1
|
Qin X, Wang F, Xie D, Zhou Q, Lin S, Lin W, Li W. Identification of a key peptide cyclase for novel cyclic peptide discovery in Pseudostellaria heterophylla. PLANT COMMUNICATIONS 2025; 6:101315. [PMID: 40083160 DOI: 10.1016/j.xplc.2025.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/22/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Orbitides, also known as Caryophyllaceae-type cyclic peptides, from the Traditional Chinese Medicine plant Pseudostellaria heterophylla (Miq.) Pax, exhibit great potential for improving memory and treating diabetes. Orbitides are ribosomally encoded and post-translationally modified peptides; however, the key biosynthetic enzyme mediating this process remains unknown in P. heterophylla. In this study, we investigated the distribution of orbitides in P. heterophylla and mined novel precursor peptide genes and peptide cyclases from multiple omics datasets. The function of PhPCY3, a gene encoding a key tailoring enzyme, was elucidated using transient heterologous expression and virus-induced gene silencing systems. Our findings suggest that PhPCY3 specifically cyclizes linear precursor peptides in planta. Molecular docking and multiple sequence alignment, followed by site-directed mutagenesis, identified N500 and S502 as critical amino acid residues for PhPCY3 function. We identified gene sequences for over 100 precursor peptides and successfully biosynthesized known active orbitides, such as heterophyllin B and pseudostellarin E/F/G. Additionally, four novel orbitides, cyclo-[LDGPPPYF], cyclo-[WGSSTPHT], cyclo-[GLPIGAPWG], and cyclo-[FGDVGPVI], were synthesized using a heterologous expression platform. This study introduces a gene-guided approach for elucidating the biosynthesis pathway and discovering novel orbitides, providing a strategy for mining and biosynthesizing novel orbitides in P. heterophylla and other plants to further investigate their activities.
Collapse
Affiliation(s)
- Xianjin Qin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Fengjiao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Qi Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Bama Yao Autonomous County Rural Revitalization Research Institute, Bama 547500, China.
| |
Collapse
|
2
|
Zhao Y, Gong J, Shi R, Wu Z, Liu S, Chen S, Tao Y, Li S, Tian J. Application of proteomics in investigating the responses of plant to abiotic stresses. PLANTA 2025; 261:128. [PMID: 40332605 DOI: 10.1007/s00425-025-04707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION This review summarizes the application of proteomic techniques in investigating the responses of plant to abiotic stresses. In the natural environment, the plants are exposed to a diverse range of adverse abiotic factors that significantly impact their growth and development. The plants have evolved intricate stress response mechanisms at the genetic, protein, metabolic, and phenotypic levels to mitigate damage caused by unfavorable conditions. Proteomics serves as an effective tool for studying protein changes in plants and provides valuable insights into the physiological mechanisms underlying plant stress resistance. Several proteins involved in abiotic stress responses have been identified in plants, including transcription factors, protein kinases, ATP synthases, heat shock proteins, redox proteins, and enzymes in secondary metabolite pathways. Medicinal plants are a unique category of crops capable of synthesizing secondary metabolites, which play a crucial role in resisting abiotic stress and exhibit changes in content under stress conditions. In this review, we present an overview of proteomic tools employed for investigating the responses of plants to abiotic stresses and summarize alterations observed at the protein level under various abiotic stresses such as signal transduction, oxidative damage, carbohydrate and energy metabolism, protein and amino acid metabolism, cellular homeostasis, and enzyme involvement in secondary metabolism. This work aims to facilitate the application of proteomics techniques in plants research while enhancing our understanding of the response mechanisms exhibited by these plants towards abiotic stresses.
Collapse
Affiliation(s)
- Yu Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Jiahui Gong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Runjie Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Zerong Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shengzhi Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
| | - Shuxin Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shouxin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| | - Jingkui Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310002, China.
| |
Collapse
|
3
|
Yin L, Shi K, Yin Y, Zhang Y, Xu L, An J, Peng C, Wang C, He H, Yang S, Ni L, Li S. Long-term suppression of Microcystis aeruginosa by tannic acid: Risks of microcystin pollution and proteomic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137205. [PMID: 39818060 DOI: 10.1016/j.jhazmat.2025.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M. aeruginosa) exposed to TA, revealing underlying mechanisms through proteomic analysis. High TA doses effectively inhibited M. aeruginosa growth and microcystin-leucine-arginine (MC-LR) production. However, at a specific TA concentration, M. aeruginosa produced and released more MCs, with extracellular MC-LR levels peaking at 1.91 times the control on day 15. Proteomic analysis indicated upregulation of proteins related to the tricarboxylic acid (TCA) cycle, glycolysis, and leucine and arginine biosynthesis, suggesting a compensatory response in M. aeruginosa under TA stress that enhanced cellular energy supply and MC-LR biosynthesis. In addition, TA exposure significantly downregulated proteins involved in ion and metal-cluster binding, disrupting electron transfer and photosynthesis. This study provides new insights into TA-induced MC-pollution risks and TA's mechanisms in algae suppression, offering guidance for its application in algal bloom control.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Kaipian Shi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Chunqing Peng
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Conghui Wang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
4
|
