1
|
Barker A, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Snake Venom Makeover: Age-Dependent Variations in Procoagulant Biochemistry of Egyptian Saw-Scaled Viper ( Echis pyramidum pyramidum) Venom. Toxins (Basel) 2025; 17:149. [PMID: 40137922 PMCID: PMC11946080 DOI: 10.3390/toxins17030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes in the venom biochemistry has not been investigated. This study investigated the ontogenetic changes in Echis pyramidum pyramidum venom and its impact on therapeutic efficacy. The efficacy of various antivenoms (Echitab, Echitab+ ICP, Inosan MENA, Inosan Pan African, and SAVP-Echis) was tested against both venom phenotypes. While both neonate and adult venoms were procoagulant, there were differences in the underlying biochemistry. Neonate venom was found to potently pathophysiologically activate Factor VII and Factor X, and to a lesser degree Factor XII. In contrast, adult venom was a slower clotter, less potent in activating FVII, equipotent with neonate venom on FXII, and inactive on FX. This is the first documentation of FVII and FXII activation for any Echis venom. The significant ontogenetic toxicological variations in Echis species were shown to impact antivenom efficacy. Among the tested antivenoms, SAVP-Echis was the most effective against both venom phenotypes, with adult venom being better neutralized. These findings suggest the need for a reconsideration of venom mixture selection in antivenom production through the inclusion of neonate venom. Additionally, the results indicate differential ontogenetic predatory ecology, providing a foundation for future natural history investigations.
Collapse
Affiliation(s)
- Alex Barker
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
2
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
3
|
Bahmani K, Abdollahnia A, Vatanpour H, Ghassempour A, Kaboli M, Shahidi MR. Evaluation of venom diversity and antivenom quality from the venom of long-term captive vs recently wild captured Pseudocerastes persicus snake: An In vitro and In vivo study. Toxicon 2024; 241:107662. [PMID: 38417708 DOI: 10.1016/j.toxicon.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Snakebite envenomation is a life-threatening condition and antivenoms are used as the most effective treatment. Venom obtained from snakes in long-term captivity showed some variations in comparison to the venom of the wild snakes. The objective of this study is to compare the venom of the Pseudocerastes persicus under long-term captivity and wild conditions as well as the antivenom obtained from these venoms. We have analyzed venom samples and produced trivalent antivenoms using the venom of long-term captive (LTC) or recently wild-captured (RWC) Pseudocerastes persicus, and RWC Macrovipera lebetina, and Echis carinatus. The HPLC analysis revealed that the RWC snakes' venom had three peaks that were not present in the LTC snake's venom. Further analysis using MALDI-TOF and MS/MS showed that the fraction with a retention time (RT) of 14Â min contained a toxin from the Kunitz-type serine protease inhibitor (KUT) class, while the fraction with RT 21 a peptide identified within the snake venom metalloproteinase (SVMP) class. The third peak was identified as a sphingolipid. Interestingly, the in vivo preclinical tests showed no significant differences in the effectiveness of the antivenoms. which could be due to the cross-immunogenicity or cross-reactivity between different toxins in the venom. According to our results, small variations in the venom composition of a species do not lead to a decrease in the efficacy of the polyvalent antivenom.
Collapse
Affiliation(s)
- Kiumars Bahmani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Abdollahnia
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Mohammad Kaboli
- College of Natural Resources and Agriculture, University of Tehran, Karaj, Iran
| | | |
Collapse
|
4
|
Dehghani R, Monzavi SM, Mehrpour O, Shirazi FM, Hassanian-Moghaddam H, Keyler DE, Wüster W, Westerström A, Warrell DA. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023; 230:107149. [PMID: 37187227 DOI: 10.1016/j.toxicon.2023.107149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Snakebite is a common health condition in Iran with a diverse snake fauna, especially in tropical southern and mountainous western areas of the country with plethora of snake species. The list of medically important snakes, circumstances and effects of their bite, and necessary medical care require critical appraisal and should be updated regularly. This study aims to review and map the distributions of medically important snake species of Iran, re-evaluate their taxonomy, review their venomics, describe the clinical effects of envenoming, and discuss medical management and treatment, including the use of antivenom. Nearly 350 published articles and 26 textbooks with information on venomous and mildly venomous snake species and snakebites of Iran, were reviewed, many in Persian (Farsi) language, making them relatively inaccessible to an international readership. This has resulted in a revised updated list of Iran's medically important snake species, with taxonomic revisions of some, compilation of their morphological features, remapping of their geographical distributions, and description of species-specific clinical effects of envenoming. Moreover, the antivenom manufactured in Iran is discussed, together with treatment protocols that have been developed for the hospital management of envenomed patients.
