
Schaffrath S, Predel R. A simple protocol for venom peptide barcoding in scorpions. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Xu X, Duan Z, Di Z, He Y, Li J, Li Z, Xie C, Zeng X, Cao Z, Wu Y, Liang S, Li W. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. J Proteomics 2014; 106:162-80. [PMID: 24780724 DOI: 10.1016/j.jprot.2014.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. BIOLOGICAL SIGNIFICANCE This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom.
Collapse
Affiliation(s)
- Xiaobo Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yawen He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jianglin Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
49
|
Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J Proteomics 2014; 106:17-29. [PMID: 24747124 DOI: 10.1016/j.jprot.2014.04.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/18/2014] [Accepted: 04/05/2014] [Indexed: 01/22/2023]
Abstract
UNLABELLED Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. However, the composition of the venom is still unclear. Both proteomics and transcriptomics approaches were applied in present study to investigate the major components and their possible relationships to the sting. The proteomics of the venom from S. meleagris was conducted by tryptic digestion of the crude venom followed by RP-HPLC separation and MS/MS analysis of the tryptic peptides. The venom gland transcriptome was analyzed using a high-throughput Illumina sequencing platform HiSeq 2000 with de novo assembly. A total of 218 toxins were identified including C-type lectin, phospholipase A₂ (PLA₂), potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, most of which should be responsible for the sting. Among them, serine protease inhibitor, PLA₂, potassium channel inhibitor and metalloprotease are predominant, representing 28.44%, 21.56%, 16.06% and 15.14% of the identified venom proteins, respectively. Overall, our combined proteomics and transcriptomics approach provides a systematic overview of the toxins in the venom of jellyfish S. meleagris and it will be significant to understand the mechanism of the sting. BIOLOGICAL SIGNIFICANCE Jellyfish Stomolophus meleagris is a very dangerous animal because of its strong toxicity. It often bloomed in the coast of China in recent years and caused thousands of people stung and even deaths every year. However, the components which caused sting are still unknown yet. In addition, no study about the venomics of jellyfish S. meleagris has been reported. In the present study, both proteomics and transcriptomics approaches were applied to investigate the major components related to the sting. The result showed that major component included C-type lectin, phospholipase A₂, potassium channel inhibitor, protease inhibitor, metalloprotease, hemolysin and other toxins, which should be responsible for the effect of sting. This is the first research about the venomics of jellyfish S. meleagris. It will be significant to understand the mechanism of the biological effects and helpful to develop ways to deal with the sting.
Collapse
Affiliation(s)
- Rongfeng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Wei Xue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yang Yue
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Song Liu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
50
|
Cao Z, Di Z, Wu Y, Li W. Overview of scorpion species from China and their toxins. Toxins (Basel) 2014; 6:796-815. [PMID: 24577583 PMCID: PMC3968362 DOI: 10.3390/toxins6030796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/29/2022] Open
Abstract
Scorpions are one of the most ancient groups of terrestrial animals. They have maintained a steady morphology over more than 400 million years of evolution. Their venom arsenals for capturing prey and defending against predators may play a critical role in their ancient and conservative appearance. In the current review, we present the scorpion fauna of China: 53 species covering five families and 12 genera. We also systematically list toxins or genes from Chinese scorpion species, involving eight species covering four families. Furthermore, we review the diverse functions of typical toxins from Chinese scorpion species, involving Na+ channel modulators, K+ channel blockers, antimicrobial peptides and protease inhibitors. Using scorpion species and their toxins from China as an example, we build the bridge between scorpion species and their toxins, which helps us to understand the molecular and functional diversity of scorpion venom arsenal, the dynamic and functional evolution of scorpion toxins, and the potential relationships of scorpion species and their toxins.
Collapse
Affiliation(s)
- Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|