Wang Z, Cao B, Du J, Deng T, Wang R, Chen Y, Li X, Fu J, Pang J, Yang M, Han J. Transcriptomic and proteomic-based analysis of the mechanisms by which drought and salt stresses affect the quality of Isatidis Folium. BMC PLANT BIOLOGY 2025; 25:332. [PMID: 40087613 PMCID: PMC11907893 DOI: 10.1186/s12870-025-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Isatidis Folium, derived from the dried leaves of Isatis indigotica Fort., has been used for centuries as a traditional Chinese herb with antibacterial and antiviral properties. However, heterogeneity in cultivation conditions and climatic variations poses challenges to accurately and effectively evaluate its quality. Current quality control methods cannot provide a comprehensive and effective identification of herbal quality and preparation efficacy. This study aimed to investigate the impact of different environmental factors on the biosynthesis and accumulation of medicinal components and identify biomarker genes and functional proteins associated with abiotic stress responses of Isatis indigotica Fort. We proposed evaluating the quality of Isatidis Folium based on multi-component quantitative analysis and integrating transcriptomic, proteomic, and physiological indicators to elucidate the mechanisms of herbal quality variation. The results revealed that abiotic stress conditions significantly altered the levels of bioactive constituents, physiological indices, and specific genes and proteins. Notably, biological pathways such as porphyrin metabolism, photosynthesis, and carbon fixation by photosynthetic organisms were implicated in phototoxicity within the photosystem under abiotic stresses. Biological pathways related to indole metabolism, specifically phenylalanine, tyrosine, and tryptophan synthesis, tryptophan metabolism, and indole alkaloid synthesis, were recognized as critical regulatory networks modulating indole alkaloid content. Candidate biomarkers such as HemB, PsbB, RBS2, RIBA2, TRPA, and TRPB were identified as potential factors of quality deterioration under adverse conditions. Based on the integration of chemical analysis and multi-omics techniques, a new hierarchical quality control scenario for Isatidis Folium was finally proposed, providing a research foundation for the innovation-driven development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhiying Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Baorui Cao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinxin Du
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruyu Wang
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yiwei Chen
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Li
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jialei Fu
- Institute of Traditional Chinese Medicine Pharmacology, Shandong Academy of Chinese Medicine, Jinan, China
| | - Jingxiang Pang
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Jinxiang Han
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Biomedical Sciences College & Shandong Medical Biotechnology Research Center, National Health Commission Key Laboratory of Biotechnology Drugs, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Yin L, Yin Y, Xu L, Zhang Y, Shi K, Wang J, An J, He H, Yang S, Ni L, Li S. Uncovering toxin production and molecular-level responses in Microcystis aeruginosa exposed to the flame retardant Tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136886. [PMID: 39689566 DOI: 10.1016/j.jhazmat.2024.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Tetrabromobisphenol A (TBBPA) poses significant ecological risks owing to its toxicity; however, its specific effects on toxin-producing cyanobacteria in aquatic environments remain poorly understood. This study systematically investigated the effects of TBBPA at concentrations ranging from 100 ng/L to 100 mg/L on Microcystis aeruginosa (M. aeruginosa) by examining growth, photosynthesis, toxin production, antioxidant responses, and molecular-level changes. The results indicated that low levels of TBBPA (0.1-1000 μg/L) induced stimulatory effects on the growth and microcystin-leucine-arginine (MC-LR) production of M. aeruginosa. Metabolomic analysis revealed that low levels of TBBPA significantly upregulated metabolites associated with energy metabolism, xenobiotic biodegradation, oxidative stress responses, and protein biosynthesis in M. aeruginosa, potentially contributing to the observed hormetic effect. Conversely, higher doses (40-100 mg/L) inhibited growth and significantly increased MC-LR release by compromising cellular structural integrity. Proteomic analysis revealed that toxic levels of TBBPA significantly affected the expression of proteins associated with energy harvesting and utilization. Specifically, TBBPA disrupted electron flow in oxidative phosphorylation and the photosynthetic system (PS) by targeting PSI, PSII, and Complex I, impairing energy acquisition and causing oxidative damage, ultimately leading to algal cell death. Additionally, proteins involved in the biosynthesis and metabolism of cysteine, methionine, phenylalanine, tyrosine, and tryptophan were upregulated, potentially enhancing M. aeruginosa resistance to TBBPA-induced stress. This study offers insights into the effects of TBBPA on M. aeruginosa and its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Li Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lin Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Juan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Junfeng An
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lixiao Ni
- School of Environment, Hohai University, Nanjing 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| |
Collapse
|
6
|
Lei Z, Luan F, Zou J, Zhang X, Zhai B, Xin B, Sun J, Guo D, Wang J, Shi Y. Traditional uses, phytochemical constituents, pharmacological properties, and quality control of Pseudostellaria heterophylla (Miq.) Pax. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118871. [PMID: 39368760 DOI: 10.1016/j.jep.2024.118871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Pseudostellaria heterophylla (Miq.) Pax belongs to the Caryophyllaceae family, which is widely used in traditional Chinese medicine in Asia. P. heterophylla was first documented in the classical text Bencao Congxin, also known as "Haier Shen". As a renowned folk medicine with a long history of medicinal application in China, this plant is frequently employed to address spleen deficiency and fatigue, loss of appetite, and weakness after illness. In recent years, P. heterophylla has gained significant global attention as an important medicinal plant, attributable to its pharmacological activities on the immune and endocrine systems, as well as its diverse applications. AIM OF THE WORK This review aims to deliver a comprehensive and analytical overview of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology, and quality control of P. heterophylla, while also offering novel insights and opportunities for future research. MATERIALS AND METHODS Relevant information regarding P. heterophylla was gathered from various databases, including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, and CNKI, in addition to The Catalogue of Life, the Flora of China database, and The World Flora Online. All published articles in multiple languages have been included and properly cited. The chemical structure of the compound was illustrated utilizing ChemDraw 19.0 software. RESULTS P. heterophylla has been traditionally employed to address a range of ailments, including cancer, cardiovascular diseases, diabetes, and respiratory disorders. More than 289 active constituents have been identified in P. heterophylla, comprising cyclic peptides, polysaccharides, saponins, alkaloids, flavonoids, nucleosides, and amino acids. Pharmacological investigations have demonstrated that P. heterophylla and its active constituents exhibit a broad spectrum of biological activities, including anti-cancer, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory effects, modulation of intestinal flora, enhancement of cognitive function, and inhibition of tyrosine kinase activity. Furthermore, it is extensively utilized in the functional food and cosmetics industries. CONCLUSION As a dual-purpose resource for both food and medicine, P. heterophylla possesses significant health care functions and considerable edible and medicinal value, with promising prospects for future development and utilization. However, numerous investigations into the biological activities of P. heterophylla are primarily focused on its extracts and bioactive constituents, and the mechanisms underlying the actions of these extracts and components remain unclear, with a dearth of studies on clinical efficacy and safety. Consequently, further detailed in vitro and in vivo studies investigating the mechanisms of action of pure active compounds of P. heterophylla are warranted, along with additional clinical investigations to ascertain the safety and efficacy of the plant for human use.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
