1
|
Selvaprakash K, Henry M, Ryan D, Meleady P. LC-MS/MS Analysis to Study the Ubiquitin-Modified Proteome of Recombinant Chinese Hamster Ovary Cells. Methods Mol Biol 2025; 2853:191-203. [PMID: 39460922 DOI: 10.1007/978-1-0716-4104-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Ubiquitination is one of the most important post-translational modifications (PTMs) and involves the covalent attachment of ubiquitin to a lysine residue on a target protein. Despite ubiquitination playing a crucial role in regulating cellular processes, the ubiquitinated proteome has not been studied extensively in recombinant Chinese hamster ovary (CHO) cells. Moreover, ubiquitination modification in CHO cells is likely to have an impact on protein function related to the efficient productivity of biopharmaceuticals. In this chapter, we describe a comprehensive protocol for ubiquitin di-Glycine (diGly) peptide enrichment using an immunoprecipitation method from recombinant CHO cell proteins followed by Liquid chromatography-Mass spectrometry (LC-MS) analysis of the ubiquitinated proteome. The methods described are also applicable to differential ubiquitinated proteomic studies.
Collapse
Affiliation(s)
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - David Ryan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
2
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Yang J, Liu J. Proteome and ubiquitinome analyses of the brain cortex in K18- hACE2 mice infected with SARS-CoV-2. iScience 2024; 27:110602. [PMID: 39211577 PMCID: PMC11357812 DOI: 10.1016/j.isci.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Clinical research indicates that SARS-CoV-2 infection is linked to several neurological consequences, and the virus is still spreading despite the availability of vaccinations and antiviral medications. To determine how hosts respond to SARS-CoV-2 infection, we employed LC-MS/MS to perform ubiquitinome and proteome analyses of the brain cortexes from K18-hACE2 mice in the presence and absence of SARS-CoV-2 infection. A total of 8,024 quantifiable proteins and 5,220 quantifiable lysine ubiquitination (Kub) sites in 2023 proteins were found. Glutamatergic synapse, calcium signaling pathway, and long-term potentiation may all play roles in the neurological consequences of SARS-CoV-2 infection. Then, we observed possible interactions between 26 SARS-CoV-2 proteins/E3 ubiquitin-protein ligases/deubiquitinases and several differentially expressed mouse proteins or Kub sites. We present the first description of the brain cortex ubiquitinome in K18-hACE2 mice, laying the groundwork for further investigation into the pathogenic processes and treatment options for neurological dysfunction following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xutong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
3
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitylation controls VASP-mediated actin dynamics. J Cell Sci 2024; 137:jcs261527. [PMID: 38277158 PMCID: PMC10917064 DOI: 10.1242/jcs.261527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E. McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin S. Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Huang D, Leng Y, Zhang X, Xing M, Ying W, Gao X. Serial and multi-level proteome analysis for microscale protein samples. J Proteomics 2023; 288:104993. [PMID: 37619946 DOI: 10.1016/j.jprot.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Post-translational modifications (PTMs), such as phosphorylation and ubiquitination, play key roles in signal transduction and protein homeostasis. The crosstalk of PTMs greatly expands the components of proteome and protein functions. Multi-level proteome analysis, which involves proteome investigations of total lysate and PTMs in this context, provides a comprehensive approach to explore the PTM crosstalk of a biological system under diverse disturbances. However, multi-level proteome practice remains technically challenging. Here we intended to build a strategy for multi-level proteome analysis, in which we focus on the serial profiling the total proteome, ubiquitinome and phosphoproteome from the microscale of starting material. We started by evaluating five common lysis buffers and found that the sodium deoxycholate buffer provided the best overall performance. We then developed an approach for serial enrichment and profiling of the multi-level proteome. To expand the depth of identification, we customized the variable windows to perform data-independent acquisition (DIA) sequencing for each proteome. In total, we identified 6465 proteins, ∼20,000 GlyGly sites (class 1), and ∼ 19,000 phosphosites (class 1) sequentially using 1 mg of HeLa digest by three DIA measurements. We applied this strategy to analyze MG132-treated HeLa cells and observed the crosstalk between ubiquitination and phosphorylation. Our method can be referenced for other multi-level proteome studies with microscale samples. SIGNIFICANCE: Lysis buffer containing sodium deoxycholate provided the best overall performance in multi-level proteome analysis. One step of ubiquitination enrichment before phosphorylation enrichment does not reduce the reproducibility of phosphoproteome. Customized isolation windows were established for DIA analysis on each level of proteome. Combined the serial enrichment approach and the customized single-shot DIA method enabled the multi-level proteome of microscale protein samples.
