1
|
Carlier Y, Dumonteil E, Herrera C, Waleckx E, Tibayrenc M, Buekens P, Truyens C, Muraille E. Coinfection by multiple Trypanosoma cruzi clones: a new perspective on host-parasite relationship with consequences for pathogenesis and management of Chagas disease. Microbiol Mol Biol Rev 2025:e0024224. [PMID: 40116484 DOI: 10.1128/mmbr.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
SUMMARYChagas disease (CD) is caused by the protozoan parasite Trypanosoma cruzi (Tc), infecting 6-7 million people. It is transmitted by insect vectors, orally, through infected tissues, or congenitally. Tc infection can progress toward chronic cardiac and/or digestive severe and fatal CD in 20%-40% of patients. Tc exhibits an important genetic and phenotypic intraspecies diversity and a preponderant clonal population structure. The impact of multiclonal coinfections has been little studied in CD patients. Relationships between the currently used discrete typing unit (DTU)-based classification of Tc lineages and the occurrence of the different clinical forms of CD, its congenital transmission, as well as the efficacy of trypanocidal molecules (benznidazole and nifurtimox) could not be established. In this review, we revisit the different aspects of Tc diversity and analyze the impact of infections with multiple clones and their variants on the dynamic and pathogenesis of CD and its maternal-fetal transmission. We propose to call "cruziome" all the Tc clones and their variants infecting a given host and provide strong evidence that (i) multiclonal Tc infections are likely the rule rather than the exception; (ii) each "cruziome" is associated with a unique combination of virulence factors, tissular tropisms, and host immune responses; (iii) accordingly, some particularly harmful "cruziomes" likely trigger the occurrence and progression of CD and might also favor the congenital transmission of parasites. We propose that our concept of "cruziome" should be taken into consideration because of its practical consequences in epidemiological studies, laboratory diagnosis, clinical management, and treatment of CD.
Collapse
Affiliation(s)
- Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- European Plotkin Institute for Vaccinology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán (UADY), Mérida, Mexico
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Michel Tibayrenc
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP, IRD, CIRAD, Université de Montpellier, Montpellier, France
| | - Pierre Buekens
- Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Unité de Recherche en Biologie des Microorganismes (URBM), Laboratoire d'Immunologie et de Microbiologie (NARILIS), Université de Namur, Namur, Belgium
| |
Collapse
|
2
|
Macedo-da-Silva J, Mule SN, Rosa-Fernandes L, Palmisano G. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:401-428. [PMID: 38220431 DOI: 10.1016/bs.apcsb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, NSW, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
4
|
San Francisco J, Astudillo C, Vega JL, Catalán A, Gutiérrez B, Araya JE, Zailberger A, Marina A, García C, Sanchez N, Osuna A, Vilchez S, Ramírez MI, Macedo J, Feijoli VS, Palmisano G, González J. Trypanosoma cruzi pathogenicity involves virulence factor expression and upregulation of bioenergetic and biosynthetic pathways. Virulence 2022; 13:1827-1848. [PMID: 36284085 PMCID: PMC9601562 DOI: 10.1080/21505594.2022.2132776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The molecular repertoire of Trypanosoma cruzi effects its virulence and impacts the clinical course of the resulting Chagas disease. This study aimed to determine the mechanism underlying the pathogenicity of T. cruzi. Two T. cruzi cell lines (C8C3hvir and C8C3lvir), obtained from the clone H510 C8C3 and exhibiting different virulence phenotypes, were used to evaluate the parasite's infectivity in mice. The organ parasite load was analysed by qPCR. The proteomes of both T. cruzi cell lines were compared using nLC-MS/MS. Cruzipain (Czp), complement regulatory protein (CRP), trans-sialidase (TS), Tc-85, and sialylated epitope expression levels were evaluated by immunoblotting. High-virulence C8C3hvir was highly infectious in mice and demonstrated three to five times higher infectivity in mouse myocardial cells than low-virulence C8C3lvir. qPCR revealed higher parasite loads in organs of acute as well as chronically C8C3hvir-infected mice than in those of C8C3lvir-infected mice. Comparative quantitative proteomics revealed that 390 of 1547 identified proteins were differentially regulated in C8C3hvir with respect to C8C3lvir. Amongst these, 174 proteins were upregulated in C8C3hvir and 216 were downregulated in C8C3lvir. The upregulated proteins in C8C3hvir were associated with the tricarboxylic acid cycle, ribosomal proteins, and redoxins. Higher levels of Czp, CRP, TS, Tc-85, and sialylated epitopes were expressed in C8C3hvir than in C8C3lvir. Thus, T. cruzi virulence may be related to virulence factor expression as well as upregulation of bioenergetic and biosynthetic pathways proteins.