7
|
Gong Q, Lv X, Liao C, Liang A, Luo C, Wu J, Zhou Y, Huang Y, Tong Z. Single-cell RNA sequencing combined with proteomics of infected macrophages reveals prothymosin-α as a target for treatment of apical periodontitis. J Adv Res 2024; 66:349-361. [PMID: 38237771 PMCID: PMC11675041 DOI: 10.1016/j.jare.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Chronic apical periodontitis (CAP) is a common infectious disease of the oral cavity. Immune responses and osteoclastogenesis of monocytes/macrophages play a crucial role in CAP progression, and this study want to clarify role of monocytes/macrophages in CAP, which will contribute to treatment of CAP. OBJECTIVES We aim to explore the heterogeneity of monocyte populations in periapical lesion of CAP tissues and healthy control (HC) periodontal tissues by single-cell RNA sequencing (scRNA-seq), search novel targets for alleviating CAP, and further validate it by proteomics and in vitro and in vivo evaluations. METHODS ScRNA-seq was used to analyze the heterogeneity of monocyte populations in CAP, and proteomics of THP-1-derived macrophages with porphyromonas gingivalis infection were intersected with the differentially expressed genes (DEGs) of macrophages between CAP and HC tissues. The upregulated PTMA (prothymosin-α) were validated by immunofluorescence staining and quantitative real time polymerase chain reaction. We evaluated the effect of thymosin α1 (an amino-terminal proteolytic cleavage product of PTMA protein) on inflammatory factors and osteoclast differentiation of macrophages infected by P. gingivalis. Furthermore, we constructed mouse and rat mandibular bone lesions caused by apical periodontitis, and estimated treatment of systemic and topical administration of PTMA for CAP. Statistical analyses were performed using GraphPad Prism software (v9.2) RESULTS: Monocytes were divided into seven sub-clusters comprising monocyte-macrophage-osteoclast (MMO) differentiation in CAP. 14 up-regulated and 21 down-regulated genes and proteins were intersected between the DEGs of scRNA-seq data and proteomics, including the high expression of PTMA. Thymosin α1 may decrease several inflammatory cytokine expressions and osteoclastogenesis of THP-1-derived macrophages. Both systemic administration in mice and topical administration in the pulp chamber of rats alleviated periapical lesions. CONCLUSIONS PTMA upregulation in CAP moderates the inflammatory response and prevents the osteoclastogenesis of macrophages, which provides a basis for targeted therapeutic strategies for CAP.
Collapse
Affiliation(s)
- Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaomin Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuiting Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Feng M, Xie Y, Mao W, Lu Y, Wang Y, Li H, Zhang C. Efficient biodegradation of tris-(2-chloroisopropyl) phosphate by a novel strain Amycolatopsis sp. FT-1: Process optimization, mechanism studies and toxicity changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130149. [PMID: 36252405 DOI: 10.1016/j.jhazmat.2022.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, a newly isolated strain Amycolatopsis sp. FT-1 was confirmed to be an efficient tris-(2-chloroisopropyl) phosphate (TCPP) degrader. The maximum degradation efficiency of 100 % was achieved when glucose concentration was 6.0 g/L, TCPP concentration was 1.1 mg/L, pH was 6.3 and temperature was 35 °C. Proteome analysis indicated that TCPP was transformed into diester, monoester and ketone product through hydrolysis by phosphoesterase and oxidation mediated by proteins involved in bio-Fenton reaction. The increased expression of proteins serving as organic hydroperoxides scavenger and two subunits of xanthine dehydrogenase enabled Amycolatopsis sp. FT-1 to defend against TCPP-induced oxidative damage. Meanwhile, proteins involved in the resistance to proteotoxic stress were found to be up-regulated, including Hsp70 protein, ATP-dependent Clp protease proteolytic subunit, elongation factor G and trehalose synthesis-related enzymes. The overexpression of TetR/AcrR family transcriptional regulator and multidrug efflux transporter also benefited the survival of Amycolatopsis sp. FT-1 under TCPP stress. Luminescent bacteria test showed that biotoxicity of TCPP was remarkably decreased after biodegradation by Amycolatopsis sp. FT-1. To the best of our knowledge, this is the first study to report the biotransformation of TCPP by pure strain and to offer important insights into the proteomic mechanisms of TCPP microbial degradation.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yantian Xie
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanqin Lu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanwu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Haixia Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Chenhao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
9
|
An YL, Wei WL, Guo DA. Application of Analytical Technologies in the Discrimination and Authentication of Herbs from Fritillaria: A Review. Crit Rev Anal Chem 2022; 54:1775-1796. [PMID: 36227577 DOI: 10.1080/10408347.2022.2132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Medicinal plants of Fritillaria are widely distributed in numerous countries around the world and possess excellent antitussive and expectorant effects. In particular, Fritillariae Bulbus (FB) as a precious traditional medicine has thousands of years of medical history in China. Herbs of Fritillaria have a high market value and demand while limited by harsh growing circumstances and scarce wild resources. As a consequence, fraudulent behaviors are regularly engaged by the unscrupulous merchants in an attempt to reap greater profits. It is of an urgent need to evaluate the quality of Fritillaria herbs and their products using various analytical instruments and techniques. This review has scrutinized approximately 160 articles from 1995 to 2022 published on the investigation of Fritillaria herbs and related herbal products. The botanical classification of genus Fritillaria, types of counterfeits, technologies applied for differentiating Fritillaria species were comprehensively summarized and discussed in the current review. Molecular and chromatographic identification were the dominant technologies in the authentication of Fritillaria herbs. Additionally, we brought some potential and promising technologies and analytical strategies into attention, which are worthy attempting in the future researches. This review could conduce to excellent reference value for further investigations of the authenticity assessment of Fritillaria species.