Collapse
Affiliation(s)
- Dongying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeye Leng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiangye Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Meining Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wantao Ying
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
McCormick LE, Suarez C, Herring LE, Cannon KS, Kovar DR, Brown NG, Gupton SL. Multi-monoubiquitination controls VASP-mediated actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549237. [PMID: 37503134 PMCID: PMC10370145 DOI: 10.1101/2023.07.16.549237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitination regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitination impacts VASP activity was unknown. Here we show that mimicking multi-monoubiquitination of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitinated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitinated VASP maintained the ability to bind and protect barbed ends from capping protein. Lastly, we demonstrate the introduction of recombinant multi-monoubiquitinated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitination controls VASP-mediated actin dynamics.
Collapse
Affiliation(s)
- Laura E McCormick
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Laura E Herring
- Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Nicholas G Brown
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
6
|
Tsui H, van Kampen SJ, Han SJ, Meraviglia V, van Ham WB, Casini S, van der Kraak P, Vink A, Yin X, Mayr M, Bossu A, Marchal GA, Monshouwer-Kloots J, Eding J, Versteeg D, de Ruiter H, Bezstarosti K, Groeneweg J, Klaasen SJ, van Laake LW, Demmers JAA, Kops GJPL, Mummery CL, van Veen TAB, Remme CA, Bellin M, van Rooij E. Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy. Sci Transl Med 2023; 15:eadd4248. [PMID: 36947592 DOI: 10.1126/scitranslmed.add4248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.
Collapse
Affiliation(s)
- Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Sebastiaan Johannes van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Xiaoke Yin
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Manuel Mayr
- James Black Centre, King's College, University of London, WC2R 2LS London, UK
| | - Alexandre Bossu
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Joep Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Judith Groeneweg
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Linda W van Laake
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus Medical Center Rotterdam, 3015 CN, Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, 3584 CM, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, University Medical Center Amsterdam, 1105 AZ, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT, Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584 CX, Netherlands
| |
Collapse
|
7
|
Sun Z, Xiao W, Li N, Chang L, Xu P, Li Y. Large-Scale Profiling of Unexpected Tryptic Cleaved Sites at Ubiquitinated Lysines. J Proteome Res 2023; 22:1245-1254. [PMID: 36877145 DOI: 10.1021/acs.jproteome.2c00748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Trypsin specifically cleaves the C-terminus of lysine and arginine residues but often fails to cleave modified lysines, such as ubiquitination, therefore resulting in the uncleaved K-ε-GG peptides. Therefore, the cleaved ubiquitinated peptide identification was often regarded as false positives and discarded. Interestingly, unexpected cleavage at the K48-linked ubiquitin chain has been reported, suggesting the latent ability of trypsin to cleave ubiquitinated lysine residues. However, it remains unclear whether other trypsin-cleavable ubiquitinated sites are present. In this study, we verified the ability of trypsin in cleaving K6 and K63 besides K48 chains. The uncleaved K-ε-GG peptide was quickly and efficiently generated during trypsin digestion, whereas cleaved ones were produced with much lower efficiency. Then, the K-ε-GG antibody was proved to efficiently enrich the cleaved K-ε-GG peptides and several published large-scale ubiquitylation datasets were re-analyzed to interrogate the cleaved sequence features. In total, more than 2400 cleaved ubiquitinated peptides were identified in the K-ε-GG and UbiSite antibody-based datasets. The frequency of lysine upstream of the cleaved modified K was significantly enriched. The kinetic activity of trypsin in cleaving ubiquitinated peptides was further elucidated. We suggest that the cleaved K-ε-GG sites with high post-translational modification probability (≥0.75) should be considered as true positives in future ubiquitome analyses.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing 102206, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100850, P. R. China
| | - Weidi Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Naikang Li
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing 102206, China.,Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China.,Anhui Medical University, Hefei 230032, China.,School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing 102206, China.,Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China.,Anhui Medical University, Hefei 230032, China
| |
Collapse
|
8
|
Cheng S, Fahmi NA, Park M, Sun J, Thao K, Yeh HS, Zhang W, Yong J. mTOR Contributes to the Proteome Diversity through Transcriptome-Wide Alternative Splicing. Int J Mol Sci 2022; 23:ijms232012416. [PMID: 36293270 PMCID: PMC9604279 DOI: 10.3390/ijms232012416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is crucial in energy metabolism and cell proliferation. Previously, we reported transcriptome-wide 3′-untranslated region (UTR) shortening by alternative polyadenylation upon mTOR activation and its impact on the proteome. Here, we further interrogated the mTOR-activated transcriptome and found that hyperactivation of mTOR promotes transcriptome-wide exon skipping/exclusion, producing short isoform transcripts from genes. This widespread exon skipping confers multifarious regulations in the mTOR-controlled functional proteomics: AS in coding regions widely affects the protein length and functional domains. They also alter the half-life of proteins and affect the regulatory post-translational modifications. Among the RNA processing factors differentially regulated by mTOR signaling, we found that SRSF3 mechanistically facilitates exon skipping in the mTOR-activated transcriptome. This study reveals a role of mTOR in AS regulation and demonstrates that widespread AS is a multifaceted modulator of the mTOR-regulated functional proteome.