Collapse
Affiliation(s)
- Juan San Francisco
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Constanza Astudillo
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - José Luis Vega
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Laboratory of Gap Junction Proteins and Parasitic Disease, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile
| | - Alejandro Catalán
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Bessy Gutiérrez
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Jorge E Araya
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | | | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos García
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Nuria Sanchez
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Antonio Osuna
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Susana Vilchez
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Marcel I Ramírez
- Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Instituto Carlos Chagas, Fiocruz, Parana, Brazil
| | - Janaina Macedo
- Department of Parasitology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Jorge González
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile,Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Millennium Institute on Immunology and Immunotherapy, Antofagasta, Chile,CONTACT Jorge González
| |
Collapse
|
5
|
Simple, efficient and thorough shotgun proteomic analysis with PatternLab V. Nat Protoc 2022; 17:1553-1578. [DOI: 10.1038/s41596-022-00690-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
|
6
|
Scalese G, Kostenkova K, Crans DC, Gambino D. Metallomics and other omics approaches in antiparasitic metal-based drug research. Curr Opin Chem Biol 2022; 67:102127. [DOI: 10.1016/j.cbpa.2022.102127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 01/24/2022] [Indexed: 01/08/2023]
|
7
|
De Araújo JS, da Silva PB, Batista MM, Peres RB, Cardoso-Santos C, Kalejaiye TD, Munday JC, De Heuvel E, Sterk GJ, Augustyns K, Salado IG, Matheeussen A, De Esch I, De Koning HP, Leurs R, Maes L, Soeiro MDNC. Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. J Antimicrob Chemother 2021; 75:958-967. [PMID: 31860098 DOI: 10.1093/jac/dkz516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Collapse
Affiliation(s)
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Cardoso-Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Erik De Heuvel
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Irene G Salado
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Iwan De Esch
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry P De Koning
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Rob Leurs
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
8
|
In Silico Identification of New Targets for Diagnosis, Vaccine, and Drug Candidates against Trypanosoma cruzi. DISEASE MARKERS 2021; 2020:9130719. [PMID: 33488847 PMCID: PMC7787821 DOI: 10.1155/2020/9130719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Despite the efforts and distinct methodologies, the search of antigens for diagnosis, vaccine, and drug targets for the disease is still needed. The present study is aimed at identifying possible antigens that could be used for diagnosis, vaccine, and drugs targets against T. cruzi using reverse vaccinology and molecular docking. The genomes of 28 T. cruzi strains available in GenBank (NCBI) were used to obtain the genomic core. Then, subtractive genomics was carried out to identify nonhomologous genes to the host in the core. A total of 2630 conserved proteins in 28 strains of T. cruzi were predicted using OrthoFinder and Diamond software, in which 515 showed no homology to the human host. These proteins were evaluated for their subcellular localization, from which 214 are cytoplasmic and 117 are secreted or present in the plasma membrane. To identify the antigens for diagnosis and vaccine targets, we used the VaxiJen software, and 14 nonhomologous proteins were selected showing high binding efficiency with MHC I and MHC II with potential for in vitro and in vivo tests. When these 14 nonhomologous molecules were compared against other trypanosomatids, it was found that the retrotransposon hot spot (RHS) protein is specific only for T. cruzi parasite suggesting that it could be used for Chagas diagnosis. Such 14 proteins were analyzed using the IEDB software to predict their epitopes in both B and T lymphocytes. Furthermore, molecular docking analysis was performed using the software MHOLline. As a result, we identified 6 possible T. cruzi drug targets that could interact with 4 compounds already known as antiparasitic activities. These 14 protein targets, along with 6 potential drug candidates, can be further validated in future studies, in vivo, regarding Chagas disease.
Collapse
|
9
|
Caeiro LD, Masip YE, Rizzi M, Rodríguez ME, Pueblas Castro C, Sánchez DO, Coria ML, Cassataro J, Tekiel V. The Trypanosoma cruzi TcTASV-C protein subfamily administrated with U-Omp19 promotes a protective response against a lethal challenge in mice. Vaccine 2020; 38:7645-7653. [PMID: 33071003 DOI: 10.1016/j.vaccine.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The development of a Chagaś disease vaccine has yet the need for the identification of novel combinations of antigens and adjuvants. Here, the performance of TcTASV-C proteins that are virulence factors of trypomastigotes and belong to a novel surface protein family specific for T. cruzi, have been evaluated as antigens for a prophylactic vaccine. Several immunization schemes in which TcTASV-C was combined with aluminum hydroxide, saponin and/or U-Omp19 were assayed. Aluminum hydroxide and saponin were assayed together to trigger different pathways of the immune response simultaneously. U-Omp19 is a promising novel adjuvant able to promote a Th1 immune response with IFNg production, thus an interesting molecule to be tested as adjuvant for the control of T. cruzi infection. Therefore, U-Omp19 was added to the aluminum hydroxide-saponin formulation as well as assayed individually with TcTASV-C. The immunization with TcTASV-C and U-Omp19 had the best performance as a prophylactic vaccine. Mice presented the lowest parasitemias and improved survival by 40% after being challenged with a highly virulent T. cruzi strain, which promoted 100% mortality in all other immunized groups. Immunization with TcTASV-C and U-Omp19 triggered cellular responses with IFN-γ and IL-17 production and with lytic antibodies that could explain the protection achieved by this vaccination scheme. To our knowledge, this is the first time that U-Omp19 is tested with a defined T. cruzi antigen in a vaccine formulation.