Collapse
Affiliation(s)
- Ya-Ling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Jia B, Larbi A, Lv C, Liang J, Xiang D, Zhang B, Fang Y, Shen W, Wu G, Quan G. Identification and validation of ram sperm proteins associated with cryoinjuries caused by the cryopreservation process. Theriogenology 2022; 184:191-203. [DOI: 10.1016/j.theriogenology.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
|
11
|
Liao DJ, Cheng XP, Li N, Liang KL, Fan H, Zhang SY, Hu XQ, Fan P, Wu YS. A Comparative Study on the Incidence, Aggravation, and Remission of Lupus Nephritis Based on iTRAQ Technology. Comb Chem High Throughput Screen 2021; 23:649-657. [PMID: 32297573 DOI: 10.2174/1386207323666200416151836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Lupus nephritis (LN) is one of the major complications of systemic lupus erythematosus (SLE). The specific mechanisms of pathogenesis, aggravation, and remission processes in LN have not been clarified but is of great need in the clinic. Using isobaric tags for relative and absolute quantitation (iTRAQ) technology to screen the functional proteins of LN in mice. Especially under intervention factors of lipopolysaccharide (LPS) and dexamethasone. METHODS Mrl-lps mice were intervened with LPS, dexamethasone, and normal saline (NS) using intraperitoneal injection, and c57 mice intervened with NS as control. The anti-ANA antibody enzyme-linked immunosorbent assay (ELISA) was used to verify disease severity. Kidney tissue is collected and processed for iTRAQ to screen out functional proteins closely related to the onset and development of LN. Western blot method and rt-PCR (real-time Polymerase Chain Reaction) were used for verification. RESULTS We identified 136 proteins that marked quantitative information. Among them, Hp, Igkv8-27, Itgb2, Got2, and Pcx proteins showed significant abnormal manifestations. CONCLUSION Using iTRAQ methods, the functional proteins Hp, Igkv8-27, Itgb2, Got2, and Pcx were screened out for a close relationship with the pathogenesis and development of LN, which is worth further study.
Collapse
Affiliation(s)
- Dong-Jiang Liao
- Dermatology Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Xi-Ping Cheng
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Nan Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Kang-Li Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Hui Fan
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Sui-Ying Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Xiao-Qian Hu
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Ping Fan
- The First Affiliated Hospital of Guangzhou Medical University, Guangdong Province, China
| | - Yuan-Sheng Wu
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Jia B, Memon S, Liang J, Lv C, Hong Q, Wu G, Quan G. Trehalose modifies the protein profile of ram spermatozoa during cryopreservation. Theriogenology 2021; 171:21-29. [PMID: 34000687 DOI: 10.1016/j.theriogenology.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
As a magical oligosaccharide, trehalose has been revealed to enhance the post-thaw quality of stock semen. However, information regarding the cryoprotective mechanism of trehalose during cryopreservation has not yet been determined. This study was designed to observe the effects of trehalose on the proteome of ram frozen spermatozoa by applying the isobaric tag for relative and absolute quantification (iTRAQ) strategy combined with parallel reaction monitoring (PRM). A total of 1269 proteins were identified. Among them, there were 21 differentially expressed proteins (DEPs), with 9 up-regulated proteins and 11 down-regulated proteins in spermatozoa frozen with trehalose. These DEPs were primarily located in nucleus, cytoplasm, and extracellular region. The Gene Ontology (GO) enrichment analysis demonstrated the involvement of the DEPs in signal transduction, ion binding, oxidoreductase activity, response to stress, and catabolic processes. Based on the STRING analysis, tight functional correlations were observed between 6-phosphogluconate dehydrogenase, fructose-bisphosphate aldolase A isoform 1, 14-3-3 protein epsilon, tyrosine-protein kinase Fer, and beta-hexosaminidase subunit alpha precursor. Furthermore, 10 DEPs were verified using PRM, confirming the accuracy of the iTRAQ data acquired in this study. In conclusion, trehalose can modify the protein profile of ram spermatozoa during cryopreservation, which may be associated with its cryoprotective effects. Additionally, trehalose may function on frozen spermatozoa through antioxidation, involvement in glycolysis, and increment of spermatozoa tolerance to various stresses.
Collapse
Affiliation(s)
- Baoyu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming City, Yunnan province, China
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China.
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan province, China.
| |
Collapse
|
13
|
Ng CWW, Wang YC, Ni JJ, Wang ZJ. Quality and yield of Pseudostellaria heterophylla treated with GGBS as pH adjuster against the toxicity of Cd and Cu. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112188. [PMID: 33862439 DOI: 10.1016/j.ecoenv.2021.112188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The contamination of Cd and Cu in soil is a great threat to medicinal plant. Ground granulated blast furnace slag (GGBS) is a potential soil pH adjuster to reduce metal toxicity. However, how GGBS affects the quality and yield of herbal plants under the stress of Cd and Cu is not clear. This study aims to investigate the quality and yield of a medicinal plant (Pseudostellaria heterophylla) responding to GGBS treatment in Cd and Cu contaminated soil. GGBS with three mass percentages (0%, 3%, 5%) was added into contaminated lateritic soils for planting. Each condition had 21 replicated seedlings. The concentrations of Cd and Cu in plant, amounts of active ingredients (polysaccarides and saponins) in medicinal organ, and tuber properties were measured after harvest. The results showed that under 3% and 5% GGBS treatments, Cd and Cu accumulations in all plant organs (leaf, stem, root and tuber) were reduced by 69.4-86.0% and 10.3-30.1%, respectively. They were below the permissible limits (World Health Organization, WHO). Even though the concentrations of active ingredients in P. heterophylla tuber decreased by up to 35.8%, they still met Hong Kong Chinese Materia Medica standard. Besides, the biomass of root tuber increased by 9.8% and 46%, due to 3% and 5% GGBS treatments, respectively. The recommended 5% GGBS treatment in practice can balance the reduction of active ingredients and the increase of plant yield when minimizing Cd and Cu accumulation in tuber.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yu Chen Wang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jun Jun Ni
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Jian Wang
- Division of Science and Technology, Beijing Normal University Hong Kong Baptist University United International College, China
| |
Collapse
|
14
|
Huang G, Ren H, Wang A, Wan X, Wu Z, Zhong X. iTRAQ-based proteomic analysis reveals the molecule mechanism of reducing higher alcohols in Chinese rice wine by nitrogen compensation. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01611-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Higher alcohol is a by-product of the fermentation of wine, and its content is one of the most important parameters that affect and are used to appraise the final quality of Chinese rice wine. Ammonium compensation is an efficient and convenient method to reduce the content of higher alcohols, but the molecule mechanism is poorly understood. Therefore, an iTRAQ-based proteomic analysis was designed to reveal the proteomic changes of Saccharomyces cerevisiae to elucidate the molecular mechanism of ammonium compensation in reducing the content of higher alcohols.
Methods
The iTRAQ proteomic analysis method was used to analyze a blank group and an experimental group with an exogenous addition of 200 mg/L (NH4)2HPO4 during inoculation. The extracted intracellular proteins were processed by liquid chromatography-mass spectrometry and identified using bioinformatics tools. Real-time quantitative polymerase chain reaction was used to verify the gene expression of differentially expressed proteins.
