1
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
2
|
Mohammed AM, Hamed HB, Noaman MK, Alieldin N. Metabolic syndrome and breast cancer risk. J Egypt Natl Canc Inst 2023; 35:42. [PMID: 38123741 DOI: 10.1186/s43046-023-00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Limited data are available on metabolic syndrome and its relation to breast cancer risk in Egypt. We aimed to study metabolic syndrome and its individual components as risk of breast cancer. METHODS This case-control study recruited 112 breast cancer cases and 112 age-matched controls from Assiut University. In addition to demographic, clinical, and anthropoemetric characteristics, blood samples were collected from both study groups to evaluate metabolic syndrome and its individual components. RESULTS Mean age of breast cancer cases and control groups was 46.10 ± 4.34 and 45.66 ± 4.68 years, respectively. According to Joint Interim Statement (JIS) criteria for clinical diagnosis of metabolic syndrome, the overall prevalence of metabolic syndrome in all participants was 42.9%, and prevalence in breast cancer cases and control group was 57.14% and 28.6%, respectively, OR 33.33, 95% CI (1.91-5.81). BMI was more likely to be higher in breast cancer patients with a linear trend, p < 0.001. For individual components of metabolic syndrome, breast cancer cases were more likely to have high fasting blood glucose level, systolic and/or diastolic blood pressure, high triglycerides level, and low HDL-C as compared to the control group. CONCLUSION Metabolic syndrome and its components were found to be associated with the risk of breast cancer. We believe that prevention or reversal of metabolic syndrome by raising community awareness for lifestyle changes could be an effective way in minimizing the toll of the disease.
Collapse
Affiliation(s)
- Amira M Mohammed
- Department of Biostatistics and Cancer Epidemiology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Hosney B Hamed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Maisa K Noaman
- Department of Biostatistics and Cancer Epidemiology, National Cancer Institute, Cairo University, Fom Elkhalig Square, Cairo, Egypt
| | - Nelly Alieldin
- Department of Biostatistics and Cancer Epidemiology, National Cancer Institute, Cairo University, Fom Elkhalig Square, Cairo, Egypt.
| |
Collapse
|
3
|
Sanotra MR, Kao SH, Lee CK, Hsu CH, Huang WC, Chang TC, Tu FY, Hsu IU, Lin YF. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer's disease. Alzheimers Res Ther 2023; 15:115. [PMID: 37349844 PMCID: PMC10286356 DOI: 10.1186/s13195-023-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is caused by many intertwining pathologies involving metabolic aberrations. Patients with metabolic syndrome (MetS) generally show hyperglycemia and dyslipidemia, which can lead to the formation of aldehydic adducts such as acrolein on peptides in the brain and blood. However, the pathogenesis from MetS to AD remains elusive. METHODS An AD cell model expressing Swedish and Indiana amyloid precursor protein (APP-Swe/Ind) in neuro-2a cells and a 3xTg-AD mouse model were used. Human serum samples (142 control and 117 AD) and related clinical data were collected. Due to the involvement of MetS in AD, human samples were grouped into healthy control (HC), MetS-like, AD with normal metabolism (AD-N), and AD with metabolic disturbance (AD-M). APP, amyloid-beta (Aß), and acrolein adducts in the samples were analyzed using immunofluorescent microscopy, histochemistry, immunoprecipitation, immunoblotting, and/or ELISA. Synthetic Aß1-16 and Aß17-28 peptides were modified with acrolein in vitro and verified using LC-MS/MS. Native and acrolein-modified Aß peptides were used to measure the levels of specific autoantibodies IgG and IgM in the serum. The correlations and diagnostic power of potential biomarkers were evaluated. RESULTS An increased level of acrolein adducts was detected in the AD model cells. Furthermore, acrolein adducts were observed on APP C-terminal fragments (APP-CTFs) containing Aß in 3xTg-AD mouse serum, brain lysates, and human serum. The level of acrolein adducts was correlated positively with fasting glucose and triglycerides and negatively with high-density lipoprotein-cholesterol, which correspond with MetS conditions. Among the four groups of human samples, the level of acrolein adducts was largely increased only in AD-M compared to all other groups. Notably, anti-acrolein-Aß autoantibodies, especially IgM, were largely reduced in AD-M compared to the MetS group, suggesting that the specific antibodies against acrolein adducts may be depleted during pathogenesis from MetS to AD. CONCLUSIONS Metabolic disturbance may induce acrolein adduction, however, neutralized by responding autoantibodies. AD may be developed from MetS when these autoantibodies are depleted. Acrolein adducts and the responding autoantibodies may be potential biomarkers for not only diagnosis but also immunotherapy of AD, especially in complication with MetS.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Hsien Hsu
- Department of Family Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, 100, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Fang-Yu Tu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron 2022; 110:1304-1317. [PMID: 35298921 PMCID: PMC9035117 DOI: 10.1016/j.neuron.2022.03.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.
