1
|
Zonooz ER, Ghezelayagh Z, Moradmand A, Aghayan HR, Shekari F, Tahamtani Y. Potential role of Sigma-1 receptor inhibition and ER stress-related pathways in upregulating definitive endoderm markers in human embryonic stem cells. Exp Cell Res 2025; 448:114557. [PMID: 40221006 DOI: 10.1016/j.yexcr.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in stem cell proliferation, differentiation, and apoptosis. Sigma-1 receptor (S1R) is a unique ER chaperon protein that regulates ER stress and UPR. Here, we examine the effects of S1R inhibition on pluripotency and differentiation of human embryonic stem cells (hESCs). hESCs were treated with different doses of an S1R inhibitor (BD 1047), and we investigated the expressions of different pluripotency and lineage-specific genes. The BD-treated hESCs showed increased SRY-box transcription factor 17 (SOX17) expression [definitive endoderm-specific protein], and reductions in NANOG expression and in the number of alkaline phosphatase (ALP)-positive colonies. In silico gene expression analysis of three datasets that contained the hESCs-derived DE samples (GSE98324, GSE63592, GSE52658) was performed to investigate the ER stress-related gene expression patterns during DE differentiation. In silico analysis revealed that UPR-related genes upregulated during DE differentiation and CCL2 was the only gene present in all three DE datasets. qRT-PCR and immunostaining showed that CCL2, eIF2A, ATF4, XBP1, GRP78, DDIT3, DNAJB9, and PDIA5 which are UPR related marker genes were all upregulated in both the BD-treated hESCs and female and male hESC-derived DE cells. The results of this study suggest possible roles for S1R, ER stress-related genes, and the CCL2 pathway during differentiation of hESCs into DE. These potential new targets may improve the efficiency of protocols used to differentiate endodermal lineages.
Collapse
Affiliation(s)
- Elmira Rezaei Zonooz
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Wacholder A, Deutsch EW, Kok LW, van Dinter JT, Lee J, Wright JC, Leblanc S, Jayatissa AH, Jiang K, Arefiev I, Cao K, Bourassa F, Trifiro FA, Bassani-Sternberg M, Baranov PV, Bogaert A, Chothani S, Fierro-Monti I, Fijalkowska D, Gevaert K, Hubner N, Mudge JM, Ruiz-Orera J, Schulz J, Vizcaino JA, Prensner JR, Brunet MA, Martinez TF, Slavoff SA, Roucou X, Choudhary JS, van Heesch S, Moritz RL, Carvunis AR. Detection of human unannotated microproteins by mass spectrometry-based proteomics: a community assessment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639069. [PMID: 40027765 PMCID: PMC11870587 DOI: 10.1101/2025.02.19.639069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Thousands of short open reading frames (sORFs) are translated outside of annotated coding sequences. Recent studies have pioneered searching for sORF-encoded microproteins in mass spectrometry (MS)-based proteomics and peptidomics datasets. Here, we assessed literature-reported MS-based identifications of unannotated human proteins. We find that studies vary by three orders of magnitude in the number of unannotated proteins they report. Of nearly 10,000 reported sORF-encoded peptides, 96% were unique to a single study, and 12% mapped to annotated proteins or proteoforms. Manual curation of a benchmark dataset of 406 manually evaluated spectra from 204 sORF-encoded proteins revealed large variation in peptide-spectrum match (PSM) quality between studies, with immunopeptidomics studies generally reporting higher quality PSMs than conventional enzymatic digests of whole cell lysates. We estimate that 65% of predicted sORF-encoded protein detections in immunopeptidomics studies were supported by high-quality PSMs versus 7.8% in non-immunopeptidomics datasets. Our work stresses the need for standardized protocols and analysis workflows to guide future advancements in microprotein detection by MS towards uncovering how many human microproteins exist.
Collapse
|
3
|
Wang T, Liang Y, Wang G, Ma S, Zhang L, Lu H, Zhang Y. Ultrafast and Chemoselective Biotinylation of Living Cell Surfaces for Time-Resolved Surfaceome Analysis. Anal Chem 2024; 96:14448-14455. [PMID: 39192718 DOI: 10.1021/acs.analchem.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Cell surface proteins participate in many important biological processes, such as cell-to-cell interaction, signal transduction, cell adhesion, and protein transportation. In-depth study of the cell surface protein group is of great significance. Nevertheless, detection and analysis of the surfaceome remain a significant challenge due to their low abundance and hydrophobicity. Herein, we reported an ultrafast and chemoselective labeling method using our newly developed trifunctional probe, the OPA-S-S-alkyne, which labeled cell surface lysine residues, and then established a novel cell surfaceome profiling approach. According to our experimental results, the OPA-S-S-alkyne probe can react extremely fast with living cells, labeling cells in only 1 min, while traditional NHS (labeling cell surface lysine with N-hydroxysuccinimide ester probe) and CSC (labeling cell surface glycan with hydrazide biotin probe) methods normally take longer time of more than 30 min and 1 h, respectively. Taking advantage of this ultrafast property of the method, we highlight the utility of this method by exploring the temporal dynamic changes of surfaceome upon EGF stimulation in living Hela cells and reported "early" and "late" EGF-regulated cell surface proteins, which are difficult to be distinguished by the current cell surface profiling approaches.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuying Liang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoli Wang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Shiyun Ma
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Ying Zhang
- Department of Chemistry and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
5
|
Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, Zhihao NT, Harmston N, D'Agostino G, Whiffin N, Mao W, Ouyang JF, Lim WW, Lim S, Lee CQE, Grubman A, Chen J, Kovalik JP, Tryggvason K, Polo JM, Ho L, Cook SA, Rackham OJL, Schafer S. A high-resolution map of human RNA translation. Mol Cell 2022; 82:2885-2899.e8. [PMID: 35841888 DOI: 10.1016/j.molcel.2022.06.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.