Results
About 4062 proteins, including 123 upregulated and 88 downregulated proteins, were identified by iTRAQ-based proteomic analysis. GO and KEGG analysis uncovered that significant proteins were concentrated during carbohydrate metabolism, such as carbon metabolism, glyoxylate, and dicarboxylate metabolism, pyruvate metabolism, and the nitrogen metabolism, such as amino acid synthesis and catabolism pathway. In accordance with the trend of differential protein regulation in the central carbon metabolism pathway and the analysis of carbon metabolic flux, a possible regulatory model was proposed and verified, in which ammonium compensation facilitated glucose consumption, regulated metabolic flow direction into tricarboxylic acid, and further led to a decrease in higher alcohols. The results of RT-qPCR confirmed the authenticity of the proteomic analysis results at the level of gene.
Conclusion
Ammonium assimilation promoted by ammonium compensation regulated the intracellular carbon metabolism of S. cerevisiae and affected the distribution of metabolic flux. The carbon flow that should have gone to the synthesis pathway of higher alcohols was reversed to the TCA cycle, thereby decreasing the content of higher alcohols. These findings may contribute to an improved understanding of the molecular mechanism for the decrease in higher alcohol content through ammonium compensation.
Collapse
|
15
|
Zhang Z, Xia B, Li Y, Lin Y, Xie J, Wu P, Lin L, Liao D. Comparative proteomic analysis of Prunella vulgaris L. spica ripening. J Proteomics 2020; 232:104028. [PMID: 33129985 DOI: 10.1016/j.jprot.2020.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Prunella vulgaris L., better known as 'self-heal', has been extensively used in the traditional system of medicines. To reveal the regulatory mechanism of its development, TMT-based quantitative proteome analysis was performed in the Prunella vulgaris L. spica before and during ripening (Group A and Group B, respectively). This analysis resulted in the identification of 7655 proteins, of which 1910 showed differential abundance between the two groups. Pronounced changes in the proteomic profile included the following: 1) Stress-responsive proteins involved in protecting cells and promoting fruit ripening and seed development were highly abundant during ripening. 2) The degradation of chlorophyll, inhibition of chlorophyll biosynthesis and increased abundance of transketolase occurred simultaneously in the spica of Prunella vulgaris L., resulting in the spica changing color from green to brownish red. 3) The abundance of protein species related to phenylpropanoid biosynthesis mainly increased during ripening, while flavonoid and terpenoid backbone biosynthesis mostly occurred before ripening. SIGNIFICANCE: This study establishes a link between protein profiles and mature phenotypes, which will help to improve our understanding of the molecular mechanisms involved in the maturation of Prunella vulgaris L. at the proteome level and reveal the scientific connotation for the best time to harvest Prunella vulgaris L. This work provides a scientific basis for the production of high-quality medicinal Prunella vulgaris L., as well as a typical demonstration of molecular research used for the harvest period of traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: This work provided a comprehensive overview on the functional protein profile changes of Prunella vulgaris L. spica at different growing stages, as well as the scientific rationale of Prunella vulgaris L. harvested in summer after brownish red, thus laid an intriguing stepping stone for elucidating the molecular mechanisms of quality development.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection, Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
16
|
Comparative Proteomic Analysis of Dipsacus asperoides Roots from Different Habitats in China. Molecules 2020; 25:molecules25163605. [PMID: 32784367 PMCID: PMC7464434 DOI: 10.3390/molecules25163605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Dipsacus asperoides is a kind of Chinese herbal medicine with beneficial health properties. To date, the quality of D. asperoides from different habitats has shown significant differences. However, the molecular differences in D. asperoides from different habitats are still unknown. The aim of this study was to investigate the differences in protein levels of D. asperoides from different habitats. Isobaric tags for relative and absolute quantification (iTRAQ) and 2DLC/MS/MS were used to detect statistically significant changes in D. asperoides from different habitats. Through proteomic analysis, a total of 2149 proteins were identified, of which 42 important differentially expressed proteins were screened. Through in-depth analysis of differential proteins, the protein metabolism energy and carbohydrate metabolism of D. asperoides from Hubei Province were strong, but their antioxidant capacity was weak. We found that three proteins, UTP-glucose-1-phosphate uridylyltransferase, allene oxide cyclase, and isopentyl diphosphate isomerase 2, may be the key proteins involved in dipsacus saponin VI synthesis. Eight proteins were found in D. asperoides in response to environmental stress from different habitats. Quantitative real-time PCR analysis confirmed the accuracy and authenticity of the proteomic analysis. The results of this study may provide the basic information for exploring the cause of differences in secondary metabolites in different habitats of D. asperoides and the protein mechanism governing differences in quality.
Collapse
|
17
|
Tang C, Chen J, Zhang L, Zhang R, Zhang S, Ye S, Zhao Z, Yang D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int J Med Microbiol 2020; 310:151435. [PMID: 32654773 DOI: 10.1016/j.ijmm.2020.151435] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the important causes of food poisoning and infectious diseases worldwide, it can produce a large number of virulence factors, enhance the colonization ability of the host so that it can quickly colonize and spread on the surface of the objects. Essential oil (EO) is one of the natural products with antimicrobial properties, can be used as an important source of antibacterial agent discovery, and has a broad development prospect. However, the unclear mechanisms of antibacterial action have become an obstacle to its further development and use. Hence, the objective of the present study was to reveal the antibacterial mechanism of EO from Amomum villosum Lour (A villosum Lour) against MRSA using label-free quantitative proteomics, investigate the effect of EO on the bacterial proteome, enzymatic activities and leakage of bacterial intracellular biomacromolecule. Proteomic analysis of MRSA in the presence of EO found that a total of 144 differential expressed proteins (DEPs) between the control and treatment group, in which 42 proteins were distinctly up-regulated and 102 proteins were down-regulated. Besides, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, determination of cell membrane permeability and apoptosis, scanning electron microscopy (SEM) observations, bacterial surface hydrophobicity, and biofilm formation measurement were performed. Collectively, the above results indicated that the cell membrane damage by EO leads to the loss of membrane integrity and causes leakage of intracellular macromolecular substances, inhibition of protein, and biofilm synthesis. These findings manifested that EO exerts antibacterial effect by multiple avenues and expands our understanding of the antibacterial mechanism, it has potential application value in food preservative and pharmaceutical industries.
