1
|
Koizume S, Kanayama T, Kimura Y, Hirano H, Takahashi T, Ota Y, Miyazaki K, Yoshihara M, Nakamura Y, Yokose T, Kato H, Takenaka K, Sato S, Tadokoro H, Miyagi E, Miyagi Y. Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci 2023. [PMID: 36854451 DOI: 10.1111/cas.15774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69-FN axis can induce epithelial-mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomohiko Kanayama
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yayoi Kimura
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Takahashi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Katsuya Takenaka
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hiroko Tadokoro
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| |
Collapse
|
2
|
Su P, Mao F, Zhang J, Zhang H, Wang M, Xu Y, Tian Z. Circular RNA UBR1 promotes the proliferation, migration, and invasion but represses apoptosis of lung cancer cells via modulating microRNA-545-5p/SSFA2 axis. Bioengineered 2021; 12:12135-12147. [PMID: 34787049 PMCID: PMC8809928 DOI: 10.1080/21655979.2021.2004977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lung cancer (LC) is a malignant tumor with the highest incidence in the world, and its specific pathogenesis is still unclear. Circular RNAs (circRNAs) are a group of non-coding RNAs that play a key role in the development and progression of various cancers. The expression pattern and function of circRNAs in LC are still not completely distinct. In this study, it was aimed to study the expression and potential mechanism of circ-UBR1 in LC cells. Then it was found that circ-UBR1 was up-regulated in LC cells, and had microRNA (miR)-545-5p binding sites. Meanwhile, it was confirmed by dual-luciferase reporter assay that circ-UBR1 directly bound to miR-545-5p and then repressed its expression. MiR-545-5p was down-regulated in LC cells and refrained its expression by binding to the downstream target gene SSFA2. Knockdown circ-UBR1 or enhancive miR-545-5p repressed A549 cell proliferation, migration, and invasion, but accelerated apoptosis. After transfection with circ-UBR1 low expression vector, upregulation of SSFA2 apparently reversed the depression of reduced circ-UBR1 on cell proliferation, migration, and invasion, and the promotion of cell apoptosis. Further tumor xenograft experiments in nude mice also confirmed that knockdown of circ-UBR1 could increase the expression of miR-545-5p, but decrease the expression of SSFA2, thus alleviating the progression of LC in vivo. Therefore, these results fully indicate that circ-UBR1 promotes LC cell proliferation, migration, and invasion, but represses apoptosis via the circ-UBR1 axis, which may be a closely related marker and therapeutic target of LC.
Collapse
Affiliation(s)
- Peng Su
- Department of Thoracic Fifth, Fourth Hospital of Hebei Medical University, ShiJiaZhuang City, HeBei Province, China
| | - Feng Mao
- Department of Oncology, Shanghai Chest Hospital,Shanghai Jiao Tong University, ShangHai City, 200030, China
| | - Jian Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University (East), ShiJiaZhuang City, HeBei Province, China
| | - Hui Zhang
- Department of Oncology, Shanghai Chest Hospital,Shanghai Jiao Tong University, ShangHai City, 200030, China
| | - MingBo Wang
- Department of Thoracic Fifth, Fourth Hospital of Hebei Medical University, ShiJiaZhuang City, HeBei Province, China
| | - YanZhao Xu
- Department of Thoracic Fifth, Fourth Hospital of Hebei Medical University, ShiJiaZhuang City, HeBei Province, China
| | - ZiQiang Tian
- Department of Thoracic Fifth, Fourth Hospital of Hebei Medical University, ShiJiaZhuang City, HeBei Province, China
| |
Collapse
|
3
|
Wang W, Yi J, Dong D, Mao W, Wang X, Yan Z. miRNA-877-5p inhibits malignant progression of prostate cancer by directly targeting SSFA2. Eur J Histochem 2021; 65. [PMID: 34538046 PMCID: PMC8477230 DOI: 10.4081/ejh.2021.3243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we aimed to investigate the role of miR-877-5p in the malignant phenotypes of prostate cancer (PCa) cells and its underlying mechanism. RT-qPCR analysis was performed to examine the expression of miR- 877-5p and sperm-specific antigen 2 (SSFA2) in PCa tissues and cells. Cell counting kit-8 (CCK-8) assay, 5- ethynyl-20-deoxyuridine (EdU) assay, flow cytometry, wound-healing assay, and Transwell invasion assay were performed to determine the functional roles of miR-877-5p in PCa cells. The association of miR-877-5p with SSFA2 was determined by luciferase reporter and RNA pull-down assays. In this study, we found that the expression level of miR-877-5p was decreased in PCa tissues and cells. Functionally, overexpression of miR- 877-5p exerted tumor suppressor properties in PCa cells. Mechanistically, SSFA2 was identified as a target gene of miR-877-5p, while overexpression of SSFA2 could abrogate the anti-tumor effects of miR-877-5p in PCa cells. These findings demonstrated that miR-877-5p/SSFA2 axis functioned as a potential target for PCa treatment.
