1
|
Xiong J, Ge X, Pan D, Zhu Y, Zhou Y, Gao Y, Wang H, Wang X, Gu Y, Ye W, Teng H, Zhou X, Wang Z, Liu W, Cai W. Metabolic reprogramming in astrocytes prevents neuronal death through a UCHL1/PFKFB3/H4K8la positive feedback loop. Cell Death Differ 2025:10.1038/s41418-025-01467-x. [PMID: 40016338 DOI: 10.1038/s41418-025-01467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/08/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Astrocytic metabolic reprogramming is an adaptation of metabolic patterns to meet increased energy demands, although the role after spinal cord injury (SCI) remains unclear. Analysis of single-cell RNA sequencing (scRNA-seq) data identified an increase in astrocytic glycolysis, while PFKFB3, a key regulator of glycolytic flux, was significantly upregulated following SCI. Loss of PFKFB3 in astrocytes prohibited neuronal energy supply and enhanced neuronal ferroptosis in vitro and expanded infiltration of CD68+ macrophages/microglia, exacerbated neuronal loss, and hindered functional recovery in vivo after SCI. Mechanistically, deubiquitinase UCHL1 plays a crucial role in stabilizing and enhancing PFKFB3 expression by cleaving K48-linked ubiquitin chains. Genetic deletion of Uchl1 inhibited locomotor recovery after SCI by suppression of PFKFB3-induced glycolytic reprogramming in astrocytes. Furthermore, the UCHL1/PFKFB3 axis increased lactate production, leading to enhanced histone lactylation and subsequent transcription of Uchl1 and several genes related to glycolysis, suggesting a glycolysis/H4K8la/UCHL1 positive feedback loop. These findings help to clarify the role of the UCHL1/PFKFB3/H4K8la loop in modulation of astrocytic metabolic reprogramming and reveal a potential target for treatment of SCI.
Collapse
Affiliation(s)
- Junjun Xiong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China
| | - Dishui Pan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yitong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haofan Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaokun Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Gu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglin Teng
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China.
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
3
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2023; 2596:399-419. [PMID: 36378453 DOI: 10.1007/978-1-0716-2831-7_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a difference gel electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
4
|
Abstract
Enzyme activity assay methods can be used to corroborate the results generated by difference gel electrophoresis (DIGE) proteomic experiments. Two assay methods were chosen to demonstrate how this can be achieved. Assays for determining the activity of superoxide dismutase and NADH dehydrogenase are outlined in detail in this chapter. These methods were chosen as examples because they are frequently used in conjunction with DIGE proteomics.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
5
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells 2019; 8:cells8111410. [PMID: 31717433 PMCID: PMC6912740 DOI: 10.3390/cells8111410] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the host cell immune response, allowing the virus to continue replication. Therefore, in about 70% of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Induction of cancer in the host cells can be regarded to provide further advantages for ongoing virus replication. One adaptation in cancer cells is the enhancement of cellular carbohydrate flux in glycolysis with a reduction of the activity of the citric acid cycle and aerobic oxidative phosphorylation. To this end, HCV downregulates the expression of mitochondrial oxidative phosphorylation complex core subunits quite early after infection. This so-called aerobic glycolysis is known as the “Warburg Effect” and serves to provide more anabolic metabolites upstream of the citric acid cycle, such as amino acids, pentoses and NADPH for cancer cell growth. In addition, HCV deregulates signaling pathways like those of TNF-β and MAPK by direct and indirect mechanisms, which can lead to fibrosis and HCC.