Collapse
Affiliation(s)
- Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Yamil E Masip
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Matías E Rodríguez
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - M Lorena Coria
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia, Campus UNSAM, San Martín (1650), Provincia de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Almeida MA, Almeida-Paes R, Guimarães AJ, Valente RH, Soares CMDA, Zancopé-Oliveira RM. Immunoproteomics Reveals Pathogen's Antigens Involved in Homo sapiens- Histoplasma capsulatum Interaction and Specific Linear B-Cell Epitopes in Histoplasmosis. Front Cell Infect Microbiol 2020; 10:591121. [PMID: 33251160 PMCID: PMC7673445 DOI: 10.3389/fcimb.2020.591121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Histoplasmosis is one of the most frequent systemic mycosis in HIV patients. In these patients, histoplasmosis has high rates of morbidity/mortality if diagnosis and treatment are delayed. Despite its relevance, there is a paucity of information concerning the interaction between Histoplasma capsulatum and the human host, especially regarding the B-cell response, which has a direct impact on the diagnosis. Culture-based “gold-standard” methods have limitations, making immunodiagnostic tests an attractive option for clinical decisions. Despite the continuous development of those tests, improving serological parameters is necessary to make these methods efficient tools for definitive diagnosis of histoplasmosis. This includes the determination of more specific and immunogenic antigens to improve specificity and sensitivity of assays. In this study, we performed a co-immunoprecipitation assay between a protein extract from the yeast form of H. capsulatum and pooled sera from patients with proven histoplasmosis, followed by shotgun mass spectrometry identification of antigenic targets. Sera from patients with other pulmonary infections or from healthy individuals living in endemic areas of histoplasmosis were also assayed to determine potentially cross-reactive proteins. The primary structures of H. capsulatum immunoprecipitated proteins were evaluated using the DNAStar Protean 7.0 software. In parallel, the online epitope prediction server, BCPREDS, was used to complement the B-epitope prediction analysis. Our approach detected 132 reactive proteins to antibodies present in histoplasmosis patients’ sera. Among these antigens, 127 were recognized also by antibodies in heterologous patients’ and/or normal healthy donors’ sera. Therefore, the only three antigens specifically recognized by antibodies of histoplasmosis patients were mapped as potential antigenic targets: the M antigen, previously demonstrated in the diagnosis of histoplasmosis, and the catalase P and YPS-3 proteins, characterized as virulence factors of H. capsulatum, with antigenic properties still unclear. The other two proteins were fragments of the YPS-3 and M antigen. Overlapping results obtained from the two aforementioned bioinformatic tools, 16 regions from these three proteins are proposed as putative B-cell epitopes exclusive to H. capsulatum. These data reveal a new role for these proteins on H. capsulatum interactions with the immune system and indicate their possible use in new methods for the diagnosis of histoplasmosis.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Ennes-Vidal V, Pitaluga AN, Britto CFDPDC, Branquinha MH, Santos ALSD, Menna-Barreto RFS, d'Avila-Levy CM. Expression and cellular localisation of Trypanosoma cruzi calpains. Mem Inst Oswaldo Cruz 2020; 115:e200142. [PMID: 33053076 PMCID: PMC7552305 DOI: 10.1590/0074-02760200142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Calpains are present in almost all organisms and comprise a family of calcium-dependent cysteine peptidases implicated in crucial cellular functions. Trypanosoma cruzi, the causative agent of Chagas disease, presents an expansion on this gene family with unexplored biological properties. OBJECTIVES Here, we searched for calpains in the T. cruzi genome, evaluated the mRNA levels, calpain activity and the protein expression and determined the cellular localisation in all three parasite life cycle forms. METHODS/FINDINGS Sixty-three calpain sequences were identified in T. cruzi CL Brener genome, with fourteen domain arrangements. The comparison of calpain mRNA abundance by quantitative polymerase chain reaction (qPCR) revealed seven up-regulated sequences in amastigotes and/or bloodstream trypomastigotes and five in epimastigotes. Western Blotting analysis revealed seven different molecules in the three parasite forms, and one amastigote-specific, while no proteolytic activity could be detected. Flow cytometry assays revealed a higher amount of intracellular calpains in amastigotes and/or trypomastigotes in comparison to epimastigotes. Finally, ultrastructural analysis revealed the presence of calpains in the cytoplasm, vesicular and plasma membranes of the three parasite forms, and in the paraflagellar rod in trypomastigotes. CONCLUSION Calpains are differentially expressed and localised in the T. cruzi life cycle forms. This study adds data on the calpain occurrence and expression pattern in T. cruzi.
Collapse
Affiliation(s)
- Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| | - André Nóbrega Pitaluga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil
| | | | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil
| | - André Luis Souza Dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Bioquímica, Rio de Janeiro, RJ, Brasil
| | | | - Claudia Masini d'Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
13
|
Genomic Organization and Generation of Genetic Variability in the RHS (Retrotransposon Hot Spot) Protein Multigene Family in Trypanosoma cruzi. Genes (Basel) 2020; 11:genes11091085. [PMID: 32957642 PMCID: PMC7563717 DOI: 10.3390/genes11091085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Retrotransposon Hot Spot (RHS) is the most abundant gene family in Trypanosoma cruzi, with unknown function in this parasite. The aim of this work was to shed light on the organization and expression of RHS in T. cruzi. The diversity of the RHS protein family in T. cruzi was demonstrated by phylogenetic and recombination analyses. Transcribed sequences carrying the RHS domain were classified into ten distinct groups of monophyletic origin. We identified numerous recombination events among the RHS and traced the origins of the donors and target sequences. The transcribed RHS genes have a mosaic structure that may contain fragments of different RHS inserted in the target sequence. About 30% of RHS sequences are located in the subtelomere, a region very susceptible to recombination. The evolution of the RHS family has been marked by many events, including gene duplication by unequal mitotic crossing-over, homologous, as well as ectopic recombination, and gene conversion. The expression of RHS was analyzed by immunofluorescence and immunoblotting using anti-RHS antibodies. RHS proteins are evenly distributed in the nuclear region of T. cruzi replicative forms (amastigote and epimastigote), suggesting that they could be involved in the control of the chromatin structure and gene expression, as has been proposed for T. brucei.
