1
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
2
|
Regulation of Enterotoxins Associated with Bacillus cereus Sensu Lato Toxicoinfection. Appl Environ Microbiol 2022; 88:e0040522. [PMID: 35730937 PMCID: PMC9275247 DOI: 10.1128/aem.00405-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.
Collapse
|
3
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
4
|
Organic hydroperoxide induces prodigiosin biosynthesis in Serratia sp. ATCC 39006 in an OhrR-dependent manner. Appl Environ Microbiol 2022; 88:e0204121. [PMID: 35044847 DOI: 10.1128/aem.02041-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of prodigiosin in the model prodigiosin-producing strain, Serratia sp. ATCC 39006, is significantly influenced by environmental and cellular signals. However, a comprehensive regulatory mechanism for this process has not been well established. In the present study, we demonstrate that organic hydroperoxide activates prodigiosin biosynthesis in an OhrR-dependent manner. Specifically, the MarR-family transcriptional repressor OhrR (Ser39006_RS05455) binds to its operator located far upstream of the promoter region of the prodigiosin biosynthesis operon (319-286 nt upstream of the transcription start site) and negatively regulates the expression of prodigiosin biosynthesis genes. Organic hydroperoxide disassociates the binding between OhrR and its operator, thereby promoting the prodigiosin production. Moreover, OhrR modulates the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide by regulating the transcription of its own gene and the downstream co-transcribed ohr gene. These results demonstrate that OhrR is a pleiotropic repressor that modulates the prodigiosin production and the resistance of Serratia sp. ATCC 39006 to organic hydroperoxide stress. IMPORTANCE Bacteria naturally encounter various environmental and cellular stresses. Organic hydroperoxides generated from the oxidation of polyunsaturated fatty acids are widely distributed and usually cause lethal oxidative stress by damaging cellular components. OhrR is known as a regulator which modulates the resistance of bacteria to organic hydroperoxide stress. In the current study, organic hydroperoxide disassociates OhrR from the promoter of prodigiosin biosynthesis gene cluster, thus promoting transcription of pigA-O genes. In this model, organic hydroperoxide acts as an inducer of prodigiosin synthesis in Serratia sp. ATCC 39006. These results improve our understanding of the regulatory network of prodigiosin synthesis and serve as an example for identifying the cross-talk between the stress responses and the regulation of secondary metabolism.
Collapse
|
5
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
7
|
Rousset L, Alpha-Bazin B, Château A, Armengaud J, Clavel T, Berge O, Duport C. Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environ Microbiol 2020; 22:5248-5264. [PMID: 32815215 DOI: 10.1111/1462-2920.15203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.
Collapse
Affiliation(s)
- Ludivine Rousset
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France.,INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | - Béatrice Alpha-Bazin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, 30200, France
| | - Thierry Clavel
- Avignon Université, INRAE, UMR SQPOV, Avignon, F-84914, France
| | - Odile Berge
- INRAE, Pathologie Végétale, Montfavet, F-84140, France
| | | |
Collapse
|
8
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
9
|
Duport C, Alpha-Bazin B, Armengaud J. Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins (Basel) 2019; 11:toxins11100576. [PMID: 31590258 PMCID: PMC6832400 DOI: 10.3390/toxins11100576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Exotoxins contribute to the infectious processes of many bacterial pathogens, mainly by causing host tissue damages. The production of exotoxins varies according to the bacterial species. Recent advances in proteomics revealed that pathogenic bacteria are capable of simultaneously producing more than a dozen exotoxins. Interestingly, these toxins may be subject to post-transcriptional modifications in response to environmental conditions. In this review, we give an outline of different bacterial exotoxins and their mechanism of action. We also report how proteomics contributed to immense progress in the study of toxinogenic potential of pathogenic bacteria over the last two decades.