Collapse
Affiliation(s)
- Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Austin J Yang
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Renuka Sanotra M, Huang WC, Silver S, Lin CY, Chang TC, Nguyen DPQ, Lee CK, Kao SH, Chang-Cheng Shieh J, Lin YF. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer's disease. Clin Biochem 2021; 101:26-34. [PMID: 34933007 DOI: 10.1016/j.clinbiochem.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hyperglycemia leads to lipid peroxidation, producing 4-hydroxynonenal (HNE) adducts which correlate with the production of amyloid-beta (Aβ), one of the hallmarks of Alzheimer's disease (AD). This study is to investigate the interactions of Aβ, HNE adducts and responding autoantibodies during the pathogenesis from hyperglycemia to AD. METHODS A total of 239 Taiwanese serum samples from a healthy control group and patients with hyperglycemia, and AD with and without hyperglycemia were analyzed. Aβ was immunoprecipitated from randomly pooled serum in each group and immunoblotted. Synthetic Aβ1-16 and Aβ17-28 peptides were modified with HNE in vitro and verified with LC-MS/MS. The levels of Aβ, HNE adducts, and autoantibody isotypes IgG and IgM against either native or HNE-modified Aβ were determined with ELISA. The diagnostic power of potential biomarkers was evaluated. RESULTS Increased fasting glucose and decreased high-density-lipoprotein cholesterol in AD groups indicated abnormal metabolism in the pathogenesis progression from hyperglycemia to AD. Indeed, serum Aβ, HNE adducts and most of the autoantibodies recognizing either native or HNE-modified Aβ were increased in the diseased groups. However, HNE adducts had better diagnostic performances than Aβ for both hyperglycemia and AD. Additionally, HNE-Aβ peptide levels were increased, and the responding autoantibodies (most notably IgM) were decreased in hyperglycemic AD group compared to the hyperglycemia only group, suggesting an immunity disturbance in the pathogenesis progression from hyperglycemia to AD. CONCLUSION Hyperglycemia increases the level of HNE adducts which may be neutralized by responding autoantibodies. Depletion of these autoantibodies promotes AD-like pathogenesis. Thus, levels of a patient's HNE adducts and associated responding autoantibodies are potential biomarkers for AD with diabetes.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Simon Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
6
|
Tikhonov D, Kulikova L, Kopylov AT, Rudnev V, Stepanov A, Malsagova K, Izotov A, Kulikov D, Zulkarnaev A, Enikeev D, Potoldykova N, Kaysheva AL. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep 2021; 11:19318. [PMID: 34588485 PMCID: PMC8481388 DOI: 10.1038/s41598-021-98201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational processing leads to conformational changes in protein structure that modulate molecular functions and change the signature of metabolic transformations and immune responses. Some post-translational modifications (PTMs), such as phosphorylation and acetylation, are strongly related to oncogenic processes and malignancy. This study investigated a PTM pattern in patients with gender-specific ovarian or breast cancer. Proteomic profiling and analysis of cancer-specific PTM patterns were performed using high-resolution UPLC-MS/MS. Structural analysis, topology, and stability of PTMs associated with sex-specific cancers were analyzed using molecular dynamics modeling. We identified highly specific PTMs, of which 12 modified peptides from eight distinct proteins derived from patients with ovarian cancer and 6 peptides of three proteins favored patients from the group with breast cancer. We found that all defined PTMs were localized in the compact and stable structural motifs exposed outside the solvent environment. PTMs increase the solvent-accessible surface area of the modified moiety and its active environment. The observed conformational fluctuations are still inadequate to activate the structural degradation and enhance protein elimination/clearance; however, it is sufficient for the significant modulation of protein activity.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS-the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Arthur T Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia.