Collapse
|
14
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
15
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
16
|
Lopes RDO, Pereira PM, Pereira ARB, Fernandes KV, Carvalho JF, França ADSD, Valente RH, da Silva M, Ferreira-Leitão VS. Atrazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) degradation by Pleurotus ostreatus INCQS 40310. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1754805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raquel de Oliveira Lopes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Patrícia Maia Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Aline Ramalho Brandão Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Keysson Vieira Fernandes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Julia Finamor Carvalho
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Alexandre da Silva de França
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Manuela da Silva
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Viridiana S. Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Duque TL, Siqueira MS, Travassos LH, Moreira OC, Bozza PT, Melo RC, Henriques-Pons A, Menna-Barreto RF. The induction of host cell autophagy triggers defense mechanisms against Trypanosoma cruzi infection in vitro. Eur J Cell Biol 2020; 99:151060. [DOI: 10.1016/j.ejcb.2019.151060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023] Open
|
18
|
Quantitative Proteomic Map of the Trypanosomatid Strigomonas culicis: The Biological Contribution of its Endosymbiotic Bacterium. Protist 2019; 170:125698. [PMID: 31760169 DOI: 10.1016/j.protis.2019.125698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
Strigomonas culicis is a kinetoplastid parasite of insects that maintains a mutualistic association with an intracellular symbiotic bacterium, which is highly integrated into the protist metabolism: it furnishes essential compounds and divides in synchrony with the eukaryotic nucleus. The protist, conversely, can be cured of the endosymbiont, producing an aposymbiotic cell line, which presents a diminished ability to colonize the insect host. This obligatory association can represent an intermediate step of the evolution towards the formation of an organelle, therefore representing an interesting model to understand the symbiogenesis theory. Here, we used shotgun proteomics to compare the S. culicis endosymbiont-containing and aposymbiotic strains, revealing a total of 11,305 peptides, and up to 2,213 proteins (2,029 and 1,452 for wild type and aposymbiotic, respectively). Gene ontology associated to comparative analysis between both strains revealed that the biological processes most affected by the elimination of the symbiont were the amino acid synthesis, as well as protein synthesis and folding. This large-scale comparison of the protein expression in S. culicis marks a step forward in the comprehension of the role of endosymbiotic bacteria in monoxenous trypanosomatid biology, particularly because trypanosomatids expression is mostly post-transcriptionally regulated.
Collapse
|
19
|
Abstract
Capping and shedding of ectodomains in Trypanosoma cruzi may be triggered by different ligands. Here, we analysed the mobility and shedding of cell surface components of living trypomastigotes of the Y strain and the CL Brener clone in the presence of poly-L-lysine, cationized ferritin (CF) and Concanavalin A (Con A). Poly-L-lysine and CF caused intense shedding in Y strain parasites. Shedding was less intense in CL Brener trypomastigotes, and approximately 10% of these parasites did not show any decrease in poly L-lysine or CF labelling. Binding of Con A induced low-intensity shedding in Y strain and redistribution of Con A-binding sites in CL Brener parasites. Trypomastigotes of the Y strain showed intense labelling with anti-〈-galactosyl antibodies, resulting in the lysis of approximately 30% of their population, in contrast with what was observed in CL Brener parasites. Incubation with Con A and CF protected trypomastigotes of the Y strain from lysis by anti-αGal. The last treatment did not interfere with the survival of the CL Brener parasites. This study corroborates with the idea that a ligand can differentially modulate the cell surface of T. cruzi, depending on the strain used, resulting in variable immune system responses and recognition by host cells.
Collapse
|
20
|
Herreros-Cabello A, Callejas-Hernández F, Fresno M, Gironès N. Comparative proteomic analysis of trypomastigotes from Trypanosoma cruzi strains with different pathogenicity. INFECTION GENETICS AND EVOLUTION 2019; 76:104041. [PMID: 31536808 DOI: 10.1016/j.meegid.2019.104041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 02/02/2023]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is one of the most neglected diseases in Latin America, being currently a global health problem. Its immunopathogenesis is still quite unknown. Moreover, there are important differences in pathogenicity between some different T. cruzi strains. For example, in mice, Y strain produces a high acute lethality while VFRA remains in the host mostly in a chronic manner. Comparative proteomic studies between T. cruzi strains represent a complement for transcriptomics and may allow the detection of relevant factors or distinctive functions. Here for the first time, we compared the proteome of trypomastigotes from 2 strains, Y and VFRA, analyzed by mass spectrometry. Gene ontology analysis were used to display similarities or differences in cellular components, biological processes and molecular functions. Also, we performed metabolic pathways enrichment analysis to detect the most relevant pathways in each strain. Although in general they have similar profiles in the different ontology groups, there were some particular interesting differences. Moreover, there were around 10% of different proteins between Y and VFRA strains, that were shared by other T. cruzi strains or protozoan species. They displayed many common enriched metabolic pathways but some others were uniquely enriched in one strain. Thus, we detected enriched antioxidant defenses in VFRA that could correlate with its ability to induce a chronic infection in mice controlling ROS production, while the Y strain revealed a great enrichment of pathways related with nucleotides and protein production, that could fit with its high parasite replication and lethality. In summary, Y and VFRA strains displayed comparable proteomes with some particular distinctions that could contribute to understand their different biological behaviors.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain; Instituto Sanitario de Investigación la Princesa, Madrid, Spain.
| |
Collapse
|
21
|
Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. J Proteomics 2019; 194:179-190. [DOI: 10.1016/j.jprot.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
|
22
|
Lobo M, Balouz V, Melli L, Carlevaro G, Cortina ME, Cámara MDLM, Cánepa GE, Carmona SJ, Altcheh J, Campetella O, Ciocchini AE, Agüero F, Mucci J, Buscaglia CA. Molecular and antigenic characterization of Trypanosoma cruzi TolT proteins. PLoS Negl Trop Dis 2019; 13:e0007245. [PMID: 30870417 PMCID: PMC6435186 DOI: 10.1371/journal.pntd.0007245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.