Collapse
Affiliation(s)
- Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France
- Correspondence:
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols sur Cèze, France; (B.A.-B.); (J.A.)
| |
Collapse
|
10
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Madeira JP, Alpha-Bazin BM, Armengaud J, Duport C. Methionine Residues in Exoproteins and Their Recycling by Methionine Sulfoxide Reductase AB Serve as an Antioxidant Strategy in Bacillus cereus. Front Microbiol 2017; 8:1342. [PMID: 28798727 PMCID: PMC5526929 DOI: 10.3389/fmicb.2017.01342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
During aerobic respiratory growth, Bacillus cereus is exposed to continuously reactive oxidant, produced by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). The sulfur-containing amino acid, methionine (Met), is particularly susceptible to ROS. The major oxidation products, methionine sulfoxides, can be readily repaired by methionine sulfoxide reductases, which reduce methionine sulfoxides [Met(O)] back to methionine. Here, we show that methionine sulfoxide reductase AB (MsrAB) regulates the Met(O) content of both the cellular proteome and exoproteome of B. cereus in a growth phase-dependent manner. Disruption of msrAB leads to metabolism changes resulting in enhanced export of Met(O) proteins at the late exponential growth phase and enhanced degradation of exoproteins. This suggests that B. cereus can modulate its capacity and specificity for protein export/secretion through the growth phase-dependent expression of msrAB. Our results also show that cytoplasmic MsrAB recycles Met residues in enterotoxins, which are major virulence factors in B. cereus.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), UMR0408, Avignon Université, Institut National de la Recherche AgronomiqueAvignon, France.,Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Béatrice M Alpha-Bazin
- Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Commissariat à lEnergie Atomique, Direction de la Recherche Fondamentale, Institut des Sciences du vivant Frédéric-Joliot (Joliot), Service de Pharmacologie et Immunoanalyse, Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D)Bagnols-sur-Cèze, France
| | - Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), UMR0408, Avignon Université, Institut National de la Recherche AgronomiqueAvignon, France
| |
Collapse
|
12
|
Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum. Infect Immun 2017; 85:IAI.00017-17. [PMID: 28507067 DOI: 10.1128/iai.00017-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 11/20/2022] Open
Abstract
A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR, and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes (ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR-diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence.
Collapse
|
13
|
Abstract
Organic hydroperoxide reductase regulator (OhrR) in bacteria is a sensor for organic hydroperoxide stress and a transcriptional regulator for the enzyme organic hydroperoxide reductase (Ohr). In this study we investigated, using a GFP reporter system, whether Mycobacterium smegmatis OhrR has the ability to sense and respond to intracellular organic hydroperoxide stress. It was observed that M. smegmatis strains bearing the pohr-gfpuv fusion construct were able to express GFP only in the absence of an intact ohrR gene, but not in its presence. However, GFP expression in the strain bearing pohr-gfpuv with an intact ohrR gene could be induced by organic hydroperoxides in vitro and in the intracellular environment upon ingestion of the bacteria by macrophages; indicating that OhrR responds not only to in vitro but also to intracellular organic hydroperoxide stress. Further, the intracellular expression of pohr driven GFP in this strain could be abolished by replacing the intact ohrR gene with a mutant ohrR gene modified for N-terminal Cysteine (Cys) residue, suggesting that OhrR senses intracellular organic hydroperoxides through Cys residue. This is the first report demonstrating the ability of OhrR to sense intracellular organic hydroperoxides.
Collapse
|
14
|
Delpech P, Rifa E, Ball G, Nidelet S, Dubois E, Gagne G, Montel MC, Delbès C, Bornes S. New Insights into the Anti-pathogenic Potential of Lactococcus garvieae against Staphylococcus aureus Based on RNA Sequencing Profiling. Front Microbiol 2017; 8:359. [PMID: 28337182 PMCID: PMC5340753 DOI: 10.3389/fmicb.2017.00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
The bio-preservation potential of Lactococcus garvieae lies in its capacity to inhibit the growth of staphylococci, especially Staphylococcus aureus, in dairy products and in vitro. In vitro, inhibition is modulated by the level of aeration, owing to hydrogen peroxide (H2O2) production by L. garvieae under aeration. The S. aureus response to this inhibition has already been studied. However, the molecular mechanisms of L. garvieae underlying the antagonism against S. aureus have never been explored. This study provides evidence of the presence of another extracellular inhibition effector in vitro. This effector was neither a protein, nor a lipid, nor a polysaccharide, nor related to an L-threonine deficiency. To better understand the H2O2-related inhibition mechanism at the transcriptome level and to identify other mechanisms potentially involved, we used RNA sequencing to determine the transcriptome response of L. garvieae to different aeration levels and to the presence or absence of S. aureus. The L. garvieae transcriptome differed radically between different aeration levels mainly in biological processes related to fundamental functions and nutritional adaptation. The transcriptomic response of L. garvieae to aeration level differed according to the presence or absence of S. aureus. The higher concentration of H2O2 with high aeration was not associated with a higher expression of L. garvieae H2O2-synthesis genes (pox, sodA, and spxA1) but rather with a repression of L. garvieae H2O2-degradation genes (trxB1, ahpC, ahpF, and gpx). We showed that L. garvieae displayed an original, previously undiscovered, H2O2 production regulation mechanism among bacteria. In addition to the key factor H2O2, the involvement of another extracellular effector in the antagonism against S. aureus was shown. Future studies should explore the relation between H2O2-metabolism, H2O2-producing LAB and the pathogen they inhibit. The nature of the other extracellular effector should also be determined.