Collapse
Affiliation(s)
- Cailin Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jiali Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Zhang
- Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, China
| | - Rongfei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Sichen Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaoxia Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121708. [PMID: 31806441 DOI: 10.1016/j.jhazmat.2019.121708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The investigation of BDE-209 degradation by Microbacterium Y2 under different condition was conducted. Cell membrane permeability, cell surface hydrophobicity (CSH), membrane potential (MP) and reactive oxygen species (ROS) production were altered under BDE-209 stress. Eleven debrominated congeners were identified, suggesting that BDE-209 biodegradation by Microbacterium Y2 was dominantly a successive debromination process. Proteome analysis showed that the overexpression of haloacid dehalogenases, glutathione S-transferases (GSTs) and ATP-binding cassette (ABC) transporters might occupy important roles in BDE-209 biotransformation. Meanwhile, heat shock proteins (HSPs), ribonuclease E, oligoribonuclease (Orn) and ribosomal protein were activated to counter the BDE-209 toxicity. The up-regulated pyruvate dehydrogenase E1 component beta subunit and dihydrolipoamide dehydrogenase suggested that the pyruvate metabolism pathway was activated. Bioaugmentation of BDE-209 polluted water-sediments system with Microbacterium Y2 could efficiently improve BDE-209 removal. The detection of total 16S rRNA genes in treatment system suggested that Microbacterium (25.6 %), Luteimonas (14.3 %), Methylovorus (12.6 %), Hyphomicrobium (9.2 %) were the dominant genera and PICRUSt results further revealed that the diminution of BDE-209 was owed to cooperation between the introduced bacteria and aboriginal ones.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
19
|
Wang C, Chen L, Cai ZC, Chen C, Liu Z, Liu X, Zou L, Chen J, Tan M, Wei L, Mei Y. Comparative Proteomic Analysis Reveals the Molecular Mechanisms Underlying the Accumulation Difference of Bioactive Constituents in Glycyrrhiza uralensis Fisch under Salt Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1480-1493. [PMID: 31899641 DOI: 10.1021/acs.jafc.9b04887] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Licorice (Glycyrrhiza uralensis Fisch) possesses a substantial share of the global markets for its unique sweet flavor and diverse pharmacological compounds. Cultivated licorice is widely distributed in northwest regions of China, covered with land with a broad range of salinities. A preliminary study indicated that suitable salt stress significantly increased the content of bioactive constituents in licorice. However, the molecular mechanisms underlying the influence of salinity on the accumulation of these constituents remain unclear, which hinders quality breeding of cultivated licorice. In our study, flavonoid-related structural genes were obtained, and most of them, such as phenylalanine ammonia-lyases, cinnamate 4-hydroxylases, 4-coumarate: CoA ligases, chalcone synthases, chalcone-flavanone isomerase, and flavonol synthase, showed high levels after salt treatment. In the biosynthesis of glycyrrhizin, three key enzymes (bAS, CYP88D6, and CYP72A154) were identified as differentially expressed proteins and remarkably upregulated in the salt-stressed group. Combining these results with the contents of 14 bioactive constituents, we also found that the expression patterns of those structural proteins were logically consistent with changes in bioactive constituent profiles. Thus, we believe that suitable salt stress increased the accumulation of bioactive constituents in licorice by upregulating proteins involved in the related biosynthesis pathways. This work provided valuable proteomic information for unraveling the molecular mechanism of flavonoid and glycyrrhizin metabolism and offered fundamental resources for quality breeding in licorice.
Collapse
Affiliation(s)
- Chengcheng Wang
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lihong Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zhi Chen Cai
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Cuihua Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Zixiu Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Xunhong Liu
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing 210023 , China
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing 210023 , China
| | - Lisi Zou
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Jiali Chen
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Mengxia Tan
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Lifang Wei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| | - Yuqi Mei
- College of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , China
| |
Collapse
|
20
|
Dynamic Variations in Multiple Bioactive Constituents under Salt Stress Provide Insight into Quality Formation of Licorice. Molecules 2019; 24:molecules24203670. [PMID: 31614687 PMCID: PMC6832532 DOI: 10.3390/molecules24203670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC–MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions.
Collapse
|
21
|
Liu Z, Zou L, Chen C, Zhao H, Yan Y, Wang C, Liu X. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae. Sci Rep 2019; 9:9590. [PMID: 31270436 PMCID: PMC6610069 DOI: 10.1038/s41598-019-46043-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Spica Prunellae is an important Chinese herbal medicine. Because of its good curative effect on various diseases, this herb is consumed in large quantities in clinical applications. The metabolites of Spica Prunellae are known to change under salt stress; however, the difference in protein levels of Spica Prunellae between saline and normal conditions is unclear. In this study, we used proteomics techniques to identify differentially expressed proteins in Spica Prunellae under different saline conditions. (iTRAQ) MS/MS was used to detect statistically significant changes in protein between salt stress and normal conditions. Ultimately, we detected 1,937 proteins, 89 of which were detected in two different comparison. Based on GO, STRING and KEGG analyses, 35 significantly differentially expressed proteins were selected for further analysis. The results of functional and signal pathway analyses indicated that the cellular protein and carbohydrate metabolism of Spica Prunellae was weaker, calcium ion transport was higher, photosynthesis was higher, and protein production was faster under saline conditions than under normal conditions. This study provides useful information for studying the causes of differences in secondary metabolites in Spica Prunellae under salt stress and the protein mechanisms related to their quality.
Collapse
Affiliation(s)
- Zixiu Liu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.,Department of Pharmacy, No. 454 Hospital of PLA, Nanjing, China
| | - Lisi Zou
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Cuihua Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Hui Zhao
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Ying Yan
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Chengcheng Wang
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China.,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Xunhong Liu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, China. .,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China. .,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China.
| |
Collapse
|
22
|
Hu DJ, Shakerian F, Zhao J, Li SP. Chemistry, pharmacology and analysis of Pseudostellaria heterophylla: a mini-review. Chin Med 2019; 14:21. [PMID: 31139247 PMCID: PMC6533724 DOI: 10.1186/s13020-019-0243-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudostellaria heterophylla is one of the well-known traditional Chinese medicines and has been used in clinics for 100 years in China. The chemistry and pharmacology of P. heterophylla were reviewed to understand its active compounds. Then analysis of these compounds related to quality control of this herb was discussed. For the analysis of chemicals, three aspects have been discussed in this review. The first two aspects focused on the methodologies for analysis of cyclic peptides and carbohydrates in P. heterophylla, respectively. The last one dealt with the other methods used for identification of P. heterophylla. Some rich chemicals such as oligosaccharides in this plant were rarely evaluated. Many analyses were performed on this plant, however, few of them were accepted as quality control method.
