1
|
Gao L, Li P, Yang R, Bi W, Meng F, Xia L. Long non-coding RNAs plasmacytoma variant translocation 1 regulates bone marrow mesenchymal stem cell transplantation to promote the repair of spinal cord injury. J Neuropathol Exp Neurol 2025:nlaf052. [PMID: 40418262 DOI: 10.1093/jnen/nlaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025] Open
Abstract
This study investigated the therapeutic potential of long non-coding RNAs plasmacytoma variant translocation 1 (lncRNA PVT1) in regulating the function of bone marrow mesenchymal stem cells (BMSCs) following experimental spinal cord injury (SCI). Rat BMSCs were isolated and characterized. Loss-of and gain-of-function experiments were performed to assess the effects of lncRNA PVT1 on BMSCs and Schwann cells (SCs). Fusion PCR mutation, dual-luciferase reporter, and RNA immunoprecipitation assays were employed to explore the binding region between lncRNA PVT1 and polypyrimidine tract binding protein 1 (PTBP1). LncRNA PVT1 increased the proliferation, migration, and apoptosis of BMSCs; lncRNA PVT1 knockdown had the opposite effects. LncRNA PVT1 inhibited PTBP1 expression. The promoting effect of lncRNA PVT1 on the proliferation and migration of BMSCs was suppressed by overexpression of PTBP1. LncRNA PVT1 also induced SC-like differentiation of BMSCs. LncRNA PVT1-modified BMSCs promoted the proliferation and migration of SCs and upregulated levels of neurotrophic factors and SC biomarkers. Transplantation of lncRNA PVT1-modified BMSCs also improved functional recovery of rats with SCI. Altogether, lncRNA PVT1 promoted the proliferation, migration, and differentiation of BMSCs by inhibiting PTBP1. LncRNA PVT1-modified BMSCs also influenced the function of SCs and promoted recovery in rats following SCI.
Collapse
Affiliation(s)
- Lei Gao
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Peng Li
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruize Yang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wenchao Bi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Fanbo Meng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lei Xia
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Poitras TM, Komirishetty P, Areti A, Larouche M, Krishnan A, Chandrasekhar A, Munchrath E, Zochodne DW. Manipulation of the Myc Interactome to Enhance Nerve Regeneration in a Murine Model. Ann Neurol 2024; 96:216-230. [PMID: 38818756 DOI: 10.1002/ana.26950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study was undertaken to explore manipulation of the Myc protein interactome, members of an oncogene group, in enhancing the intrinsic growth of injured peripheral adult postmitotic neurons and the nerves they supply. New approaches to enhance adult neuron growth properties are a key strategy in improving nerve regeneration. METHODS Expression and impact of Myc interactome members c-Myc, N-Myc, Mad1, and Max were evaluated within naive and "preconditioned" adult sensory neurons and Schwann cells (SCs), using siRNA and transfection of CRISPR/Cas9 or luciferase reporter in vitro. Morphological, behavioral, and electrophysiological indices of nerve regeneration were analyzed in vivo. RESULTS c-Myc, N-Myc, Max, and Mad were expressed in adult sensory neurons and in partnering SCs. In vitro knockdown (KD) of either Mad1 or Max, competitive inhibitors of Myc, unleashed heightened neurite outgrowth in both naive uninjured or preconditioned adult neurons. In contrast, KD or inhibition of both isoforms of Myc was required to suppress growth. In SCs, Mad1 KD not only enhanced migratory behavior but also conditioned increased outgrowth in separately cultured adult sensory neurons. In vivo, local Mad1 KD improved electrophysiological, behavioral, and structural indices of nerve regeneration out to 60 days of follow-up. INTERPRETATION Members of the Myc interactome, specifically Mad1, are novel targets for improving nerve regeneration. Unleashing of Myc growth signaling through Mad1 KD enhances the regrowth of both peripheral neurons and SCs to facilitate better regrowth of nerves. ANN NEUROL 2024;96:216-230.