Collapse
Affiliation(s)
- Pierre Delpech
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | - Etienne Rifa
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | - Graham Ball
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University Nottingham, UK
| | - Sabine Nidelet
- Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | | | | | - Céline Delbès
- Université Clermont Auvergne, INRA, UMRF Aurillac, France
| | | |
Collapse
|
15
|
Exoproteomics of Pathogens: Analysis of Toxins and Other Virulence Factors by Proteomics. Methods Enzymol 2017; 586:211-227. [PMID: 28137564 DOI: 10.1016/bs.mie.2016.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens are known to release in their environment a large range of toxins and other virulence factors. Their pathogenicity relies on this arsenal of exoproteins and their orchestrated release upon changing environmental conditions. Exoproteomics aims at describing and quantifying the proteins found outside of the cells, thus takes advantage of the most recent methodologies of next-generation proteomics. This approach has been applied with great success to a variety of pathogens increasing the fundamental knowledge on pathogenicity. In this chapter, we describe how the exoproteome should be prepared and handled for high-throughput identification of exoproteins and their quantitation by label-free shotgun proteomics. We also mentioned some bioinformatics tools for extracting information such as toxin similarity search.
Collapse
|
16
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
17
|
Wallace N, Zani A, Abrams E, Sun Y. The Impact of Oxygen on Bacterial Enteric Pathogens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:179-204. [PMID: 27261784 DOI: 10.1016/bs.aambs.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis.
Collapse
Affiliation(s)
- N Wallace
- University of Dayton, Dayton, OH, United States
| | - A Zani
- University of Dayton, Dayton, OH, United States
| | - E Abrams
- University of Dayton, Dayton, OH, United States
| | - Y Sun
- University of Dayton, Dayton, OH, United States
| |
Collapse
|
18
|
Gao L, Wang J, Ge H, Fang L, Zhang Y, Huang X, Wang Y. Toward the complete proteome of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 126:203-219. [PMID: 25862646 DOI: 10.1007/s11120-015-0140-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
The proteome of the photosynthetic model organism Synechocystis sp. PCC 6803 has been extensively analyzed in the last 15 years for the purpose of identifying proteins specifically expressed in subcellular compartments or differentially expressed in different environmental or internal conditions. This review summarizes the progress achieved so far with the emphasis on the impact of different techniques, both in sample preparation and protein identification, on the increasing coverage of proteome identification. In addition, this review evaluates the current completeness of proteome identification, and provides insights on the potential factors that could affect the complete identification of the Synechocystis proteome.
Collapse
Affiliation(s)
- Liyan Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Haitao Ge
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd, Beijing, 100101, China.
| |
Collapse
|
19
|
Omer H, Alpha-Bazin B, Brunet JL, Armengaud J, Duport C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front Microbiol 2015; 6:1004. [PMID: 26500610 PMCID: PMC4595770 DOI: 10.3389/fmicb.2015.01004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.
Collapse
Affiliation(s)
- Hélène Omer
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory "Innovative technologies for Detection and Diagnostic" Bagnols-sur-Cèze, France
| | - Catherine Duport
- Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France ; INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale Avignon, France
| |
Collapse
|
20
|
Madeira JP, Alpha-Bazin B, Armengaud J, Duport C. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation. Front Microbiol 2015; 6:342. [PMID: 25954265 PMCID: PMC4406070 DOI: 10.3389/fmicb.2015.00342] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023] Open
Abstract
At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale, Université d'Avignon Avignon, France ; INRA, UMR408, Sécurité et Qualité des Produits d' Origine Végétale Avignon, France ; Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Béatrice Alpha-Bazin
- Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Jean Armengaud
- Commissariat à l'énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), IBEB, Li2D Bagnols sur Cèze, France
| | - Catherine Duport
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale, Université d'Avignon Avignon, France ; INRA, UMR408, Sécurité et Qualité des Produits d' Origine Végétale Avignon, France
| |
Collapse
|
21
|
Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579. J Bacteriol 2014; 197:626-35. [PMID: 25422307 DOI: 10.1128/jb.02125-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis.