Collapse
Affiliation(s)
- De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Farid Shakerian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,2College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
23
|
Hua Y, Wang C, Wang S, Liu Z, Liu X, Zou L, Gu W, Luo Y, Liu J. iTRAQ-Based Quantitative Proteomic Analysis of Pseudostellaria heterophylla from Geo-Authentic Habitat and Cultivated Bases. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666181116124050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Pseudostellaria heterophylla is an important tonic traditional Chinese medicine.
However, the molecular changes in the herb from geo-authentic habitat and cultivated bases remain
to be explored.
Objective:
The purpose of this research was to study differences in P. heterophylla from geo-authentic
habitat and cultivated bases.
Methods:
High-throughput technologies of transcriptomic and proteomic were used to identify proteins.
Isobaric Tags for Relative and Absolute Quantification (iTRAQ) MS/MS has been utilized to
evaluate changes in P. heterophylla from geo-authentic habitat and cultivated bases.
Results:
In this study, a total of 3775 proteins were detected, and 140 differentially expressed proteins
were found in P. heterophylla from geo-authentic habitat and cultivated bases. 44 significantly differential
expressed proteins were identified based on functional analysis classified into nine categories.
Five differentially expressed proteins were confirmed at the gene expression level by Quantitative realtime
PCR. Catabolic metabolism, carbohydrate metabolism, and response to stress of oxidoreductases
and transferases in P. heterophylla from geo-authentic habitat were stronger than in those from cultivated
bases, but protein folding and response to stress of heat shock proteins, isomerases, rubisco large
subunit-binding proteins, chaperone proteins, and luminal-binding proteins in herbs from cultivated
bases were more active. ADG1 and TKTA could be the critical proteins to regulate sucrose; MFP2 and
CYS may be the crucial proteins that control the metabolism of fatty acids and amino acids.
Conclusion:
These results will provide the basic information for exploring the differences in secondary
metabolites in P. heterophylla from geo-authentic habitat and cultivated bases and the protein mechanism
of its quality formation.
Collapse
Affiliation(s)
- Yujiao Hua
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Shengnan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Yiyuan Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Juanxiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| |
Collapse
|
24
|
Yang YY, Yang FQ, Gao JL. Differential proteomics for studying action mechanisms of traditional Chinese medicines. Chin Med 2019; 14:1. [PMID: 30636970 PMCID: PMC6325846 DOI: 10.1186/s13020-018-0223-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Furthermore, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms were also included. This review will provide information for the further applications of differential proteomics in TCMs studies.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang People’s Republic of China
| |
Collapse
|
25
|
Liu T, Zhou J, Cui H, Li P, Li H, Wang Y, Tang T. Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism. Brain Behav 2018; 8:e01130. [PMID: 30307711 PMCID: PMC6236229 DOI: 10.1002/brb3.1130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Intracerebral hemorrhage (ICH) is a lethal cerebrovascular disorder with a high mortality and morbidity. The pathophysiological mechanisms underlying ICH-induced secondary injury remain unclear. METHODS To examine one of the gaps in the knowledge about ICH pathological mechanisms, isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used in collagenase-induced ICH rats on the 2nd day. RESULTS A total of 6,456 proteins were identified with a 1% false discovery rate (FDR). Of these proteins, 126 and 75 differentially expressed proteins (DEPs) were substantially increased and decreased, respectively. Based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING analyses, the protein changes in cerebral hemorrhage were comprehensively evaluated, and the energy metabolism in ICH was anchored. The core position of the nitrogen metabolism pathway in brain metabolism in ICH was found for the first time. Carbonic anhydrase 1 (Ca1), carbonic anhydrase 2 (Ca2), and glutamine synthetase (Glul) participated in this pathway. We constructed the protein-protein interaction (PPI) networks for the energy metabolism of ICH, including the Atp6v1a-Atp6v0c-Atp6v0d1-Ppa2-Atp6ap2 network. CONCLUSIONS It seems that dysregulation of energy metabolism, especially nitrogen metabolism, may be a major cause in secondary ICH injury. This information provides novel insights into secondary events following ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
- Department of GerontologyTraditional Chinese Medicine Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Jing Zhou
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Hanjin Cui
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Pengfei Li
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Haigang Li
- Department of PharmacyChangsha Medical UniversityChangshaChina
| | - Yang Wang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - Tao Tang
- Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
26
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
27
|
Ye W, Zhang W, Liu T, Zhu M, Li S, Li H, Huang Z, Gao X. iTRAQ-Based Quantitative Proteomic Analysis of Chemically Induced Aquilaria sinensis Provides Insights into Agarwood Formation Mechanism. Proteomics 2018; 18:e1800023. [PMID: 30035352 DOI: 10.1002/pmic.201800023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Agarwood is a precious traditional Chinese medicine with a variety of pharmacological effects. Although efforts have been made in elucidating the mechanism of agarwood formation, little progress is obtained till now. Therefore, the molecular mechanism of agarwood formation needs to be further explored using different biological approaches. In this study, the quantitative proteomic analysis using iTRAQ technology combined with transcriptomic and metabolomic analyses on chemically induced Aquilaria sinensis is performed to elucidate the agarwood formation mechanism by formic acid stimulus. Data are available via ProteomeXchange with identifier PXD007586; 1884 proteins are detected, 504 differential proteins that show at least twofold differences in their expression levels are selected based on GO annotations, KEGG, STRING analysis, and quantitative RT-PCR analysis. The results indicate that sesquiterpene synthase, germin-like protein, pathogenesis-related protein, 6-phosphogluconate dehydrogenase, lipoyl synthase, and superoxide dismutase play important roles in the agarwood formation, suggesting that the proteins related to the plant defensive response, the removal of peroxide, the disease-resistance, the biosythesis of glycan, fatty acids, and sesquiterpene are crucial for agarwood formation.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Muzhi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Zilei Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Xiaoxia Gao
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
28
|
Minghui Z, Kunhua H, Yunwen B, Hongmei L, Jing L, Shaowen W, Longqiaozi S, Chaohui D. Analysis of Differentially Expressed Proteins Involved in Autoimmune Cirrhosis and Normal Serum by iTRAQ Proteomics. Proteomics Clin Appl 2018; 13:e1700153. [PMID: 29999587 PMCID: PMC6585725 DOI: 10.1002/prca.201700153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/20/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE In order to study the candidate biomarkers in autoimmune cirrhosis (AIC). EXPERIMENTAL DESIGN Isobaric tags are first implemented for relative and absolute quantitation technology on proteins prepared from serum obtained from AIC and normal controls. Proteins found to be differentially expressed are identified with liquid chromatography electrospray ionization tandem mass spectrometry by using a Q Exactive classic ion trap mass spectrometer. RESULTS 108 proteins (32 upregulated and 76 downregulated proteins) are identified from AIC samples, compared with the normal controls. Gene Ontology enrichment analysis, KEGG pathway analysis, and protein-protein interaction map by STRING show that they associate with multiple functional groups, including ion binding activity, peptidase activity, and enzyme regulator activity. Finally, the von Willebrand factor, insulin-like growth factor-binding protein complex acid labile subunit, transthyretin, adiponectin proteins are identified with western blot as candidate biomarkers for AIC. CONCLUSIONS AND CLINICAL RELEVANCE These findings offer a comprehensive profile of the AIC proteome about candidate biomarkers and provide a useful basis for further analysis of the pathogenic mechanism of AIC.