Collapse
Affiliation(s)
- Trevor M Poitras
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Prashanth Komirishetty
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aparna Areti
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matt Larouche
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Easton Munchrath
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Drewry MD, Rothermund K, Syed-Picard FN. Topographical and Chemical Inductive Cues Synergistically Enhance the Schwann Cell Differentiation of Aligned Dental Pulp Stem Cell Sheets. J Tissue Eng Regen Med 2023; 2023:7958770. [PMID: 40226400 PMCID: PMC11918939 DOI: 10.1155/2023/7958770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 04/15/2025]
Abstract
Peripheral nerves have an inherent capacity for regeneration, but these Schwann cell-mediated mechanisms are insufficient for severe injuries. With current clinical treatments, slow regeneration and aberrant reinnervation result in poor functional outcomes. Dental pulp stem cells (DPSCs) offer a promising source of therapeutic neurotrophic factors (NTFs), growth factors that stimulate axon regeneration. Previously, we established that DPSCs can generate scaffold-free sheets with a linearly aligned extracellular matrix (ECM). These sheets provide trophic cues via the DPSCs and directional cues through the aligned ECM to both accelerate and orient axon outgrowth, thus providing a biomaterial capable of addressing the current clinical challenges. DPSCs have a propensity for differentiating into Schwann cells (SC-DPSCs), further enhancing their endogenous NTF expression. Here, we evaluated the effect of inducing SC differentiation on the neuroregenerative bioactivity of our DPSC sheets. These sheets were formed on substrates with linear microgrooves to direct the cells to deposit an aligned ECM. Inducing differentiation using an SC differentiation medium (SCDM) increased NTF expression 2-fold compared to unaligned uDPSC sheets, and this effect was amplified in linearly oriented SC-DPSC sheets by up to 8-fold. Furthermore, these aligned SC-DPSC sheets remodeled the sheet ECM to more closely emulate a regenerative neural microenvironment, expressing 8-fold and 2 × 107-fold more collagen IV and laminin, respectively, than unaligned uDPSC sheets. These data demonstrate that the chemical cues of the SCDM and the mechanotransductive cues of the aligned cell sheet synergistically enhanced the differentiation of DPSCs into repair SC-like cells. To evaluate their functional effects on neuritogenesis, the DPSC sheets were directly cocultured with neuronally differentiated neuroblastoma SH-SY5Y cells. In this in vitro culture system, the aligned SC-DPSC sheets promoted oriented neurite-like outgrowth similar to aligned uninduced DPSC sheets and increased collateral branching, which may emulate stages associated with natural SC-mediated repair processes. Therefore, linearly aligned SC-DPSC sheets have the potential to both promote nerve regeneration and reduce aberrant reinnervation, thus providing a promising biomaterial for applications to improve the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Michelle D. Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fatima N. Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Zhang L, Li Y, Tao D, Yang L, Zhang Y, Zhang H, Xie C. The miR-34b-5p-negative target Gnai2 aggravates fluorine combined with aluminum-induced apoptosis of rat offspring hippocampal neurons and NG108-15 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66822-66839. [PMID: 37186186 DOI: 10.1007/s11356-023-27135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
It is known that fluorine and aluminum are commonly found in the environment and that long-term overexposure can adversely affect the organism's nervous system, damaging the structure and function of brain tissue. Our previous study showed that fluorine combined with aluminum (FA) could trigger apoptosis in vitro and cause spatial learning and memory impairment and differentially expressed miRNAs (including miR-34b-5p) in the hippocampi in vivo. However, the detailed mechanism is unclear. Learning memory damage is implicated in excessive hippocampal neuron apoptosis, and miR-34b-5p participates in regulating the hippocampal neuron apoptosis. Thus, in the current research, Sprague-Dawley (SD) rats were subjected to FA, and NG108-15 control cells and NG108-15 cells pretransfected with miR-34b-5p agomir or antagomir were exposed to FA. We found that FA triggered apoptosis of rat hippocampal neurons and NG108-15 cells, increased miR-34b-5p expression, and decreased Gnai2, PKA, ERK and CREB expression. Inhibition of miR-34b-5p alleviated FA-induced NG108-15 cell apoptosis and further increased Gnai2, PKA, ERK, and CREB expression, and vice versa. Furthermore, miR-34b-5p modulated the level of Gnai2 by directly targeting its 3'-untranslated region (UTR), as verified through the dual Luciferase reporter assay. These outcomes suggested that miR-34b-5p participated in FA-induced neuronal apoptosis by targeting Gnai2 negatively, thereby inhibiting the PKA/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Luwen Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Liu Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Fujiwara Y, Kusakabe KT, Baba K, Sasaki N. Effect of platelet lysate on Schwann-like cell differentiation of equine bone marrow-derived mesenchymal stem cells. Res Vet Sci 2023; 159:11-18. [PMID: 37060838 DOI: 10.1016/j.rvsc.