Collapse
|
7
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2018; 1664:261-278. [PMID: 29019139 DOI: 10.1007/978-1-4939-7268-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a Difference Gel Electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
8
|
Dowd A. Enzyme Assay Methods to Validate DIGE Proteomics Data. Methods Mol Biol 2018; 1664:279-286. [PMID: 29019140 DOI: 10.1007/978-1-4939-7268-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enzyme activity assay methods can be used to corroborate the results generated by Difference Gel Electrophoresis (DIGE) proteomic experiments. Two assay methods were chosen to demonstrate how this can be achieved. Assays for determining the activity of superoxide dismutase and NADH dehydrogenase are outlined in detail in this paper. These methods were chosen as examples because they are frequently used in conjunction with DIGE proteomics.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
9
|
Kaux JF, Libertiaux V, Leprince P, Fillet M, Denoel V, Wyss C, Lecut C, Gothot A, Le Goff C, Croisier JL, Crielaard JM, Drion P. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model. Am J Sports Med 2017; 45:1440-1446. [PMID: 28291948 DOI: 10.1177/0363546517689872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. HYPOTHESIS A combination of PRP injection and eccentric training might be more effective than either treatment alone. STUDY DESIGN Controlled laboratory study. METHODS Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. RESULTS No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. CONCLUSION Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). CLINICAL RELEVANCE This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.
Collapse
Affiliation(s)
- Jean-François Kaux
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Vincent Libertiaux
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liège, Liège, Belgium
| | - Vincent Denoel
- Department ARGENCO, University of Liège, Liège, Liège, Belgium
| | - Clémence Wyss
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Christelle Lecut
- Department of Laboratory Hematology, University and University Hospital of Liège, Liège, Liège, Belgium
| | - André Gothot
- Department of Laboratory Hematology, University and University Hospital of Liège, Liège, Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University and University Hospital of Liège, Belgium
| | - Jean-Louis Croisier
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Jean-Michel Crielaard
- Physical Medicine, Rehabilitation and Sports Traumatology Department, SportS2, FIFA Medical Centre of Excellence, University and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Animal Facility, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
11
|
Demeure K, Fack F, Duriez E, Tiemann K, Bernard A, Golebiewska A, Bougnaud S, Bjerkvig R, Domon B, Niclou SP. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM). Mol Cell Proteomics 2015; 15:481-92. [PMID: 26243272 PMCID: PMC4739668 DOI: 10.1074/mcp.m115.052423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor with dismal outcome for affected patients. Because of the significant neo-angiogenesis exhibited by GBMs, anti-angiogenic therapies have been intensively evaluated during the past years. Recent clinical studies were however disappointing, although a subpopulation of patients may benefit from such treatment. We have previously shown that anti-angiogenic targeting in GBM increases hypoxia and leads to a metabolic adaptation toward glycolysis, suggesting that combination treatments also targeting the glycolytic phenotype may be effective in GBM patients. The aim of this study was to identify marker proteins that are altered by treatment and may serve as a short term readout of anti-angiogenic therapy. Ultimately such proteins could be tested as markers of efficacy able to identify patient subpopulations responsive to the treatment. We applied a proteomics approach based on selected reaction monitoring (SRM) to precisely quantify targeted protein candidates, selected from pathways related to metabolism, apoptosis and angiogenesis. The workflow was developed in the context of patient-derived intracranial GBM xenografts developed in rodents and ensured the specific identification of human tumor versus rodent stroma-derived proteins. Quality control experiments were applied to assess sample heterogeneity and reproducibility of SRM assays at different levels. The data demonstrate that tumor specific proteins can be precisely quantified within complex biological samples, reliably identifying small concentration differences induced by the treatment. In line with previous work, we identified decreased levels of TCA cycle enzymes, including isocitrate dehydrogenase, whereas malectin, calnexin, and lactate dehydrogenase A were augmented after treatment. We propose the most responsive proteins of our subset as potential novel biomarkers to assess treatment response after anti-angiogenic therapy that warrant future analysis in clinical GBM samples.