Collapse
Affiliation(s)
- Maite Lobo
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Luciano Melli
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Giannina Carlevaro
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María E Cortina
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María de Los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Santiago J Carmona
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Jaime Altcheh
- Servicio de Parasitología-Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Caminha MA, de Lorena VMB, de Oliveira Júnior W, Perales J, Carvalho PC, Lima DB, Cavalcanti MDGAM, Martins SM, Valente RH, Menna-Barreto RFS. Data on antigen recognition hindrance by antibodies covalently immobilized to Protein G magnetic beads by dimethyl pimelimidate (DMP) cross-linking. Data Brief 2018; 22:516-521. [PMID: 30671503 PMCID: PMC6327068 DOI: 10.1016/j.dib.2018.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022] Open
Abstract
The data presented herein is related to the article entitled "Trypanosoma cruzi immunoproteome: calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy" [1]. Electrophoretic analyses under denaturing and reducing conditions indicate that covalent immobilization of human IgG to Protein G magnetic beads by cross-linking with 50 mM dimethyl pimelimidate hinders the recognition of T. cruzi antigens in immunoprecipitation assays.
Collapse
Affiliation(s)
- Marcelle A Caminha
- Laboratório de Biologia Celular, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Toxinologia, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Jonas Perales
- Laboratório de Toxinologia, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paulo C Carvalho
- Computational Mass Spectrometry & Proteomics Group, ICC, Fiocruz, Curitiba, PR, Brazil
| | - Diogo B Lima
- Computational Mass Spectrometry & Proteomics Group, ICC, Fiocruz, Curitiba, PR, Brazil.,Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | | | | | - Richard H Valente
- Laboratório de Toxinologia, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
24
|
Bombaça ACS, Dossow DV, Barbosa JMC, Paz C, Burgos V, Menna-Barreto RFS. TrypanocidalActivity of Natural Sesquiterpenoids Involves Mitochondrial Dysfunction, ROS Production and Autophagic Phenotype in Trypanosomacruzi. Molecules 2018; 23:molecules23112800. [PMID: 30373326 PMCID: PMC6278339 DOI: 10.3390/molecules23112800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023] Open
Abstract
Chagas disease is a neglected tropical disease that is caused by the protozoan Trypanosoma cruzi and represents a serious health problem, especially in Latin America. The clinical treatment of Chagas disease is based on two nitroderivatives that present severe side effects and important limitations. In folk medicine, natural products, including sesquiterpenoids, have been employed for the treatment of different parasitic diseases. In this study, the trypanocidal activity of compounds isolated from the Chilean plants Drimys winteri, Podanthus mitiqui and Maytenus boaria on three T. cruzi evolutive forms (epimastigote, trypomastigote and amastigote) was evaluated. Total extracts and seven isolated sesquiterpenoids were assayed on trypomastigotes and epimastigotes. Polygodial (Pgd) from D. winteri, total extract from P. mitiqui (PmTE) and the germacrane erioflorin (Efr) from P. mitiqui were the most bioactive substances. Pgd, Efr and PmTE also presented strong effects on intracellular amastigotes and low host toxicity. Many ultrastructural effects of these substances, including reservosome disruption, cytosolic vacuolization, autophagic phenotype and mitochondrial swelling (in the case of Pgd), were observed. Flow cytometric analysis demonstrated a reduction in mitochondrial membrane potential in treated epimastigotes and an increase in ROS production and high plasma membrane permeability after treatment with Pgd. The promising trypanocidal activity of these natural sesquiterpenoids may be a good starting point for the development of alternative treatmentsforChagas disease.