Collapse
|
22
|
Inactivation of the organic hydroperoxide stress resistance regulator OhrR enhances resistance to oxidative stress and isoniazid in Mycobacterium smegmatis. J Bacteriol 2014; 197:51-62. [PMID: 25313389 DOI: 10.1128/jb.02252-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The organic hydroperoxide stress resistance regulator (OhrR) is a MarR type of transcriptional regulator that primarily regulates the expression of organic hydroperoxide reductase (Ohr) in bacteria. In mycobacteria, the genes encoding these proteins exist in only a few species, which include the fast-growing organism Mycobacterium smegmatis. To delineate the roles of Ohr and OhrR in defense against oxidative stress in M. smegmatis, strains lacking the expression of these proteins were constructed by deleting the ohrR and ohr genes, independently and together, through homologous recombination. The OhrR mutant strain (MSΔohrR) showed severalfold upregulation of Ohr expression, which could be observed at both the transcript and protein levels. Similar upregulation of Ohr expression was also noticed in an M. smegmatis wild-type strain (MSWt) induced with cumene hydroperoxide (CHP) and t-butyl hydroperoxide (t-BHP). The elevated Ohr expression in MSΔohrR correlated with heightened resistance to oxidative stress due to CHP and t-BHP and to inhibitory effects due to the antituberculosis drug isoniazid (INH). Further, this mutant strain exhibited significantly enhanced survival in the intracellular compartments of macrophages. In contrast, the strains lacking either Ohr alone (MSΔohr) or both Ohr and OhrR (MSΔohr-ohrR) displayed limited or no resistance to hydroperoxides and INH. Additionally, these strains showed no significant differences in intracellular survival from the wild type. Electrophoretic mobility shift assays (EMSAs) revealed that the overexpressed and purified OhrR interacts with the ohr-ohrR intergenic region with a greater affinity and this interaction is contingent upon the redox state of the OhrR. These findings suggest that Ohr-OhrR is an important peroxide stress response system in M. smegmatis.
Collapse
|
23
|
Laouami S, Clair G, Armengaud J, Duport C. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579. PLoS One 2014; 9:e107354. [PMID: 25216269 PMCID: PMC4162614 DOI: 10.1371/journal.pone.0107354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.
Collapse
Affiliation(s)
- Sabrina Laouami
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| | - Géremy Clair
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| |
Collapse
|
24
|
Durighello E, Christie-Oleza JA, Armengaud J. Assessing the exoproteome of marine bacteria, lesson from a RTX-toxin abundantly secreted by Phaeobacter strain DSM 17395. PLoS One 2014; 9:e89691. [PMID: 24586966 PMCID: PMC3933643 DOI: 10.1371/journal.pone.0089691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022] Open
Abstract
Bacteria from the Roseobacter clade are abundant in surface marine ecosystems as over 10% of bacterial cells in the open ocean and 20% in coastal waters belong to this group. In order to document how these marine bacteria interact with their environment, we analyzed the exoproteome of Phaeobacter strain DSM 17395. We grew the strain in marine medium, collected the exoproteome and catalogued its content with high-throughput nanoLC-MS/MS shotgun proteomics. The major component represented 60% of the total protein content but was refractory to either classical proteomic identification or proteogenomics. We de novo sequenced this abundant protein with high-resolution tandem mass spectra which turned out being the 53 kDa RTX-toxin ZP_02147451. It comprised a peptidase M10 serralysin domain. We explained its recalcitrance to trypsin proteolysis and proteomic identification by its unusual low number of basic residues. We found this is a conserved trait in RTX-toxins from Roseobacter strains which probably explains their persistence in the harsh conditions around bacteria. Comprehensive analysis of exoproteomes from environmental bacteria should take into account this proteolytic recalcitrance.
Collapse
Affiliation(s)
- Emie Durighello
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | | | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
- * E-mail:
| |
Collapse
|