Collapse
Affiliation(s)
- Ruhollah Dehghani
- Department of Environmental Health, Kashan University of Medical Sciences, Kashan, Iran; Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mostafa Monzavi
- Medical Toxicology Center, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA.
| | - Farshad M Shirazi
- Arizona Poison and Drug Information Center, University of Arizona, Tucson, AZ, USA
| | - Hossein Hassanian-Moghaddam
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor, UK
| | | | - David A Warrell
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Dashevsky D, Baumann K, Undheim EAB, Nouwens A, Ikonomopoulou MP, Schmidt JO, Ge L, Kwok HF, Rodriguez J, Fry BG. Functional and Proteomic Insights into Aculeata Venoms. Toxins (Basel) 2023; 15:toxins15030224. [PMID: 36977115 PMCID: PMC10053895 DOI: 10.3390/toxins15030224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
- Correspondence: (D.D.); (B.G.F.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A. B. Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, N-0316 Oslo, Norway
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, 4075 Madrid, Spain
| | - Justin O. Schmidt
- Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA
| | - Lilin Ge
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210046, China
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (D.D.); (B.G.F.)
| |
Collapse
|
6
|
A case of envenoming by a Persian false-horned viper Pseudocerastes persicus (Duméril, Bibron & Duméril, 1854) (Serpentes: Viperidae) in Southeastern Iran. Toxicon 2023; 223:107009. [PMID: 36586490 DOI: 10.1016/j.toxicon.2022.107009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Despite the wide distribution of the Persian false-horned viper (Pseudocerastes persicus) in the Middle East, few identified bites have been reported. A 33-year-old herpetologist bitten on the hand by Pseudocerastes persicus in Kerman Province, Southeastern Iran, developed local pain and extensive swelling with mild non-specific systemic symptoms and minimal laboratory evidence of systemic envenoming.
Collapse
|
7
|
Arrahman A, Kazandjian TD, Still KBM, Slagboom J, Somsen GW, Vonk FJ, Casewell NR, Kool J. A Combined Bioassay and Nanofractionation Approach to Investigate the Anticoagulant Toxins of Mamba and Cobra Venoms and Their Inhibition by Varespladib. Toxins (Basel) 2022; 14:736. [PMID: 36355986 PMCID: PMC9695013 DOI: 10.3390/toxins14110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Envenomation by elapid snakes primarily results in neurotoxic symptoms and, consequently, are the primary focus of therapeutic research concerning such venoms. However, mounting evidence suggests these venoms can additionally cause coagulopathic symptoms, as demonstrated by some Asian elapids and African spitting cobras. This study sought to investigate the coagulopathic potential of venoms from medically important elapids of the genera Naja (true cobras), Hemachatus (rinkhals), and Dendroaspis (mambas). Crude venoms were bioassayed for coagulant effects using a plasma coagulation assay before RPLC/MS was used to separate and identify venom toxins in parallel with a nanofractionation module. Subsequently, coagulation bioassays were performed on the nanofractionated toxins, along with in-solution tryptic digestion and proteomics analysis. These experiments were then repeated on both crude venoms and on the nanofractionated venom toxins with the addition of either the phospholipase A2 (PLA2) inhibitor varespladib or the snake venom metalloproteinase (SVMP) inhibitor marimastat. Our results demonstrate that various African elapid venoms have an anticoagulant effect, and that this activity is significantly reduced for cobra venoms by the addition of varespladib, though this inhibitor had no effect against anticoagulation caused by mamba venoms. Marimastat showed limited capacity to reduce anticoagulation in elapids, affecting only N. haje and H. haemachatus venom at higher doses. Proteomic analysis of nanofractionated toxins revealed that the anticoagulant toxins in cobra venoms were both acidic and basic PLA2s, while the causative toxins in mamba venoms remain uncertain. This implies that while PLA2 inhibitors such as varespladib and metalloproteinase inhibitors such as marimastat are viable candidates for novel snakebite treatments, they are not likely to be effective against mamba envenomings.