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.,V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| | - Dmitry Kulikov
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Alexey Zulkarnaev
- Moscow Regional Research and Clinical Institute, Russian Federation, 129110, Moscow, Russia
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121, Moscow, Russia
| | - Anna L Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121, Moscow, Russia
| |
Collapse
|
7
|
Kacperczyk M, Kmieciak A, Kratz EM. The Role of ApoE Expression and Variability of Its Glycosylation in Human Reproductive Health in the Light of Current Information. Int J Mol Sci 2021; 22:ijms22137197. [PMID: 34281251 PMCID: PMC8268793 DOI: 10.3390/ijms22137197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein E (ApoE), a 34-kDa glycoprotein, as part of the high-density lipoprotein (HDL), has antioxidant, anti-inflammatory and antiatherogenic properties. The variability of ApoE expression in the course of some female fertility disorders (endometriosis, POCS), and other gynecological pathologies such as breast cancer, choriocarcinoma, endometrial adenocarcinoma/hyperplasia and ovarian cancer confirm the multidirectional biological function of ApoE, but the mechanisms of its action are not fully understood. It is also worth taking a closer look at the associations between ApoE expression, the type of its genotype and male fertility disorders. Another important issue is the variability of ApoE glycosylation. It is documented that the profile and degree of ApoE glycosylation varies depending on where it occurs, the type of body fluid and the place of its synthesis in the human body. Alterations in ApoE glycosylation have been observed in the course of diseases such as preeclampsia or breast cancer, but little is known about the characteristics of ApoE glycans analyzed in human seminal and blood serum/plasma in the context of male reproductive health. A deeper analysis of ApoE glycosylation in the context of female and male fertility will both enable us to broaden our knowledge of the biochemical and cellular mechanisms in which glycans participate, having a direct or indirect relationship with the fertilization process, and also give us a chance of contributing to the enrichment of the diagnostic panel in infertile women and men, which is particularly important in procedures involved in assisted reproductive techniques. Moreover, understanding the mechanisms of glycoprotein glycosylation related to the course of various diseases and conditions, including infertility, and the interactions between glycans and their specific ligands may provide us with an opportunity to interfere with their course and thus develop new therapeutic strategies. This brief overview details some of the recent advances, mainly from the last decade, in understanding the associations between ApoE expression and some female and male fertility problems, as well as selected female gynecological diseases and male reproductive tract disorders. We were also interested in how ApoE glycosylation changes influence biological processes in the human body, with special attention to human fertility.
Collapse
|
8
|
Huang J, Pallotti S, Zhou Q, Kleber M, Xin X, King DA, Napolioni V. PERHAPS: Paired-End short Reads-based HAPlotyping from next-generation Sequencing data. Brief Bioinform 2020; 22:6025504. [PMID: 33285565 DOI: 10.1093/bib/bbaa320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The identification of rare haplotypes may greatly expand our knowledge in the genetic architecture of both complex and monogenic traits. To this aim, we developed PERHAPS (Paired-End short Reads-based HAPlotyping from next-generation Sequencing data), a new and simple approach to directly call haplotypes from short-read, paired-end Next Generation Sequencing (NGS) data. To benchmark this method, we considered the APOE classic polymorphism (*1/*2/*3/*4), since it represents one of the best examples of functional polymorphism arising from the haplotype combination of two Single Nucleotide Polymorphisms (SNPs). We leveraged the big Whole Exome Sequencing (WES) and SNP-array data obtained from the multi-ethnic UK BioBank (UKBB, N=48,855). By applying PERHAPS, based on piecing together the paired-end reads according to their FASTQ-labels, we extracted the haplotype data, along with their frequencies and the individual diplotype. Concordance rates between WES directly called diplotypes and the ones generated through statistical pre-phasing and imputation of SNP-array data are extremely high (>99%), either when stratifying the sample by SNP-array genotyping batch or self-reported ethnic group. Hardy-Weinberg Equilibrium tests and the comparison of obtained haplotype frequencies with the ones available from the 1000 Genome Project further supported the reliability of PERHAPS. Notably, we were able to determine the existence of the rare APOE*1 haplotype in two unrelated African subjects from UKBB, supporting its presence at appreciable frequency (approximatively 0.5%) in the African Yoruba population. Despite acknowledging some technical shortcomings, PERHAPS represents a novel and simple approach that will partly overcome the limitations in direct haplotype calling from short read-based sequencing.