Collapse
Affiliation(s)
- Ana Cristina Souza Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| | - Daniela Von Dossow
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | | | - Cristian Paz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | - Viviana Burgos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | | |
Collapse
|
25
|
Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V. The protein family TcTASV-C is a novel Trypanosoma cruzi virulence factor secreted in extracellular vesicles by trypomastigotes and highly expressed in bloodstream forms. PLoS Negl Trop Dis 2018; 12:e0006475. [PMID: 29727453 PMCID: PMC5955593 DOI: 10.1371/journal.pntd.0006475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/16/2018] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime—protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes. Trypanosoma cruzi is the kinetoplastid parasite that causes Chagas’ disease, a neglected infection endemic in Latin America and emerging worldwide. Being vaccines currently unavailable and treatments not completely effective, identification and characterization of parasite molecules that can be target for these interventions are urgently needed. Of particular interest are surface anchored and secreted proteins involved in parasite—host interplay. Recently, extracellular vesicles released from protozoan pathogens have been shown to alter host cell function favoring the establishment of infection. Trypomastigotes are the disseminating stage of T. cruzi, being their presence in peripheral blood a hallmark of early acute infection in mammals. While the most abundant proteins of the trypomastigote surface are fairly well characterized, little is known about other, less abundant and more recently discovered multigenic families, which could have critical functions in the parasite—host interaction. The T. cruziTrypomastigote Alanine, Valine and Serine rich proteins (TcTASV) belong to a medium-size multigene family of ~40 members that remained unobserved until a few years ago when it was identified through a trypomastigote-enriched cDNA library. Almost simultaneously, an expression library immunization approach designed to discover novel vaccine antigens in T. cruzi, spotlighted the TcTASV-C subfamily, as a fragment of a TcTASV-C gene was identified in a pool of protective clones. A distinctive feature that characterizes TcTASV proteins–and particularly the TcTASV-C subfamily- is their predominant expression in trypomastigotes. Recent transcriptomic and proteomic studies uphold our previous observations that the TcTASV family is over-represented in the trypomastigote stage, and therefore could represent an interesting target for rational intervention against T. cruzi infection. Here show that TcTASV-C is mainly secreted through extracellular vesicles (EVs) of trypomastigotes, and is a major cargo of its content. We have also shown that TcTASV-C is much more expressed in trypomastigotes purified from blood from infected mice than in trypomastigotes harvested from in vitro cultures, suggesting that host molecules should trigger TcTASV-C expression in vivo during the infection. The immunization of mice with TcTASV-C interfered with the early acute phase of T. cruzi infection through a strong humoral immune response. TcTASV-C should be considered as a novel secreted virulence factor of T. cruzi trypomastigotes and -although its biological function is still unknown- we hypothesize its participation in the early steps of T cruzi infection in the mammalian host.
Collapse
Affiliation(s)
- Lucas D Caeiro
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Catalina D Alba-Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), UBA-CONICET, Buenos Aires, Argentina
| | - Mariana Rizzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - María Elisa Solana
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), UBA-CONICET, Buenos Aires, Argentina.,Departamento de Cs. Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Giselle Rodriguez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Agustina M Chidichimo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Matías E Rodriguez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Gabriela V Levy
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
26
|
Ribeiro KS, Vasconcellos CI, Soares RP, Mendes MT, Ellis CC, Aguilera-Flores M, de Almeida IC, Schenkman S, Iwai LK, Torrecilhas AC. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 2018; 7:1463779. [PMID: 29696081 PMCID: PMC5912195 DOI: 10.1080/20013078.2018.1463779] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | - Maria Tays Mendes
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxicologia Aplicada (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
27
|
Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound. Eur J Med Chem 2017; 144:572-581. [PMID: 29289882 DOI: 10.1016/j.ejmech.2017.12.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 11/23/2022]
Abstract
The limited efficacy of benznidazole (Bz) indicated by failures of current Phase II clinical trials emphasizes the urgent need to identify new drugs with improved safety and efficacy for treatment of Chagas disease (CD). Herein, we analyzed the efficacy of a series of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against different Trypanosoma cruzi discrete type units (DTUs) of relevant clinical forms of CD. Cytotoxic and trypanocidal effect of naphthoquinone derivatives were assessed in mammalian cells, trypomastigotes and intracellular amastigotes using, luminescent assays (CellTiter-Glo and T. cruzi Dm28c-luciferase) and/or counting with a light microscope. Reactive oxygen species (ROS) production and intracellular targets of promising compounds were assessed with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) probe and ultrastructural analysis, respectively. ADMET properties were analyzed by in silico modeling. Most of the compounds showed low cytotoxic effect. Only two compounds (Compounds 2 and 11) had IC50 values lower than Bz, showing higher susceptibility of bloodstream trypomastigotes. Compound 2 exhibited greater efficacy against trypomastigotes from different T. cruzi DTUs, even better than Bz against Brazil and CL strains. Ultrastructural analysis revealed changes in intracellular compartments, suggesting autophagy as one possible mechanism of action. Oxidative stress, induced by Compound 2, resulted in elevated level of ROS, leading to parasite death. Compound 2 was also effective against intracellular amastigotes, showing high selectivity index. ADMET analysis predicted good oral bioavailability, reduced drug metabolism and no carcinogenic potential for Compound 2. The data highlight Compound 2 as a hit compound and stimulate further structural and pharmacological optimization to potentiate its trypanocidal activity and selectivity.