Collapse
Affiliation(s)
- Arif Arrahman
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
| | - Taline D. Kazandjian
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Kristina B. M. Still
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Julien Slagboom
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Naturalis Biodiversity Centre, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jeroen Kool
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
8
|
Jenkins TP, Ahmadi S, Bittenbinder MA, Stewart TK, Akgun DE, Hale M, Nasrabadi NN, Wolff DS, Vonk FJ, Kool J, Laustsen AH. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Negl Trop Dis 2021; 15:e0009880. [PMID: 34855751 PMCID: PMC8638997 DOI: 10.1371/journal.pntd.0009880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Trenton K. Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dilber E. Akgun
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, EskiÅŸehir Osmangazi University, EskiÅŸehir, Turkey
| | - Melissa Hale
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nafiseh N. Nasrabadi
- Pharmaceutical Sciences Research Centre, Student Research Commitee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Venomous Animals and Antivenom Production, Razi Vaccine, and Serum Research Institute, Karaj, Iran
| | - Darian S. Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Abdelglil MI, Abdallah SO, El-Desouky MA, Alfaifi MY, Elbehairi SEI, Mohamed AF. Evaluation of the Anticancer Potential of Crude, Irradiated Cerastes cerastes Snake Venom and Propolis Ethanolic Extract & Related Biological Alterations. Molecules 2021; 26:molecules26227057. [PMID: 34834153 PMCID: PMC8625720 DOI: 10.3390/molecules26227057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
We aimed to evaluate the anticancer potential of crude venom (CV), γ irradiated Certastes cerastes venom (IRRV), and propolis ethanolic extract (PEE). IRRV showed a higher toxicity than CV, while CV-PEE showed higher toxicity than IRRV and CV against lung [A549] and prostate [PC3] cancer cells. Toxicity to [A549] and [PC3] cells was concentration and cell type dependent. In comparison to controls, apoptotic genes showed a significant upregulation of P53 and Casp-3 and a downregulation of Bcl-2. Also, induced elevated DNA accumulation in the [S] phase post PC3 cell treatment with IRRV and CV, as well as a significant DNA accumulation at G2/M phase after IRRV treatment of A549 cells. In contrast, PC3 cells showed a negligible cellular DNA accumulation after PEE treatment. Glutathione reductase [GR] was reduced in case of PC3 and A549 cell treated with IRRV, CV, and PEE compared with its values in untreated cell control. The Malondialdehyde [MDA] values in both cells recorded a significant elevation post IRRV treatment compared to the rest of the treatment regimen and untreated cell control. Similarly, IRRV and CV-PEE mix showed obviously higher reactive oxygen species [ROS] values than PC3 and A549 cell treatments with CV and PEE.
Collapse
Affiliation(s)
- Mostafa I. Abdelglil
- Faculty of Sciences, Cairo University, Giza 12613, Egypt;
- Correspondence: (M.I.A.); (M.A.E.-D.); (S.E.I.E.); Tel.: +20-100-205-4967 (M.I.A.)
| | | | - Mohamed A. El-Desouky
- Faculty of Sciences, Cairo University, Giza 12613, Egypt;
- Correspondence: (M.I.A.); (M.A.E.-D.); (S.E.I.E.); Tel.: +20-100-205-4967 (M.I.A.)
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia;
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza 12654, Egypt
- Correspondence: (M.I.A.); (M.A.E.-D.); (S.E.I.E.); Tel.: +20-100-205-4967 (M.I.A.)