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Currently, treatment for peripheral nerve injuries in horses primarily relies upon physical therapy and anti-inflammatory drugs. In humans, various treatments using mesenchymal stem cells (MSCs) are being attempted. Therefore, in this study, Schwann-like cell differentiation cultures of equine MSCs were prepared using fetal bovine serum (FBS) and equine platelet lysate (ePL). ePL increased the platelet count to 1 × 106/μl, the optimal concentration for culture. In both groups, an elongated morphology at both ends, characteristic of Schwann cells, was observed under the microscope. Real-time PCR analysis of the expression levels of neuronal markers showed that the ePL group tended to express higher levels of Nestin, Musashi1, and Pax3 than the FBS group. p75 was expressed at low levels in both groups. Immunostaining results showed localization of Nestin in both groups of differentiated cells, but the positive cell rate was significantly higher in the ePL group than in the FBS group. Overall, the ePL gro showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease. This knowledge could be applied translationaly in the treatment of amyotrophic lateral sclerosis in humans.Overall, the ePL group showed good results for Schwann-like cell differentiation, which may be useful for future use in the treatment of equine motor neuron disease and in the treatment of amyotrophic lateral sclerosis in humans.
Collapse
|
7
|
Rybachuk O, Savytska N, Pinet É, Yaminsky Y, Medvediev V. Heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow derived stromal cells in vitroand in vivo. Biomed Mater 2023; 18. [PMID: 36542861 DOI: 10.1088/1748-605x/acadc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Synthetic hydrogels composed of polymer pore frames are commonly used in medicine, from pharmacologically targeted drug delivery to the creation of bioengineering constructions used in implantation surgery. Among various possible materials, the most common are poly-[N(2-hydroxypropyl)methacrylamide] (pHPMA) derivatives. One of the pHPMA derivatives is biocompatible hydrogel, NeuroGel. Upon contact with nervous tissue, the NeuroGel's structure can support the chemical and physiological conditions of the tissue necessary for the growth of native cells. Owing to the different pore diameters in the hydrogel, not only macromolecules, but also cells can migrate. This study evaluated the differentiation of bone marrow stromal cells (BMSCs) into neurons, as well as the effectiveness of using this biofabricated system in spinal cord injuryin vivo. The hydrogel was populated with BMSCs by injection or rehydration. After cultivation, these fragments (hydrogel + BMSCs) were implanted into the injured rat spinal cord. Fragments were immunostained before implantation and seven months after implantation. During cultivation with the hydrogel, both variants (injection/rehydration) of the BMSCs culture retained their viability and demonstrated a significant number of Ki-67-positive cells, indicating the preservation of their proliferative activity. In hydrogel fragments, BMSCs also maintained their viability during the period of cocultivation and were Ki-67-positive, but in significantly fewer numbers than in the cell culture. In addition, in fragments of hydrogel with grafted BMSCs, both by the injection or rehydration versions, we observed a significant number up to 57%-63.5% of NeuN-positive cells. These results suggest that the heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow-derived stromal cells. Furthermore, these data demonstrate the possible use of NeuroGel implants with grafted BMSCs for implantation into damaged areas of the spinal cord, with subsequent nerve fiber germination, nerve cell regeneration, and damaged segment restoration.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv, Ukraine
| | - Natalia Savytska
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Yurii Yaminsky
- State Institution 'Romodanov Neurosurgery Institute, NAMS of Ukraine', Kyiv, Ukraine
| | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
8