Collapse
Affiliation(s)
- Jie Huang
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Stefano Pallotti
- Genetics and Animal Breeding Group, School of Pharmacy, University of Camerino, Italy
| | - Qianling Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, China
| | - Marcus Kleber
- Department of Medicine, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany and at SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | | | - Daniel A King
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
9
|
Zhou Y, Luo G. Apolipoproteins, as the carrier proteins for lipids, are involved in the development of breast cancer. Clin Transl Oncol 2020; 22:1952-1962. [PMID: 32306242 PMCID: PMC7505814 DOI: 10.1007/s12094-020-02354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022]
Abstract
Apolipoproteins, the key components of lipoproteins, play vital roles in the combination and transportation of lipids. Numerous research articles have accumulated solid evidence that lipoproteins are closely related to various types of tumorigenesis. In this review, we focused on the associations between several apolipoproteins and breast carcinoma and distinguished the effects and significance of apolipoproteins in different locations to validate their roles in breast carcinoma development. For example, apoD and apoE in serum are viewed as risk factors for breast carcinoma. ApoD, apoE and apoA-I in mammary tissues inhibit tumor growth. Moreover, apoB, apoJ and apoA-I have the potential to function as diagnostic or prognostic markers in the clinic. ApoEdp and apoJ treatment on breast carcinoma could significantly restrict tumor growth. In general, the aim of this review was to further analyze the associations between some members of the apolipoprotein family and breast cancer.
Collapse
Affiliation(s)
- Y Zhou
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - G Luo
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
10
|
Cheng CW, Chang CC, Chen HW, Lin CY, Chen JS. Serum ApoA4 levels predicted the progression of renal impairment in T2DM. Eur J Clin Invest 2018; 48:e12937. [PMID: 29675916 DOI: 10.1111/eci.12937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Among multiple causes, diabetic nephropathy (DN) is the major underlying renal disease that leads to end-stage renal disease (ESRD), and early diagnosis can effectively prevent or delay the progression to ESRD. Therefore, the current study aimed to develop noninvasive, accurate detection markers. MATERIALS & METHODS For this study, 62 diabetes mellitus (DM) patients, 59 DN patients and 21 healthy controls (HCs) were recruited. All participants' serum samples were subjected to concavanalin (Con) A affinity chromatography, which utilizes glycoproteins to discover potential markers. RESULTS From nano LC-MS and Western blot analysis, apolipoprotein A-IV (ApoA4) was selected which featured a gradual, almost twofold increase in the order of HC, DM and DN. In the Con A-based ELISA, the DM group was 1.91-fold higher than the HC group, while the DN group was 2.56-fold higher than the HCs and 1.33-fold higher than the DM group. In addition, significant positive correlations were observed between ApoA4 and blood urea nitrogen levels and between ApoA4 and creatine levels, while significant negative correlations were seen between serum protein levels and between serum albumin levels in comparisons of DM and DN samples. CONCLUSIONS Serum Con A-bound ApoA4 levels were higher in the DM group than in HCs, and further increased in the DN group. Levels of ApoA4 were positively correlated with blood urea nitrogen and creatine, but negatively correlated with serum protein and albumin. This evidence supports serum Con A-bound ApoA4 as a circulating marker for predicting the progression of renal impairment in DM patients.