Collapse
Affiliation(s)
- Kevin Demeure
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Fred Fack
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Elodie Duriez
- §Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Katja Tiemann
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Amandine Bernard
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sébastien Bougnaud
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rolf Bjerkvig
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; ¶KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bruno Domon
- §Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- From the ‡NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; ¶KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Data in support of metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. Data Brief 2015. [PMID: 26217695 PMCID: PMC4459766 DOI: 10.1016/j.dib.2014.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
2D-DIGE analysis coupled with mass spectrometry is a global, without a priori, comparative proteomic approach particularly suited to identify and quantify enzymes isoforms and structural proteins, thus making it an efficient tool for the characterization of the changes in cell phenotypes that occur in physiological and pathological conditions. In this data article in support of the research article entitled “Metabolic reprogramming in transformed mouse cortical astrocytes: a proteomic study” [1] we illustrate the changes in protein profile that occur during the metabolic reprogramming undergone by cultured mouse astrocytes in a model of in-vitro cancerous transformation [2].
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical Chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
13
|
Paech D, Burth S, Windschuh J, Meissner JE, Zaiss M, Eidel O, Kickingereder P, Nowosielski M, Wiestler B, Sahm F, Floca RO, Neumann JO, Wick W, Heiland S, Bendszus M, Schlemmer HP, Ladd ME, Bachert P, Radbruch A. Nuclear Overhauser Enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology. PLoS One 2015; 10:e0121220. [PMID: 25789657 PMCID: PMC4366097 DOI: 10.1371/journal.pone.0121220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To explore the correlation between Nuclear Overhauser Enhancement (NOE)-mediated signals and tumor cellularity in glioblastoma utilizing the apparent diffusion coefficient (ADC) and cell density from histologic specimens. NOE is one type of chemical exchange saturation transfer (CEST) that originates from mobile macromolecules such as proteins and might be associated with tumor cellularity via altered protein synthesis in proliferating cells. PATIENTS AND METHODS For 15 patients with newly diagnosed glioblastoma, NOE-mediated CEST-contrast was acquired at 7 Tesla (asymmetric magnetization transfer ratio (MTRasym) at 3.3ppm, B1 = 0.7 μT). Contrast enhanced T1 (CE-T1), T2 and diffusion-weighted MRI (DWI) were acquired at 3 Tesla and coregistered. The T2 edema and the CE-T1 tumor were segmented. ADC and MTRasym values within both regions of interest were correlated voxelwise yielding the correlation coefficient rSpearman (rSp). In three patients who underwent stereotactic biopsy, cell density of 12 specimens per patient was correlated with corresponding MTRasym and ADC values of the biopsy site. RESULTS Eight of 15 patients showed a weak or moderate positive correlation of MTRasym and ADC within the T2 edema (0.16≤rSp≤0.53, p<0.05). Seven correlations were statistically insignificant (p>0.05, n = 4) or yielded rSp≈0 (p<0.05, n = 3). No trend towards a correlation between MTRasym and ADC was found in CE-T1 tumor (-0.31<rSp<0.28, p<0.05, n = 9; p>0.05, n = 6). The biopsy-analysis within CE-T1 tumor revealed a strong positive correlation between tumor cellularity and MTRasym values in two of the three patients (rSppatient3 = 0.69 and rSppatient15 = 0.87, p<0.05), while the correlation of ADC and cellularity was heterogeneous (rSppatient3 = 0.545 (p = 0.067), rSppatient4 = -0.021 (p = 0.948), rSppatient15 = -0.755 (p = 0.005)). DISCUSSION NOE-imaging is a new contrast promising insight into pathophysiologic processes in glioblastoma regarding cell density and protein content, setting itself apart from DWI. Future studies might be based on the assumption that NOE-mediated CEST visualizes cellularity more accurately than ADC, especially in the CE-T1 tumor region.
Collapse
Affiliation(s)
- Daniel Paech
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
- Neurooncologic Imaging, Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Sina Burth
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
- Neurooncologic Imaging, Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johannes Windschuh
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jan-Eric Meissner
- Neurooncologic Imaging, Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Oliver Eidel
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Philipp Kickingereder
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Martha Nowosielski
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Benedikt Wiestler
- Department of Neurology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Ralf Omar Floca
- Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jan-Oliver Neumann
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Mark Edward Ladd
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
- Neurooncologic Imaging, Department of Radiology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|