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Tamez-Mata Y, Pedroza-Montoya FE, Martínez-Rodríguez HG, García-Pérez MM, Ríos-Cantú AA, González-Flores JR, Soto-Domínguez A, Montes-de-Oca-Luna R, Simental-Mendía M, Peña-Martínez VM, Vílchez-Cavazos F. Nerve gaps repaired with acellular nerve allografts recellularized with Schwann-like cells: Preclinical trial. J Plast Reconstr Aesthet Surg 2022; 75:296-306. [PMID: 34257032 DOI: 10.1016/j.bjps.2021.05.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Acellular nerve allografts (ANA) recellularized with mesenchymal stem cells (MSC) or Schwann cells (SC) are, at present, a therapeutic option for peripheral nerve injuries (PNI). This study aimed to evaluate the regenerative and functional capacity of a recellularized allograft (RA) compared with autograft nerve reconstruction in PNI. METHODS Fourteen ovines were randomly included in two groups (n=7). A peroneal nerve gap 30 mm in length was excised, and nerve repair was performed by the transplantation of either an autograft or a recellularized allograft with SC-like cells. Evaluations included a histomorphological analysis of the ANA, MSC pre differentiated into SC-like cells, at one year follow-up functional limb recovery (support and gait), and nerve regeneration using neurophysiological tests and histomorphometric analysis. All evaluations were compared with the contralateral hindlimb as the control. RESULTS The nerve allograft was successfully decellularized and more than 70% of MSC were pre differentiated into SC-like cells. Functional assessment in both treated groups improved similarly over time (p <0.05). Neurophysiological results (latency, amplitude, and conduction velocity) also improved in both treated groups at twelve months. Histological results demonstrated a less organized arrangement of nerve fibers (p <0.05) with an active remyelination process (p <0.05) in both treated groups compared with controls at twelve months. CONCLUSIONS ANA recellularized with SC-like cells proved to be a successful treatment for nerve gaps. Motor recovery and nerve regeneration were satisfactorily achieved in both graft groups compared with their contralateral nontreated nerves. This approach could be useful for the clinical therapy of PNI.
Collapse
Affiliation(s)
- Y Tamez-Mata
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F E Pedroza-Montoya
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - H G Martínez-Rodríguez
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M M García-Pérez
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A A Ríos-Cantú
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - J R González-Flores
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A Soto-Domínguez
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - R Montes-de-Oca-Luna
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M Simental-Mendía
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - V M Peña-Martínez
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F Vílchez-Cavazos
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González".
| |
Collapse
|
10
|
Wei Z, Shu S, Zhang M, Xie S, Tang S, Nie K, Li H. A Subpopulation of Schwann Cell-Like Cells With Nerve Regeneration Signatures Is Identified Through Single-Cell RNA Sequencing. Front Physiol 2021; 12:637924. [PMID: 34093220 PMCID: PMC8171402 DOI: 10.3389/fphys.2021.637924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 02/05/2023] Open
Abstract
Schwann cell-like cells (SCLCs) derived from human amniotic mesenchymal stem cells (hAMSCs) have been shown to promote peripheral nerve regeneration, but the underlying molecular mechanism was still poorly understood. In order to investigate the heterogeneity and potential molecular mechanism of SCLCs in the treatment of peripheral nerve regeneration at a single cell level, single-cell RNA sequencing was applied to profile single cell populations of hAMSCs and SCLCs. We profiled 6,008 and 5,140 single cells from hAMSCs and SCLCs, respectively. Based on bioinformatics analysis, pathways associated with proliferation, ECM organization, and tissue repair were enriched within both populations. Cell cycle analysis indicated that single cells within these two populations remained mostly in the G0/G1 phase. The transformation of single cells from hAMSCs to SCLCs was characterized by pseudotime analysis. Furthermore, we identified a subpopulation of SCLCs that highly expressed genes associated with Schwann cell proliferation, migration, and survival, such as JUN, JUND, and NRG1., Genes such as PTGS2, PITX1, VEGFA, and FGF2 that promote nerve regeneration were also highly expressed in single cells within this subpopulation, and terms associated with inflammatory and tissue repair were enriched in this subpopulation by pathway enrichment analysis. Our results indicate that a subpopulation of SCLCs with nerve regeneration signatures may be the key populations that promote nerve regeneration.