Collapse
Affiliation(s)
- Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Che-Chang Chang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Wen Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Lin CY, Sheu JJ, Tsai IS, Wang ST, Yang LY, Hsu IU, Chang HW, Lee HM, Kao SH, Lee CK, Chen CH, Lin YF. Elevated IgM against Nε-(Carboxyethyl)lysine-modified Apolipoprotein A1 peptide 141–147 in Taiwanese with Alzheimer's disease. Clin Biochem 2018; 56:75-82. [DOI: 10.1016/j.clinbiochem.2018.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
|
12
|
Liao CC, Chang YS, Cheng CW, Chi WM, Tsai KL, Chen WJ, Kung TS, Tai CC, Lin YF, Lin HT, Lu YY, Lin CY. Isotypes of autoantibodies against differentially expressed novel malondialdehyde-modified peptide adducts in serum of Taiwanese women with rheumatoid arthritis. J Proteomics 2017; 170:141-150. [PMID: 28870784 DOI: 10.1016/j.jprot.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
Abstract
This study identified and validated four differentially expressed novel malondialdehyde (MDA)-modified peptide adducts and evaluated autoantibodies against native and MDA-modified peptides among Taiwanese women patients with rheumatoid arthritis (RA), osteoarthritis (OA) and healthy controls (HCs). Ig kappa chain C region76-99, alpha-1-antitrypsin284-298, alpha-2-macroglobulin824-841, and apolipoprotein B-1004022-4040 exhibiting 2-fold differences in relative modification ratios were identified by concanavalin A (Con A) affinity chromatography, 1D SDS-PAGE, in-gel digestion, nano-LC/MS/MS and nano-LC/MS using pooled serum-derived Con A-captured proteins from 9 RA and 9 age-matched HCs. Furthermore, the levels of proteins, serum MDA, and MDA-modified protein adducts were further validated against individual serum from 20 RA and 20 HCs, and autoantibodies against native and their MDA-modified peptides used 45 RA, 30 OA and 45 HCs. Levels of serum MDA and MDA-modified protein adducts were significantly higher in RA than HCs but protein levels were not significantly different. Serum Igs G and M against MDA-modified peptides showed better diagnostic performance in differentiating among patients with RA, OA and HCs, with an area under the receiver operating characteristic curve of 0.96-0.98, sensitivity of 88.9%-97.8%, and specificity of 88.9%-100%. Autoantibodies against MDA-modified epitopes become useful clinical biomarkers for RA. BIOLOGICAL SIGNIFICANCE By using a label-free relative quantitative proteomic analysis of concanavalin A (Con A)-bound serum samples, the current study discovered and validated malondialdehyde (MDA)-modified peptide adducts as novel biomarkers for differentiating between rheumatoid arthritis (RA) patients and healthy controls (HCs). In addition, the serum levels of MDA, proteins, and MDA-modified protein adducts as well as the MDA modification of proteins were determined. Isotypes of autoantibodies against MDA-modified peptide adducts can be used as serological biomarkers for further discriminating among RA patients, osteoarthritis patients and HCs. This strategy can become the basis for identifying potential diagnostic and pathological biomarkers for RA.
Collapse
Affiliation(s)
- Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Ming Chi
- Department of Laboratory Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kai-Leun Tsai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 26047, Taiwan
| | - Ting-Shuan Kung
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chun Tai
- Department of Laboratory Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hung-Tse Lin
- Department of Laboratory Medicine, LinKou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yi-Ying Lu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 26047, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
13
|
Xu X, Wan J, Yuan L, Ba J, Feng P, Long W, Huang H, Liu P, Cai Y, Liu M, Luo J, Li L. Serum levels of apolipoprotein E correlates with disease progression and poor prognosis in breast cancer. Tumour Biol 2016; 37:15959–15966. [PMID: 27709551 DOI: 10.1007/s13277-016-5453-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
ApoE has been reported to be associated with tumorigenesis and tumor progression. In this study, we explored the potential diagnostic and prognostic role of serum ApoE in breast cancer patients. Subject cohorts consisted of 152 normal healthy controls female and 257 breast cancer cases. Serum levels of ApoE were determined with turbidimetric immunoassay. The serum levels of ApoE were significantly elevated in breast cancer patients compared with normal healthy controls (45.82 ± 13.96 mg/L vs. 33.61 ± 6.44 mg/L, respectively, P < 0.0001) and also significantly associated with TNM stage and lymph nodes status (all P < 0.05). Area under receiver operating characteristic curve for serum ApoE discriminate breast cancer patients from controls was 0.786 with specificity of 0.974 and sensitivity of 0.541, the cut-off value of ApoE was 43.15 mg/L. Kaplan-Meier log rank analysis showed that the high serum ApoE group (serum ApoE ≥ 43.15 mg/L) had a poorer progression-free survival and overall survival compared with low serum ApoE group (serum ApoE < 43.15 mg/L) (all P < 0.05). In addition, univariate and multivariate Cox regression analysis displayed serum ApoE as an independent risk factor of breast cancer patients prognosis (all P < 0.05). Serum ApoE played a role as serological biomarkers that indicated diagnostic and prognostic evaluation in breast cancer patients.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianxin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Linjing Yuan