Collapse
Affiliation(s)
- Zheng Minghui
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Hu Kunhua
- Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bao Yunwen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Lu Hongmei
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China
| | - Li Jing
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wu Shaowen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Sun Longqiaozi
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Duan Chaohui
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
29
|
Lin X, Liu T, Li P, He Z, Zhong Y, Cui H, Luo J, Wang Y, Tang T. iTRAQ-Based Proteomics Analysis Reveals the Effect of Rhubarb in Rats with Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6920213. [PMID: 30112417 PMCID: PMC6077657 DOI: 10.1155/2018/6920213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022]
Abstract
Background. Rhubarb, a traditional Chinese medicine, promotes viscera and remove blood stasis. Rhubarb is skilled in smoothening meridians, improving blood circulation which exhibits better efficacy on cerebral ischemic stroke. In this study, we aimed to analyze the underlying mechanisms of rhubarb which treated rats of middle cerebral artery occlusion (MCAO) model according to an iTRAQ-based proteomics and bioinformatics analysis. 30 rats were randomly allocated into three groups including sham group (SG), model group (MG), and rhubarb group (RG). Rhubarb group was given a gavage of rhubarb decoction at dose of 3 g/kg and the remaining groups were prepared with normal saline by gavage. Rats from MG and RG were induced into MCAO model. The effects of rhubarb were estimated by Modified Neurological Severity Score (mNSS) and cerebral infarct volume. The brain tissues were measured via the quantitative proteomic approach of iTRAQ coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, the bioinformatics analysis of overlapping differentially expression proteins (DEPs) was conducted by DAVID, KEGG, and Cytoscape. Specific selective DEPs were validated by Western blotting. Rats treated with rhubarb after MCAO showed a significant reduction on mNSS and cerebral infarct volume compared with MG. In MG versus SG and RG versus MG, we identified a total of 4578 proteins, of which 287 were DEPs. There were 76 overlapping DEPs between MG versus SG and RG versus MG. Through bioinformatics analysis, 14 associated pathways were searched including cGMP-PKG signaling pathway, tuberculosis, synaptic vesicle cycle, amyotrophic lateral sclerosis, long-term potentiation, and so on. 76 overlapping DEPs mainly involved synaptic vesicle cycling biological processes based on GO annotation. Further, the selective overlapping DEPs were verified at the protein level by using Western blotting. Our present study reveals that rhubarb highlights promising neuroprotective effect. Rhubarb exerts novel therapeutic action via modulating multiple proteins, targets, and pathways.
Collapse
Affiliation(s)
- Xiangping Lin
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Pengfei Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zehui He
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yuanyuan Zhong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hanjin Cui
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Jiekun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
30
|
Liang S, Gao D, Liu H, Wang C, Wen J. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions. J Ind Microbiol Biotechnol 2018; 45:681-696. [PMID: 29808292 DOI: 10.1007/s10295-018-2048-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/19/2018] [Indexed: 11/29/2022]
Abstract
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, D-lactate has attracted much attention. To improve D-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest D-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of D-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC-MS and LC-MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with D-lactate production. Moreover, a quantitative iTRAQ-LC-MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on D-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved D-lactate production. These findings provide the first omics view of cell growth and D-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of D-lactate.
Collapse
Affiliation(s)
- Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dacheng Gao
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian, 116000, People's Republic of China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
31
|
Hashiguchi A, Tian J, Komatsu S. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action. Proteomes 2017; 5:proteomes5040035. [PMID: 29215602 PMCID: PMC5748570 DOI: 10.3390/proteomes5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal medicine is a clinical practice of utilizing medicinal plant derivatives for therapeutic purposes. It has an enduring history worldwide and plays a significant role in the fight against various diseases. Herbal drug combinations often exhibit synergistic therapeutic action compared with single-constituent dosage, and can also enhance the cytotoxicity induced by chemotherapeutic drugs. To explore the mechanism underlying the pharmacological action of herbs, proteomic approaches have been applied to the physiology of medicinal plants and its effects on animals. This review article focuses on the existing proteomics-based medicinal plant research and discusses the following topics: (i) plant metabolic pathways that synthesize an array of bioactive compounds; (ii) pharmacological action of plants tested using in vivo and in vitro studies; and (iii) the application of proteomic approaches to indigenous plants with scarce sequence information. The accumulation of proteomic information in a biological or medicinal context may help in formulating the effective use of medicinal plants.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
32
|
iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Theriogenology 2017; 101:99-108. [DOI: 10.1016/j.theriogenology.2017.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/24/2022]
|
33
|
Suo T, Wang H, Li Z. Application of proteomics in research on traditional Chinese medicine. Expert Rev Proteomics 2016; 13:873-81. [PMID: 27488052 DOI: 10.1080/14789450.2016.1220837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|