Collapse
Affiliation(s)
- Zairong Wei
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shenyou Shu
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Kaiyu Nie
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
11
|
Yu L, Tasaki S, Schneider JA, Arfanakis K, Duong DM, Wingo AP, Wingo TS, Kearns N, Thatcher GRJ, Seyfried NT, Levey AI, De Jager PL, Bennett DA. Cortical Proteins Associated With Cognitive Resilience in Community-Dwelling Older Persons. JAMA Psychiatry 2020; 77:1172-1180. [PMID: 32609320 PMCID: PMC7330835 DOI: 10.1001/jamapsychiatry.2020.1807] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
Abstract
Importance Identifying genes and proteins for cognitive resilience (ie, targets that may be associated with slowing or preventing cognitive decline regardless of the presence, number, or combination of common neuropathologic conditions) provides a complementary approach to developing novel therapeutics for the treatment and prevention of Alzheimer disease and related dementias. Objective To identify proteins associated with cognitive resilience via a proteome-wide association study of the human dorsolateral prefrontal cortex. Design, Setting, and Participants This study used data from 391 community-dwelling older persons who participated in the Religious Orders Study and the Rush Memory and Aging Project. The Religious Orders Study began enrollment January 1, 1994, and the Rush Memory and Aging Project began enrollment September 1, 1997, and data were collected and analyzed through October 23, 2019. Exposures Participants had undergone annual detailed clinical examinations, postmortem evaluations, and tandem mass tag proteomics analyses. Main Outcomes and Measures The outcome of cognitive resilience was defined as a longitudinal change in cognition over time after controlling for common age-related neuropathologic indices, including Alzheimer disease, Lewy bodies, transactive response DNA-binding protein 43, hippocampal sclerosis, infarcts, and vessel diseases. More than 8000 high abundance proteins were quantified from frozen dorsolateral prefrontal cortex tissue using tandem mass tag and liquid chromatography-mass spectrometry. Results There were 391 participants (273 women); their mean (SD) age was 79.7 (6.7) years at baseline and 89.2 (6.5) years at death. Eight cortical proteins were identified in association with cognitive resilience: a higher level of NRN1 (estimate, 0.140; SE, 0.024; P = 7.35 × 10-9), ACTN4 (estimate, 0.321; SE, 0.065; P = 9.94 × 10-7), EPHX4 (estimate, 0.198; SE, 0.042; P = 2.13 × 10-6), RPH3A (estimate, 0.148; SE, 0.031; P = 2.58 × 10-6), SGTB (estimate, 0.211; SE, 0.045; P = 3.28 × 10-6), CPLX1 (estimate, 0.136; SE, 0.029; P = 4.06 × 10-6), and SH3GL1 (estimate, 0.179; SE, 0.039; P = 4.21 × 10-6) and a lower level of UBA1 (estimate, -0.366; SE, 0.076; P = 1.43 × 10-6) were associated with greater resilience. Conclusions and Relevance These protein signals may represent novel targets for the maintenance of cognition in old age.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia
| | - Aliza P. Wingo
- Division of Mental Health, Atlanta Veterans Affairs Medical Center, Decatur, Georgia
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia
| | - Thomas S. Wingo
- Department of Neurology, Emory University, Atlanta, Georgia
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Nicola Kearns
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Gregory R. J. Thatcher
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago
| | | | - Allan I. Levey
- Department of Neurology, Emory University, Atlanta, Georgia
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, New York
- Cell Circuits Program, Broad Institute, Cambridge, Massachusetts
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Shea GK, Tai EW, Leung KH, Mung AK, Li MT, Tsui AY, Tam AK, Shum DK, Chan Y. Juxtacrine signalling via Notch and ErbB receptors in the switch to fate commitment of bone marrow‐derived Schwann cells. Eur J Neurosci 2020; 52:3306-3321. [DOI: 10.1111/ejn.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Graham Ka‐Hon Shea
- Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong Hong Kong
| | - Evelyn Wing‐Yin Tai
- Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong Hong Kong
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
| | - Katherine Ho‐Yan Leung
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
| | - Alan Kwan‐Long Mung