- Department of Gynaecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Junhui Ba
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Pinning Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Weiqing Long
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Hao Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Pingjuan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
- Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Yuesu Cai
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
- Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China
| | - Jinmei Luo
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| | - Laisheng Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
14
|
Zaslavsky BY, Uversky VN, Chait A. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:622-44. [DOI: 10.1016/j.bbapap.2016.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/29/2022]
|
15
|
Sun Y, Zhang J, Guo F, Zhao W, Zhan Y, Liu C, Fan Y, Wang J. Identification of Apolipoprotein C-I Peptides as a Potential Biomarker and its Biological Roles in Breast Cancer. Med Sci Monit 2016; 22:1152-60. [PMID: 27052600 PMCID: PMC4827518 DOI: 10.12659/msm.896531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer (BC) is one of the most common cancers and is among the main causes of death in females around the world. Although several serum biomarkers have been identified for breast cancer, due to lack of adequate sensitivity and specificity they do not adequately distinguish BC from confounding conditions. New approaches are urgently needed to improve BC detection and treatment. Material/Methods Eighty serum samples from 20 healthy individuals and 60 patients with BC (22 triple-negative breast cancer, TNBC; 38 non-triple-negative breast cancer, NTNBC) were included. Protein profiling of serum samples was analyzed using surface-enhanced laser desorption/ionization time-of-flight mass spectroscopy (SELDI-TOF-MS). Candidate biomarkers were purified by SDS-PAGE electrophoresis and identified by MALDI-TOF/TOF. Results The candidate biomarker positioned at 6447.9 m/z was significantly decreased in BC patients. Moreover, the expression intensity of the candidate biomarker was weaker in the TNBC and pre-surgery group compared with the NTNBC and post-surgery group. We ultimately identified the biomarker as apolipoprotein C-I (ApoC-I). Furthermore, we found that ApoC-I peptides inhibited proliferation of human breast cancer cells in vitro and suppressed tumor growth in vivo. Conclusions These results suggest that ApoC-I peptides may be a potential diagnostic biomarker and therapeutic approach for BC.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Junjie Zhang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Wei Zhao
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxiao Zhan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chenyu Liu
- Department of Breast, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxia Fan
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jiaxiang Wang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
16
|
Zaslavsky BY, Uversky VN, Chait A. Solvent interaction analysis as a proteomic approach to structure-based biomarker discovery and clinical diagnostics. Expert Rev Proteomics 2015; 13:9-17. [PMID: 26558960 DOI: 10.1586/14789450.2016.1116945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins have several measurable features in biological fluids that may change under pathological conditions. The current disease biomarker discovery is mostly based on protein concentration in the sample as the measurable feature. Changes in protein structures, such as post-translational modifications and in protein-partner interactions are known to accompany pathological processes. Changes in glycosylation profiles are well-established for many plasma proteins in various types of cancer and other diseases. The solvent interaction analysis method is based on protein partitioning in aqueous two-phase systems and is highly sensitive to changes in protein structure and protein-protein- and protein-partner interactions while independent of the protein concentration in the biological sample. It provides quantitative index: partition coefficient representing changes in protein structure and interactions with partners. The fundamentals of the method are presented with multiple examples of applications of the method to discover and monitor structural protein biomarkers as disease-specific diagnostic indicators.
Collapse
Affiliation(s)
- Boris Y Zaslavsky
- a Cleveland Diagnostics , 3615 Superior Avenue, Suite 4407B, Cleveland , OH 44114 , USA
| | - Vladimir N Uversky
- b Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , FL 33612 , USA
| | - Arnon Chait
- a Cleveland Diagnostics , 3615 Superior Avenue, Suite 4407B, Cleveland , OH 44114 , USA
| |
Collapse
|