Collapse
|
28
|
Durante IM, La Spina PE, Carmona SJ, Agüero F, Buscaglia CA. High-resolution profiling of linear B-cell epitopes from mucin-associated surface proteins (MASPs) of Trypanosoma cruzi during human infections. PLoS Negl Trop Dis 2017; 11:e0005986. [PMID: 28961244 PMCID: PMC5636173 DOI: 10.1371/journal.pntd.0005986] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Trypanosoma cruzi genome bears a huge family of genes and pseudogenes coding for Mucin-Associated Surface Proteins (MASPs). MASP molecules display a 'mosaic' structure, with highly conserved flanking regions and a strikingly variable central and mature domain made up of different combinations of a large repertoire of short sequence motifs. MASP molecules are highly expressed in mammal-dwelling stages of T. cruzi and may be involved in parasite-host interactions and/or in diverting the immune response. METHODS/PRINCIPLE FINDINGS High-density microarrays composed of fully overlapped 15mer peptides spanning the entire sequences of 232 non-redundant MASPs (~25% of the total MASP content) were screened with chronic Chagasic sera. This strategy led to the identification of 86 antigenic motifs, each one likely representing a single linear B-cell epitope, which were mapped to 69 different MASPs. These motifs could be further grouped into 31 clusters of structurally- and likely antigenically-related sequences, and fully characterized. In contrast to previous reports, we show that MASP antigenic motifs are restricted to the central and mature region of MASP polypeptides, consistent with their intracellular processing. The antigenicity of these motifs displayed significant positive correlation with their genome dosage and their relative position within the MASP polypeptide. In addition, we verified the biased genetic co-occurrence of certain antigenic motifs within MASP polypeptides, compatible with proposed intra-family recombination events underlying the evolution of their coding genes. Sequences spanning 7 MASP antigenic motifs were further evaluated using distinct synthesis/display approaches and a large panel of serum samples. Overall, the serological recognition of MASP antigenic motifs exhibited a remarkable non normal distribution among the T. cruzi seropositive population, thus reducing their applicability in conventional serodiagnosis. As previously observed in in vitro and animal infection models, immune signatures supported the concurrent expression of several MASPs during human infection. CONCLUSIONS/SIGNIFICANCE In spite of their conspicuous expression and potential roles in parasite biology, this study constitutes the first unbiased, high-resolution profiling of linear B-cell epitopes from T. cruzi MASPs during human infection.
Collapse
Affiliation(s)
- Ignacio M. Durante
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
| | - Pablo E. La Spina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
| | - Santiago J. Carmona
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
- * E-mail: (FA); (CAB)
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina
- * E-mail: (FA); (CAB)
| |
Collapse
|
29
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
30
|
Characterization and Diagnostic Application of Trypanosoma cruzi Trypomastigote Excreted-Secreted Antigens Shed in Extracellular Vesicles Released from Infected Mammalian Cells. J Clin Microbiol 2016; 55:744-758. [PMID: 27974541 DOI: 10.1128/jcm.01649-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 01/05/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, although endemic in many parts of Central and South America, is emerging as a global health threat through the potential contamination of blood supplies. Consequently, in the absence of a gold standard assay for the diagnosis of Chagas disease, additional antigens or strategies are needed. A proteomic analysis of the trypomastigote excreted-secreted antigens (TESA) associated with exosomal vesicles shed by T. cruzi identified ∼80 parasite proteins, with the majority being trans-sialidases. Mass spectrometry analysis of immunoprecipitation products performed using Chagas immune sera showed a marked enrichment in a subset of TESA proteins. Of particular relevance for diagnostic applications were the retrotransposon hot spot (RHS) proteins, which are absent in Leishmania spp., parasites that often confound diagnosis of Chagas disease. Interestingly, serological screens using recombinant RHS showed a robust immunoreactivity with sera from patients with clinical stages of Chagas ranging from asymptomatic to advance cardiomyopathy and this immunoreactivity was comparable to that of crude TESA. More importantly, no cross-reactivity with RHS was detected with sera from patients with malaria, leishmaniasis, toxoplasmosis, or African sleeping sickness, making this protein an attractive reagent for diagnosis of Chagas disease.
Collapse
|
31
|
Mucci J, Lantos AB, Buscaglia CA, Leguizamón MS, Campetella O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol 2016; 33:102-112. [PMID: 27843019 DOI: 10.1016/j.pt.2016.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
The Trypanosoma cruzi trypomastigote membrane provides a major protective role against mammalian host-derived defense mechanisms while allowing the parasite to interact with different cell types and trigger pathogenesis. This surface has been historically appreciated as a rather unstructured 'coat', mainly consisting of a continuous layer of glycolipids and heavily O-glycosylated mucins, occasionally intercalated with different developmentally regulated molecules displaying adhesive and/or enzymatic properties. Recent findings, however, indicate that the trypomastigote membrane is made up of multiple, densely packed and discrete 10-150nm lipid-driven domains bearing different protein composition; hence resembling a highly organized 'patchwork quilt' design. Here, we discuss different aspects underlying the biogenesis, assembly, and dynamics of this cutting-edge fashion outfit, as well as its functional implications.