Collapse
Affiliation(s)
- Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Eleonora Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anissa A Widjaja
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Sivakumar Viswanathan
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Nevin Tham Zhihao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Giuseppe D'Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Wang Mao
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Wei Wen Lim
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Shiqi Lim
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Cheryl Q E Lee
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - J P Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Karl Tryggvason
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lena Ho
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore; London Institute of Medical Sciences, London W12 ONN, UK
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
| |
Collapse
|
6
|
Zhang B, Guo M, Wang H, Wang Z, Zhang L, Zhang Y, Cao C, Xiao H. Metal Organic Framework Nanomaterial-Based Extraction and Proteome Analysis of Membrane and Membrane-Associated Proteins. Anal Chem 2021; 93:15922-15930. [PMID: 34817162 DOI: 10.1021/acs.analchem.1c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins (MPs) play a key role in various biological processes, while difficulties still exist in the extraction because of their inherent low abundance and poor solubility caused by high hydrophobicity. Metal organic framework (MOF) materials with good hydrophobic properties have the ability to absorb MPs, especially zeolitic imidazolate framework (ZIF) materials. Here, two MOF materials (ZIF-8 and ZIF-67) were compared for MP extraction, and our results revealed that higher yield was obtained with ZIF-67. After method development, the optimal enrichment effect was obtained when the mass ratio of proteins and ZIF-67 reached 1:20 with 100 mM NaCl in 20% ethanol at 4 °C and pH 9.0. When compared with a commercial kit, the extraction yield increased by 88.11% and the average number of identified MPs elevated by 29.17% with the developed ZIF method. Normal lung cell MRC5 was employed to verify the effectiveness of the ZIF method. Results showed 45.13% increase in yield and 22.88% increase in average number of identified MPs by the ZIF method. Our method was further applied to the enrichment of MPs for high-metastatic (95D) and low-metastatic (95C) human lung cancer cells. A total of 1732 (95D) and 1711 (95C) MPs were identified, among which 710 MPs were dysregulated significantly; 441 upregulated MPs in 95D cells were found to be closely related to the growth, proliferation, and migration of lung cancer cells. Our results collectively demonstrated that ZIF-67 was an ideal material for MP extraction, which might be helpful for analysis of cancer proteomics and discovery of cancer migration associated MPs.
Collapse
Affiliation(s)
- Baohui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Meyfour A, Pahlavan S, Mirzaei M, Krijgsveld J, Baharvand H, Salekdeh GH. The quest of cell surface markers for stem cell therapy. Cell Mol Life Sci 2021; 78:469-495. [PMID: 32710154 PMCID: PMC11073434 DOI: 10.1007/s00018-020-03602-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem St, P.O. Box: 16635-148, 1665659911, Tehran, Iran.
| |
Collapse
|
8
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
9
|
Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 2019; 133:103542. [DOI: 10.1016/j.micpath.2019.103542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
10
|
Meyfour A, Hosseini M, Sobhanian H, Pahlavan S. Iran's Contribution to Human Proteomic Research. CELL JOURNAL 2019; 21:229-235. [PMID: 31210427 PMCID: PMC6582420 DOI: 10.22074/cellj.2019.6303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/17/2018] [Indexed: 11/04/2022]
Abstract
Proteomics is a powerful approach to study the whole set of proteins expressed in an organism, organ, tissue or cell resulting in valuable information on physiological or pathological state of a biological system. High throughput proteomic data facilitated the understanding of various biological systems with respect to normal and pathological conditions particularly in the instances of human clinical manifestations. The important role of proteins as the functional gene products encouraged scientists to apply this technology to gain a better understanding of extremely complex biological systems. In last two decades, several proteomics teams have been gradually formed in Iran. In this review, we highlight the most important findings of proteomic research groups in Iran at various areas of stem cells, Y chromosome, infertility, infectious disease and biomarker discovery.
Collapse
Affiliation(s)
- Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahya Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| |
Collapse
|
11
|
Proteomics turns functional. J Proteomics 2019; 198:36-44. [DOI: 10.1016/j.jprot.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
|
12
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
- f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
- h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
- i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
13
|
Weldemariam MM, Han CL, Shekari F, Kitata RB, Chuang CY, Hsu WT, Kuo HC, Choong WK, Sung TY, He FC, Chung MCM, Salekdeh GH, Chen YJ. Subcellular Proteome Landscape of Human Embryonic Stem Cells Revealed Missing Membrane Proteins. J Proteome Res 2018; 17:4138-4151. [DOI: 10.1021/acs.jproteome.8b00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mehari Muuz Weldemariam
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 112, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taiepei 115, Taiwan
| | | | | | | | | | - Fu-Chu He
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, 102206 China
| | - Maxey Ching Ming Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, 14 Science Drive 4, singapore, 117543 Singpore
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 112, Taiwan
| |
Collapse
|
14
|
Shekari F, Nezari H, Chen YJ, Baharvand H, Hosseini Salekdeh G. Data for whole and mitochondrial proteome of human embryonic stem cells. Data Brief 2017; 13:371-376. [PMID: 28664172 PMCID: PMC5480819 DOI: 10.1016/j.dib.2017.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 12/02/2022] Open
Abstract
The data presented here pertain to the research article entitled "Proteome Analysis of Human Embryonic Stem Cell Organelles" (Shekariet al., 2017 [1]). In the present article we endeavour to locate new proteins and pathways in human embryonic stem cells (hESCs) by mass spectrometry and bioinformatics analysis. We have analyzed total and mitochondrial proteins extracted from three biological replicates of the hESC H9 cell line according to mass spectrometry proteomics and bioinformatics investigations.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Hossein Nezari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| |
Collapse
|