| | - Aly F. Mohamed
- The International Center for Training & Advanced Researches (ICTAR–Egypt), Cairo 11647, Egypt;
| |
Collapse
|
10
|
Pharmacological Characterisation of Pseudocerastes and Eristicophis Viper Venoms Reveal Anticancer (Melanoma) Properties and a Potentially Novel Mode of Fibrinogenolysis. Int J Mol Sci 2021; 22:ijms22136896. [PMID: 34199017 PMCID: PMC8267730 DOI: 10.3390/ijms22136896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Venoms are a rich source of potential lead compounds for drug discovery, and descriptive studies of venom form the first phase of the biodiscovery process. In this study, we investigated the pharmacological potential of crude Pseudocerastes and Eristicophis snake venoms in haematological disorders and cancer treatment. We assessed their antithrombotic potential using fibrinogen thromboelastography, fibrinogen gels with and without protease inhibitors, and colourimetric fibrinolysis assays. These assays indicated that the anticoagulant properties of the venoms are likely induced by the hydrolysis of phospholipids and by selective fibrinogenolysis. Furthermore, while most fibrinogenolysis occurred by the direct activity of snake venom metalloproteases and serine proteases, modest evidence indicated that fibrinogenolytic activity may also be mediated by selective venom phospholipases and an inhibitory venom-derived serine protease. We also found that the Pseudocerastes venoms significantly reduced the viability of human melanoma (MM96L) cells by more than 80%, while it had almost no effect on the healthy neonatal foreskin fibroblasts (NFF) as determined by viability assays. The bioactive properties of these venoms suggest that they contain a number of toxins suitable for downstream pharmacological development as candidates for antithrombotic or anticancer agents.
Collapse
|
11
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
12
|
op den Brouw B, Coimbra FCP, Bourke LA, Huynh TM, Vlecken DHW, Ghezellou P, Visser JC, Dobson JS, Fernandez-Rojo MA, Ikonomopoulou MP, Casewell NR, Ali SA, Fathinia B, Hodgson WC, Fry BG. Extensive Variation in the Activities of Pseudocerastes and Eristicophis Viper Venoms Suggests Divergent Envenoming Strategies Are Used for Prey Capture. Toxins (Basel) 2021; 13:112. [PMID: 33540884 PMCID: PMC7913145 DOI: 10.3390/toxins13020112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/28/2022] Open
Abstract
Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.
Collapse
Affiliation(s)
- Bianca op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| | - Francisco C. P. Coimbra
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| | - Lachlan A. Bourke
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| | - Tam Minh Huynh
- Monash Venom Group, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC 3800, Australia; (T.M.H.); (W.C.H.)
| | - Danielle H. W. Vlecken
- Department of Animal Science and Health, Institute of Biology Leiden, 2333 BE Leiden, The Netherlands;
| | - Parviz Ghezellou
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran;
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Jeroen C. Visser
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| | - Manuel A. Fernandez-Rojo
- Madrid Institute for Advanced Studies in Food, E28049 Madrid, Spain; (M.A.F.-R.); (M.P.I.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria P. Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, E28049 Madrid, Spain; (M.A.F.-R.); (M.P.I.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Syed A. Ali
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan;
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, 75914 Yasouj, Iran;
| | - Wayne C. Hodgson
- Monash Venom Group, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC 3800, Australia; (T.M.H.); (W.C.H.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; (F.C.P.C.); (L.A.B.); (J.C.V.); (J.S.D.)
| |
Collapse
|
13
|
Shahbazi B, Najafabadi ZS, Goudarzi H, Sajadi M, Tahoori F, Bagheri M. Cytotoxic effects of Pseudocerastes persicus venom and its HPLC fractions on lung cancer cells. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190009. [PMID: 31555336 PMCID: PMC6748451 DOI: 10.1590/1678-9199-jvatitd-2019-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Several studies have pointed out that certain snake venoms contain compounds presenting cytotoxic activities that selectively interfere with cancer cell metabolism. In this study, Pseudocerastes persicus venom and its fractions were investigated for their anticancer potential on lung cancer cells. METHODS Lung cancer cells (A549) and normal fibroblast cells (Hu02) were treated with the P. persicus venom and its HPLC fractions and the cell cytotoxic effects were analyzed using MTT and lactate dehydrogenase release assays. Apoptosis was determined in venom-treated cell cultures using caspase-3 and caspase-9 assay kits. RESULTS The treatment of cells with HPLC fraction 21 (25-35 kDa) of P. persicus venom resulted in high LDH release in normal fibroblast cells and high caspase-3 and caspase-9 activities in lung cancer cells. These results indicate that fraction 21 induces apoptosis in cancer cells, whereas necrosis is predominantly caused by cell death in the normal cells. Fraction 21 at the final concentration of 10 μg/mL killed approximately 60% of lung cancer cells, while in normal fibroblast cells very low cell cytotoxic effect was observed. CONCLUSION HPLC fraction 21 at low concentrations displayed promising anticancer properties with apoptosis induction in the lung cancer cells. This fraction may, therefore, be considered a promising candidate for further studies.