Collapse
Affiliation(s)
- Juan Mucci
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Andrés B Lantos
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - María Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1650HMP San Martín, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Queiroz RML, Ricart CAO, Machado MO, Bastos IMD, de Santana JM, de Sousa MV, Roepstorff P, Charneau S. Insight into the Exoproteome of the Tissue-Derived Trypomastigote form of Trypanosoma cruzi. Front Chem 2016; 4:42. [PMID: 27872839 PMCID: PMC5097913 DOI: 10.3389/fchem.2016.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/19/2016] [Indexed: 01/07/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture-derived trypomastigotes (Y strain) were used to characterize the exoproteome of the infective bloodstream life form. Proteins released into the serum-free culture medium after 3 h of incubation were harvested and digested with trypsin. NanoLC-MS/MS analysis resulted in the identification of 540 proteins, the largest set of released proteins identified to date in Trypanosoma spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non-classical pathways, and involved in host-cell infection. Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite's enhanced mechanisms for adhesion, invasion, and internalization of different host-cell types, and escape from immune defenses.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil; Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdense, Denmark
| | - Carlos A O Ricart
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Mara O Machado
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| | - Izabela M D Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Jaime M de Santana
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Marcelo V de Sousa
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, University of Brasilia Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark Odense, Denmark
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, University of Brasilia , Brasilia, Brazil
| |
Collapse
|
33
|
Differential Gel Electrophoresis (DIGE) Evaluation of Naphthoimidazoles Mode of Action: A Study in Trypanosoma cruzi Bloodstream Trypomastigotes. PLoS Negl Trop Dis 2016; 10:e0004951. [PMID: 27551855 PMCID: PMC4995053 DOI: 10.1371/journal.pntd.0004951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/03/2016] [Indexed: 01/21/2023] Open
Abstract
Background The obligate intracellular protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected illness affecting millions of people in Latin America that recently entered non-endemic countries through immigration, as a consequence of globalization. The chemotherapy for this disease is based mainly on benznidazole and nifurtimox, which are very efficient nitroderivatives against the acute stage but present limited efficacy during the chronic phase. Our group has been studying the trypanocidal effects of naturally occurring quinones and their derivatives, and naphthoimidazoles derived from β-lapachone N1, N2 and N3 were the most active. To assess the molecular mechanisms of action of these compounds, we applied proteomic techniques to analyze treated bloodstream trypomastigotes, which are the clinically relevant stage of the parasite. Methodology/Principal Findings The approach consisted of quantification by 2D-DIGE followed by MALDI-TOF/TOF protein identification. A total of 61 differentially abundant protein spots were detected when comparing the control with each N1, N2 or N3 treatment, for 34 identified spots. Among the differentially abundant proteins were activated protein kinase C receptor, tubulin isoforms, asparagine synthetase, arginine kinase, elongation factor 2, enolase, guanine deaminase, heat shock proteins, hypothetical proteins, paraflagellar rod components, RAB GDP dissociation inhibitor, succinyl-CoA ligase, ATP synthase subunit B and methionine sulfoxide reductase. Conclusion/Significance Our results point to different modes of action for N1, N2 and N3, which indicate a great variety of metabolic pathways involved and allow for novel perspectives on the development of trypanocidal agents. Trypanosoma cruzi is the etiological agent of Chagas disease, an important illness for Latin American countries that is now afflicting other continents due to the immigration of infected people. The available chemotherapy is limited to the chronic phase of the disease, being the development of novel active compounds essential, and the search for specific molecular targets for drugs in T. cruzi is necessary. In this context, our group has synthesized and screened many compounds ranging from natural to semi-synthetic naphthoquinones and derivatives on T. cruzi, displaying naphthoimidazoles N1, N2 and N3 the highest activity. Previous studies correlated phenotypic alterations by cell biology techniques as well as investigated mode of action by proteomic approaches in insect stage epimastigotes as a model. However, T. cruzi presents three morphologically distinct life stages with their own specific biological peculiarities and requirements that could be potential targets to drug intervention. Here, we evaluated the mechanism of action of N1, N2 and N3 in clinical relevant form of the parasite, bloodstream trypomastigotes, by proteomics. Our data pointed to 61 differentially abundant protein spots, being these proteins involved with cellular trafficking, protein synthesis, transduction signaling and energetic metabolism, among others, open interesting perspectives for trypanocidal strategies.
Collapse
|
34
|
Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics 2016; 151:182-192. [PMID: 27318177 DOI: 10.1016/j.jprot.2016.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.
Collapse
Affiliation(s)
- Maria Julia Manso Alves
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Walter Colli
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eliciane Cevolani Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern, Odense, DK, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|
35
|
Parsons M, Myler PJ. Illuminating Parasite Protein Production by Ribosome Profiling. Trends Parasitol 2016; 32:446-457. [PMID: 27061497 DOI: 10.1016/j.pt.2016.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation.
Collapse
Affiliation(s)
- Marilyn Parsons
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA.
| | - Peter J Myler
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North STE 500, Seattle, WA 98109 USA; Department of Global Health, Box 357965, University of Washington, Seattle, WA 98195, USA; Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, Padmanabhan P, Ndegwa DM, Temanni MR, Corrada Bravo H, El-Sayed NM, Burleigh BA. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathog 2016; 12:e1005511. [PMID: 27046031 PMCID: PMC4821583 DOI: 10.1371/journal.ppat.1005511] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our comprehensive, high resolution transcriptomic dataset provides a substantially more detailed interpretation of T. cruzi infection biology and offers a basis for future drug and vaccine discovery efforts. In-depth knowledge of the functional processes governing host colonization and transmission of pathogenic microorganisms is essential for the advancement of effective intervention strategies. This study focuses on Trypanosoma cruzi, the vector-borne protozoan parasite responsible for human Chagas disease and the leading cause of infectious myocarditis worldwide. To gain global insights into the biology of this parasite and its interaction with mammalian host cells, we have exploited a deep-sequencing approach to generate comprehensive, high-resolution transcriptomic maps for mammalian-infective stages of T. cruzi with the simultaneous interrogation of the human host cell transcriptome across an infection time course. We demonstrate that the establishment of intracellular T. cruzi infection in mammalian host cells is accompanied by extensive remodeling of the parasite and host cell transcriptomes. Despite the lack of transcriptional control mechanisms in trypanosomatids, our analyses identified functionally-enriched processes within sets of developmentally-regulated transcripts in T. cruzi that align with known or predicted biological features of the parasite. The novel insights into the biology of intracellular T. cruzi infection and the regulation of amastigote development gained in this study establish a unique foundation for functional network analyses that will be instrumental in providing functional links between parasite dependencies and host functional pathways that have the potential to be exploited for intervention.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sheena Shah-Simpson
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kwame Okrah
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - A Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jungmin Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Prasad Padmanabhan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David M Ndegwa
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - M Ramzi Temanni
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Héctor Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|