- Department of Orthopaedics and Traumatology Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong Hong Kong
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
| | - Maximilian Tak‐Sui Li
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging The University of Hong Kong Hong Kong Hong Kong
| | - Alex Yat‐Ping Tsui
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging The University of Hong Kong Hong Kong Hong Kong
| | - Anthony Kin‐Wai Tam
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging The University of Hong Kong Hong Kong Hong Kong
| | - Daisy Kwok‐Yan Shum
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging The University of Hong Kong Hong Kong Hong Kong
- State Key Laboratory of Brain and Cognitive Science The University of Hong Kong Hong Kong Hong Kong
| | - Ying‐Shing Chan
- Li Ka Shing Faculty of Medicine School of Biomedical Sciences The University of Hong Kong Hong Kong Hong Kong
- Research Centre of Heart, Brain, Hormone & Healthy Aging The University of Hong Kong Hong Kong Hong Kong
- State Key Laboratory of Brain and Cognitive Science The University of Hong Kong Hong Kong Hong Kong
| |
Collapse
|
13
|
Determination of Electrical Stimuli Parameters To Transdifferentiate Genetically Engineered Mesenchymal Stem Cells into Neuronal or Glial Lineages. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Uz M, Jackson K, Donta MS, Jung J, Lentner MT, Hondred JA, Claussen JC, Mallapragada SK. Fabrication of High-resolution Graphene-based Flexible Electronics via Polymer Casting. Sci Rep 2019; 9:10595. [PMID: 31332270 PMCID: PMC6646327 DOI: 10.1038/s41598-019-46978-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, a novel method based on the transfer of graphene patterns from a rigid or flexible substrate onto a polymeric film surface via solvent casting was developed. The method involves the creation of predetermined graphene patterns on the substrate, casting a polymer solution, and directly transferring the graphene patterns from the substrate to the surface of the target polymer film via a peeling-off method. The feature sizes of the graphene patterns on the final film can vary from a few micrometers (as low as 5 µm) to few millimeters range. This process, applied at room temperature, eliminates the need for harsh post-processing techniques and enables creation of conductive graphene circuits (sheet resistance: ~0.2 kΩ/sq) with high stability (stable after 100 bending and 24 h washing cycles) on various polymeric flexible substrates. Moreover, this approach allows precise control of the substrate properties such as composition, biodegradability, 3D microstructure, pore size, porosity and mechanical properties using different film formation techniques. This approach can also be used to fabricate flexible biointerfaces to control stem cell behavior, such as differentiation and alignment. Overall, this promising approach provides a facile and low-cost method for the fabrication of flexible and stretchable electronic circuits.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Kyle Jackson
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Maxsam S Donta
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Juhyung Jung
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Matthew T Lentner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - John A Hondred
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
15
|
Gonzalez D, Brandan E. CTGF/CCN2 from Skeletal Muscle to Nervous System: Impact on Neurodegenerative Diseases. Mol Neurobiol 2019; 56:5911-5916. [PMID: 30689195 DOI: 10.1007/s12035-019-1490-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
16
|
Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, Baharuddin A, Naicker AS, Htwe O, Mohammed Haflah NH, B H Idrus R, Abdullah S, Ng MH. Human bone marrow-derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int 2019; 43:233-252. [PMID: 30362196 DOI: 10.1002/cbin.11067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022]
Abstract
In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
Collapse
Affiliation(s)
- Khairunnisa Ramli
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ifasha Aminath Gasim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amir Adham Ahmad
- Department of Orthopaedics, School of Medicine, International Medical University, Negeri Sembilan, Malaysia
| | - Shariful Hassan
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azmi Baharuddin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ohnmar Htwe