Collapse
Affiliation(s)
| | - Zahra Salehi Najafabadi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hamidreza Goudarzi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mahnaz Sajadi
- Tofigh Daru Research and Engineering Company, Tehran, Iran
| | - Fatemeh Tahoori
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
14
|
Fathinia B, Rastegar-Pouyani N, Rastegar-Pouyani E. Molecular phylogeny and historical biogeography of genera Eristicophis
and Pseudocerastes
(Ophidia, Viperidae). ZOOL SCR 2018. [DOI: 10.1111/zsc.12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Behzad Fathinia
- Department of Biology, Faculty of Science; Yasouj University; Yasouj Iran
| | - Nasrullah Rastegar-Pouyani
- Department of Biology, Faculty of Science; Razi University; Kermanshah Iran
- Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Science; Razi University; Kermanshah Iran
| | | |
Collapse
|
15
|
Goldenberg J, Cipriani V, Jackson TNW, Arbuckle K, Debono J, Dashevsky D, Panagides N, Ikonomopoulou MP, Koludarov I, Li B, Santana RC, Nouwens A, Jones A, Hay C, Dunstan N, Allen L, Bush B, Miles JJ, Ge L, Kwok HF, Fry BG. Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:53-61. [PMID: 29353015 DOI: 10.1016/j.cbpc.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations.
Collapse
Affiliation(s)
- Jonathan Goldenberg
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Vittoria Cipriani
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, VIC 3000, Australia
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2, 8PP, UK
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; School of Medicine, The University of Queensland, Herston, QLD 4002, Australia; Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Renan Castro Santana
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alun Jones
- Institute for Molecular Biosciences, University of Queensland, Slt Lucia, QLD 4072, Australia
| | - Chris Hay
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Luke Allen
- Venom Supplies, Tanunda, SA 5352, Australia
| | - Brian Bush
- Snakes Harmful & Harmless, 9 Birch Place, Stoneville, WA 6081, Australia
| | - John J Miles
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Lilin Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Nanjing, China
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MLR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins (Basel) 2017; 9:E242. [PMID: 28783084 PMCID: PMC5577576 DOI: 10.3390/toxins9080242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Timothy Nw Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
- Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia.
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Christofer J Clemente
- University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia.
| | | | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Carson Stephens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | | | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queenslnd, St. Lucia QLD 4072, Australia.
| | - Judith Clements
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | | | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
17
|
Munir I, Ajmal S, Shah MR, Ahmad A, Hameed A, Ali SA. Protein-drug nanoconjugates: Finding the alternative proteins as drug carrier. Int J Biol Macromol 2017; 101:131-145. [PMID: 28327425 DOI: 10.1016/j.ijbiomac.2017.03.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
Present study was conducted to establish the interaction of bovine fetuin-A to validate its binding modalities with doxorubicin (Dox). Fetuin-A was purified to highest purity and monodispersity. Green synthesis of fetuin-A conjugated gold nanoparticles (F-GNPs) has been performed giving typical UV-maxima with subtle variation in fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) revealed spherical shaped, polydisperse F-GNPs of varying sizes, complementing the radius of hydration (19.5-62.4nm) by dynamic light scattering (DLS). Circular dichroism (CD) analysis of fetuin-A with respect to Dox interaction shows remarkable reduction in ellipticity with increasing concentrations of Dox (20-120μM). Fetuin-A:Dox and F-GNPs:Dox at variable concentrations revealed significantly enhanced absorption spectra, while a continuous decrease in florescence (560nm). This effect was more drastic when Dox interact with fetuin-A as compared to F-GNPs. Some known antimicrobial drugs were also investigated under similar conditions, giving strong quenching effect in a dose dependent manner suggesting the significant yet differential interactions. In cytotoxicity assay, fetuin-A:Dox conjugates revealed less toxicity as compared to F-GNPs:Dox and Dox alone. In-silico studies of the fetuin-A:Dox complex suggest that the drug binds in the major grove between beta-sheet and long loop region of D1 domain and stabilized by several hydrogen bonds.