Collapse
Affiliation(s)
- Wanchun Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang .
| | - Jun Yi
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang .
| | - Degang Dong
- School of life sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang.
| | - Wenli Mao
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang .
| | - Xuanyu Wang
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang .
| | - Zhangren Yan
- Department of TCM Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang .
| |
Collapse
|
4
|
Zhao X, Huang Q, Koller M, Linssen MD, Hooghiemstra WTR, de Jongh SJ, van Vugt MATM, Fehrmann RSN, Li E, Nagengast WB. Identification and Validation of Esophageal Squamous Cell Carcinoma Targets for Fluorescence Molecular Endoscopy. Int J Mol Sci 2021; 22:9270. [PMID: 34502178 PMCID: PMC8431213 DOI: 10.3390/ijms22179270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Qingfeng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Matthijs D. Linssen
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Steven J. de Jongh
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (X.Z.); (M.A.T.M.v.V.); (R.S.N.F.)
| | - Enmin Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Q.H.); (E.L.)
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.D.L.); (W.T.R.H.); (S.J.d.J.)
| |
Collapse
|
5
|
Kim SI, Jung M, Dan K, Lee S, Lee C, Kim HS, Chung HH, Kim JW, Park NH, Song YS, Han D, Lee M. Proteomic Discovery of Biomarkers to Predict Prognosis of High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2020; 12:790. [PMID: 32224886 PMCID: PMC7226362 DOI: 10.3390/cancers12040790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022] Open
Abstract
Initial identification of biomarkers predicting the exact prognosis of high-grade serous ovarian carcinoma (HGSOC) is important in precision cancer medicine. This study aimed to investigate prognostic biomarkers of HGSOC through proteomic analysis. We conducted label-free liquid chromatography-mass spectrometry using chemotherapy-naïve, fresh-frozen primary HGSOC specimens, and compared the results between a favorable prognosis group (progression-free survival (PFS) ≥ 18 months, n = 6) and a poor prognosis group (PFS < 18 months, n = 6). Among 658 differentially expressed proteins, 288 proteins were upregulated in the favorable prognosis group and 370 proteins were upregulated in the poor prognosis group. Using hierarchical clustering, we selected α1-antitrypsin (AAT), nuclear factor-κB (NFKB), phosphomevalonate kinase (PMVK), vascular adhesion protein 1 (VAP1), fatty acid-binding protein 4 (FABP4), platelet factor 4 (PF4), apolipoprotein A1 (APOA1), and α1-acid glycoprotein (AGP) for further validation via immunohistochemical (IHC) staining in an independent set of chemotherapy-naïve primary HGSOC samples (n = 107). Survival analyses revealed that high expression of AAT, NFKB, and PMVK were independent biomarkers for favorable PFS. Conversely, high expression of VAP1, FABP4, and PF4 were identified as independent biomarkers for poor PFS. Furthermore, we constructed models predicting the 18-month PFS by combining clinical variables and IHC results. Through leave-one-out cross-validation, the optimal model was based on initial serum CA-125, germline BRCA1/2 mutations, residual tumors after surgery, International Federation of Gynecology and Obstetrics (FIGO) stage, and expression levels of the six proteins. The present results elucidate the proteomic landscape of HGSOC and six protein biomarkers to predict the prognosis of HGSOC.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; (M.J.); (C.L.)
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Noh Hyun Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea;
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea; (S.I.K.); (H.S.K.); (H.H.C.); (J.-W.K.); (N.H.P.); (Y.-S.S.)
| |
Collapse
|
6
|
Zhu A, Li X, Wu H, Miao Z, Yuan F, Zhang F, Wang B, Zhou Y. Molecular mechanism of SSFA2 deletion inhibiting cell proliferation and promoting cell apoptosis in glioma. Pathol Res Pract 2018; 215:600-606. [PMID: 30712887 DOI: 10.1016/j.prp.2018.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/09/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
Gliomas are the most common primary brain malignant tumors in humans. Glioblastoma multiforme(GBM) is the most malignant intracranial tumor with a relatively poor prognosis. There promote us to find effective anti-cancer therapies to reduce cancer mortality. By using bioinformatic analysis, we found SSFA2 as a gene with elevated expression in the glioma tissues. We detected the expression of SSFA2 in glioma tissues and in the glioma cell lines, as well as in normal brain tissues. SSFA2 expression was higher in glioma tissues, especially in glioblastoma multiforme than normal brain tissues. Subsequently, we found that down-regulate SSFA2 in glioma cell lines can regulate the cell cycle to reduce the proliferation ability and induce the early apoptosis rate in shSSFA2 cells relative to control cells. Moreover, we found that down-regulate SSFA2 in glioma cell line U87(shSSFA2-U87) inhibited the growth effectiveness compared to the control cell line U87. These result reveals us that SSFA2 may act as oncogene to promote the progression of glioma. For further research specific mechanisms of SSFA2 in gliomas, we used the gene chip to detect the downstream gene in U87. We found that 30 genes also may be as target gene of SSFA2, and we testify the protein expression by western-blot. The result reveal that IL1A, IL1B and CDK6 as target gene of SSFA2 to regulate the progression of glioma. These finding suggest that SSFA2 could be a new therapeutic target for gliomas.
Collapse
Affiliation(s)
- Aihua Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China; Department of Neurosurgery of Wuxi Third People's Hospital Research, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Zongning Miao
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Fenglai Yuan
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Feng Zhang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Bei Wang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
7
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
9
|
Casado P, Hijazi M, Britton D, Cutillas PR. Impact of phosphoproteomics in the translation of kinase-targeted therapies. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Pedro Casado
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Maruan Hijazi
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - David Britton
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| | - Pedro R. Cutillas
- Cell Signalling and Proteomics Group; Centre for Haemato-Oncology; Barts Cancer Institute; Queen Mary University of London; UK
| |
Collapse
|