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Hazla Mohammed Haflah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah B H Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shalimar Abdullah
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Higareda-Almaraz JC, Karbiener M, Giroud M, Pauler FM, Gerhalter T, Herzig S, Scheideler M. Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes. BMC Genomics 2018; 19:794. [PMID: 30390616 PMCID: PMC6215669 DOI: 10.1186/s12864-018-5173-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Norepinephrine (NE) signaling has a key role in white adipose tissue (WAT) functions, including lipolysis, free fatty acid liberation and, under certain conditions, conversion of white into brite (brown-in-white) adipocytes. However, acute effects of NE stimulation have not been described at the transcriptional network level. RESULTS We used RNA-seq to uncover a broad transcriptional response. The inference of protein-protein and protein-DNA interaction networks allowed us to identify a set of immediate-early genes (IEGs) with high betweenness, validating our approach and suggesting a hierarchical control of transcriptional regulation. In addition, we identified a transcriptional regulatory network with IEGs as master regulators, including HSF1 and NFIL3 as novel NE-induced IEG candidates. Moreover, a functional enrichment analysis and gene clustering into functional modules suggest a crosstalk between metabolic, signaling, and immune responses. CONCLUSIONS Altogether, our network biology approach explores for the first time the immediate-early systems level response of human adipocytes to acute sympathetic activation, thereby providing a first network basis of early cell fate programs and crosstalks between metabolic and transcriptional networks required for proper WAT function.
Collapse
Affiliation(s)
- Juan Carlos Higareda-Almaraz
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- NMR laboratory, Institute of Myology, Hopital Universitaire Pitie Salpetriere, Paris, France
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Maude Giroud
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Florian M. Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Present Address: Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Teresa Gerhalter
- Present Address: Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Metabolic Control, Medical Faculty, Technical University, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- NMR laboratory, Institute of Myology, Hopital Universitaire Pitie Salpetriere, Paris, France
| |
Collapse
|
18
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
19
|
Mazzio E, Badisa R, Eyunni S, Ablordeppey S, George B, Soliman KFA. Bioactivity-Guided Isolation of Neuritogenic Factor from the Seeds of the Gac Plant ( Momordica cochinchinensis). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8953958. [PMID: 29955238 PMCID: PMC6000838 DOI: 10.1155/2018/8953958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is an endogenously produced protein with the capacity to induce central nervous system (CNS) neuronal differentiation and repair. NGF signaling involves its binding to tropomyosin-related kinase (Trk) receptors, internalization, and initiation of phosphorylation cascades which cause microtubule reorganization and neuronal outgrowth. Because NGF cannot cross the blood-brain barrier, its therapeutic use is limited. Synthetic peptides that can act as NGF receptor agonists (NGF mimetics) are known to attenuate neurodegenerative pathologies in experimental models of Alzheimer's disease and Parkinson's disease; however, the existence of plant-based NGF mimetics is uncertain. For this reason, we recently completed a high throughput screening of over 1100 nutraceuticals (vitamins, herbal plant parts, polyphenolics, teas, fruits, and vegetables) to identify neuritogenic factor using a PC-12 cell model. Remarkably we found only one, commonly known as the seed of Gac plant (Momordica cochinchinensis) (MCS). In the current study, we further investigated this seed for its neuritogenic effect using bioactivity-guided chemical separations. The data show no biological neuritogenic activity in any chemical solvent fraction, where activity was exclusive to the crude protein. MSC crude proteins were then separated by 1D electrophoresis, where the active neuritogenic activity was confirmed to have a molecular mass of approximately 17 kDa. Subsequently, the 17kDa band was excised, digested, and run on a UPLC-MS/MS with a Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer with data evaluated diverse tools such as X! Tandem, OMS, and K-score algorithms. Proteomic evaluation of the 17kDa band confirmed evidence for 11S globulin subunit beta, napin, oleosin, Momordica trypsin inhibitors (TI) MCoTI-I /II, and many isoforms of Two Inhibitor Peptide Topologies (TIPTOPs). While all peptides identified correspond to the genus/species, Momordica cochinchinensis and Cucumis Sativus, a significant limitation of the analysis is the nonexistence of full annotation for the Momordica cochinchinensis proteome. In conclusion, these findings demonstrate that there is a stable protein within MCS having a mass of 17kDa with the capacity to induce neurite outgrowth. Future work will be required to establish the therapeutic value of the MCS for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - R. Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S. Eyunni
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S. Ablordeppey
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - B. George
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - K. F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
20
|
De la Rosa MB, Kozik EM, Sakaguchi DS. Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:41-71. [PMID: 30151648 DOI: 10.1007/5584_2018_254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries (PNI) occur as the result of sudden trauma and can lead to life-long disability, reduced quality of life, and heavy economic and social burdens. Although the peripheral nervous system (PNS) has the intrinsic capacity to regenerate and regrow axons to a certain extent, current treatments frequently show incomplete recovery with poor functional outcomes, particularly for large PNI. Many surgical procedures are available to halt the propagation of nerve damage, and the choice of a procedure depends on the extent of the injury. In particular, recovery from large PNI gaps is difficult to achieve without any therapeutic intervention or some form of tissue/cell-based therapy. Autologous nerve grafting, considered the "gold standard" is often implemented for treatment of gap formation type PNI. Although these surgical procedures provide many benefits, there are still considerable limitations associated with such procedures as donor site morbidity, neuroma formation, fascicle mismatch, and scarring. To overcome such restrictions, researchers have explored various avenues to improve post-surgical outcomes. The most commonly studied methods include: cell transplantation, growth factor delivery to stimulate regenerating axons and implanting nerve guidance conduits containing replacement cells at the site of injury. Replacement cells which offer maximum benefits for the treatment of PNI, are Schwann cells (SCs), which are the peripheral glial cells and in part responsible for clearing out debris from the site of injury. Additionally, they release growth factors to stimulate myelination and axonal regeneration. Both primary SCs and genetically modified SCs enhance nerve regeneration in animal models; however, there is no good source for extracting SCs and the only method to obtain SCs is by sacrificing a healthy nerve. To overcome such challenges, various cell types have been investigated and reported to enhance nerve regeneration.In this review, we have focused on cell-based strategies aimed to enhance peripheral nerve regeneration, in particular the use of mesenchymal stem cells (MSCs). Mesenchymal stem cells are preferred due to benefits such as autologous transplantation, routine isolation procedures, and paracrine and immunomodulatory properties. Mesenchymal stem cells have been transplanted at the site of injury either directly in their native form (undifferentiated) or in a SC-like form (transdifferentiated) and have been shown to significantly enhance nerve regeneration. In addition to transdifferentiated MSCs, some studies have also transplanted ex-vivo genetically modified MSCs that hypersecrete growth factors to improve neuroregeneration.
Collapse
Affiliation(s)
- Metzere Bierlein De la Rosa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.,Veterinary Specialty Center, Buffalo Grove, IL, USA
| | - Emily M Kozik
- Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Donald S Sakaguchi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA. .,Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Neuroscience Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|