Collapse
Affiliation(s)
- Iqra Munir
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Sadia Ajmal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Aftab Ahmad
- School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| | - Abdul Hameed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
18
|
Panagides N, Jackson TNW, Ikonomopoulou MP, Arbuckle K, Pretzler R, Yang DC, Ali SA, Koludarov I, Dobson J, Sanker B, Asselin A, Santana RC, Hendrikx I, van der Ploeg H, Tai-A-Pin J, van den Bergh R, Kerkkamp HMI, Vonk FJ, Naude A, Strydom MA, Jacobsz L, Dunstan N, Jaeger M, Hodgson WC, Miles J, Fry BG. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins (Basel) 2017; 9:E103. [PMID: 28335411 PMCID: PMC5371858 DOI: 10.3390/toxins9030103] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/19/2017] [Accepted: 03/05/2017] [Indexed: 11/30/2022] Open
Abstract
The cytotoxicity of the venom of 25 species of Old World elapid snake was tested and compared with the morphological and behavioural adaptations of hooding and spitting. We determined that, contrary to previous assumptions, the venoms of spitting species are not consistently more cytotoxic than those of closely related non-spitting species. While this correlation between spitting and non-spitting was found among African cobras, it was not present among Asian cobras. On the other hand, a consistent positive correlation was observed between cytotoxicity and utilisation of the defensive hooding display that cobras are famous for. Hooding and spitting are widely regarded as defensive adaptations, but it has hitherto been uncertain whether cytotoxicity serves a defensive purpose or is somehow useful in prey subjugation. The results of this study suggest that cytotoxicity evolved primarily as a defensive innovation and that it has co-evolved twice alongside hooding behavior: once in the Hemachatus + Naja and again independently in the king cobras (Ophiophagus). There was a significant increase of cytotoxicity in the Asian Naja linked to the evolution of bold aposematic hood markings, reinforcing the link between hooding and the evolution of defensive cytotoxic venoms. In parallel, lineages with increased cytotoxicity but lacking bold hood patterns evolved aposematic markers in the form of high contrast body banding. The results also indicate that, secondary to the evolution of venom rich in cytotoxins, spitting has evolved three times independently: once within the African Naja, once within the Asian Naja, and once in the Hemachatus genus. The evolution of cytotoxic venom thus appears to facilitate the evolution of defensive spitting behaviour. In contrast, a secondary loss of cytotoxicity and reduction of the hood occurred in the water cobra Naja annulata, which possesses streamlined neurotoxic venom similar to that of other aquatic elapid snakes (e.g., hydrophiine sea snakes). The results of this study make an important contribution to our growing understanding of the selection pressures shaping the evolution of snake venom and its constituent toxins. The data also aid in elucidating the relationship between these selection pressures and the medical impact of human snakebite in the developing world, as cytotoxic cobras cause considerable morbidity including loss-of-function injuries that result in economic and social burdens in the tropics of Asia and sub-Saharan Africa.
Collapse
Affiliation(s)
- Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Maria P Ikonomopoulou
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia.
- School of Medicine, The University of Queensland, Herston, QLD 4002, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Rudolf Pretzler
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Daryl C Yang
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton VIC 3800, Australia.
| | - Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
- HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Brittany Sanker
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Angelique Asselin
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Renan C Santana
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands.
| | - Jeremie Tai-A-Pin
- Working Group Venomous Bites Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands.
| | | | - Harald M I Kerkkamp
- Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands.
| | - Arno Naude
- Snakebite Assist, Pretoria ZA-0001, South Africa.
| | - Morné A Strydom
- Department Pharmacology, University of Pretoria, Pretoria ZA-0001, South Africa.
- SYNEXUS Clinical Research SA Pty Ltd., Pretoria ZA-0001, South Africa.
| | - Louis Jacobsz
- Zoology Department, University of Pretoria, Pretoria ZA-0001, South Africa.
| | - Nathan Dunstan
- Venom Supplies, Tanunda, South Australia 5352, Australia.
| | - Marc Jaeger
- Planet Exotica, 5 Avenue des Fleurs de la Paix, 17204 Royan, France.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton VIC 3800, Australia.
| | - John Miles
- QIMR Berghofer Institute of Medical Research, Herston, QLD 4049, Australia.
- School of Medicine, The University of Queensland, Herston, QLD 4002, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
19
|
Aird SD, Villar Briones A, Roy MC, Mikheyev AS. Polyamines as Snake Toxins and Their Probable Pharmacological Functions in Envenomation. Toxins (Basel) 2016; 8:toxins8100279. [PMID: 27681740 PMCID: PMC5086639 DOI: 10.3390/toxins8100279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
While decades of research have focused on snake venom proteins, far less attention has been paid to small organic venom constituents. Using mostly pooled samples, we surveyed 31 venoms (six elapid, six viperid, and 19 crotalid) for spermine, spermidine, putrescine, and cadaverine. Most venoms contained all four polyamines, although some in essentially trace quantities. Spermine is a potentially significant component of many viperid and crotalid venoms (≤0.16% by mass, or 7.9 µmol/g); however, it is almost completely absent from elapid venoms assayed. All elapid venoms contained larger molar quantities of putrescine and cadaverine than spermine, but still at levels that are likely to be biologically insignificant. As with venom purines, polyamines impact numerous physiological targets in ways that are consistent with the objectives of prey envenomation, prey immobilization via hypotension and paralysis. Most venoms probably do not contain sufficient quantities of polyamines to induce systemic effects in prey; however, local effects seem probable. A review of the pharmacological literature suggests that spermine could contribute to prey hypotension and paralysis by interacting with N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, nicotinic and muscarinic acetylcholine receptors, γ-Aminobutyric acid (GABA) receptors, blood platelets, ryanodine receptors, and Ca2+-ATPase. It also blocks many types of cation-permeable channels by interacting with negatively charged amino acid residues in the channel mouths. The site of envenomation probably determines which physiological targets assume the greatest importance; however, venom-induced liberation of endogenous, intracellular stores of polyamines could potentially have systemic implications and may contribute significantly to envenomation sequelae.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar Briones
- Division of Research Support, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Michael C Roy
- Division of Research Support, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
20
|
Andrade-Silva D, Zelanis A, Kitano ES, Junqueira-de-Azevedo ILM, Reis MS, Lopes AS, Serrano SMT. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes. J Proteome Res 2016; 15:2658-75. [DOI: 10.1021/acs.jproteome.6b00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Débora Andrade-Silva
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - André Zelanis
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
- Instituto de Ciência
e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos 12231-280, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Inácio L. M. Junqueira-de-Azevedo
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Marcelo S. Reis
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Aline S. Lopes
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
- Departamento
de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema 04021-001, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| |
Collapse
|
21
|
de Pous P, Simó-Riudalbas M, Els J, Jayasinghe S, Amat F, Carranza S. Phylogeny and biogeography of Arabian populations of the Persian Horned Viper Pseudocerastes persicus (Duméril, Bibron & Duméril, 1854). ZOOLOGY IN THE MIDDLE EAST 2016. [DOI: 10.1080/09397140.2016.1202896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Philip de Pous
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Departament de Producció Animal, Faculty of Life Sciences and Engineering, Universitat de Lleida, Lleida, Spain
| | - Marc Simó-Riudalbas
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Sithum Jayasinghe
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Felix Amat
- Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Granollers, Catalonia, Spain
| | - Salvador Carranza
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
22
|
Koludarov I, Jackson TNW, Sunagar K, Nouwens A, Hendrikx I, Fry BG. Fossilized venom: the unusually conserved venom profiles of Heloderma species (beaded lizards and gila monsters). Toxins (Basel) 2014; 6:3582-95. [PMID: 25533521 PMCID: PMC4280549 DOI: 10.3390/toxins6123582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/03/2022] Open
Abstract
Research into snake venoms has revealed extensive variation at all taxonomic levels. Lizard venoms, however, have received scant research attention in general, and no studies of intraclade variation in lizard venom composition have been attempted to date. Despite their iconic status and proven usefulness in drug design and discovery, highly venomous helodermatid lizards (gila monsters and beaded lizards) have remained neglected by toxinological research. Proteomic comparisons of venoms of three helodermatid lizards in this study has unravelled an unusual similarity in venom-composition, despite the long evolutionary time (~30 million years) separating H. suspectum from the other two species included in this study (H. exasperatum and H. horridum). Moreover, several genes encoding the major helodermatid toxins appeared to be extremely well-conserved under the influence of negative selection (but with these results regarded as preliminary due to the scarcity of available sequences). While the feeding ecologies of all species of helodermatid lizard are broadly similar, there are significant morphological differences between species, which impact upon relative niche occupation.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behavior, the Alexander Silberman Institute for Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|