Collapse
Affiliation(s)
- Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Kaitlyn Thao
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55445, USA
- Correspondence: (W.Z.); (J.Y.); Tel.: +1-407-823-2763 (W.Z.); +1-612-626-2420 (J.Y.)
| |
Collapse
|
9
|
van der Wal L, Bezstarosti K, Demmers JAA. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37. J Proteomics 2022; 262:104592. [PMID: 35489684 DOI: 10.1016/j.jprot.2022.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14 (RPN11), USP14 and UCH37 (UCHL5). However, the functional roles and specificities of these proteasomal DUBs remain elusive. To reveal the specificities of proteasome associated DUBs, we used SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. We observed distinct effects on the global ubiquitinome upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggested less functional redundancy than previously anticipated. We also investigated whether the small molecule inhibitor b-AP15 has the potential to specifically target USP14 and UCH37 by comparing treatment of wild-type versus USP14/UCH37 double-knockout cells with this drug. Strikingly, broad and severe off-target effects were observed, questioning the alleged specificity of this inhibitor. In conclusion, this work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds. SIGNIFICANCE Introduction: The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14/RPN11, USP14 and UCH37/UCHL5. However, the functional roles and specificities of these proteasomal DUBs remains elusive. MATERIALS & METHODS We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37. RESULTS We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. CONCLUSIONS This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.
Collapse
Affiliation(s)
- Lennart van der Wal
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Apriamashvili G, Vredevoogd DW, Krijgsman O, Bleijerveld OB, Ligtenberg MA, de Bruijn B, Boshuizen J, Traets JJH, D'Empaire Altimari D, van Vliet A, Lin CP, Visser NL, Londino JD, Sanchez-Hodge R, Oswalt LE, Altinok S, Schisler JC, Altelaar M, Peeper DS. Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling. Nat Commun 2022; 13:1923. [PMID: 35395848 PMCID: PMC8993893 DOI: 10.1038/s41467-022-29442-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/11/2022] [Indexed: 12/30/2022] Open
Abstract
The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.
Collapse
Affiliation(s)
- Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Proteomics Core Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Daniela D'Empaire Altimari
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, 410 W 10th Avenue, Columbus, OH, USA
| | - Rebekah Sanchez-Hodge
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Leah E Oswalt
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Selin Altinok
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, 111 Mason Farm Rd., 3340 C MBRB CB #7126, Chapel Hill, NC, USA
| | - Maarten Altelaar
- Proteomics Core Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Editorial. J Proteomics 2022; 262:104593. [DOI: 10.1016/j.jprot.2022.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Yang W, Wu K, Wang B, Liu H, Guo S, Guo X, Luo W, Sun S, Ouyang Y, Fu X, Chong K, Zhang Q, Xu Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. MOLECULAR PLANT 2021; 14:1699-1713. [PMID: 34216830 DOI: 10.1016/j.molp.2021.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 05/02/2023]
Abstract
G-protein signaling and ubiquitin-dependent degradation are both involved in grain development in rice, but how these pathways are coordinated in regulating this process is unknown. Here, we show that Chang Li Geng 1 (CLG1), which encodes an E3 ligase, regulates grain size by targeting the Gγ protein GS3, a negative regulator of grain length, for degradation. Overexpression of CLG1 led to increased grain length, while overexpression of mutated CLG1 with changes in three conserved amino acids decreased grain length. We found that CLG1 physically interacts with and ubiquitinats GS3which is subsequently degraded through the endosome degradation pathway, leading to increased grain size. Furthermore, we identified a critical SNP in the exon 3 of CLG1 that is significantly associated with grain size variation in a core collection of cultivated rice. This SNP results in an amino acid substitution from Arg to Ser at position 163 of CLG1 that enhances the E3 ligase activity of CLG1 and thus increases rice grain size. Both the expression level of CLG1 and the SNP CLG1163S may be useful variations for manipulating grain size in rice.
Collapse
Affiliation(s)
- Wensi Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Innovation Academy for Seed Design, CAS, Beijing 100101, China.
| |
Collapse
|
13
|
Yuan S, Tanzeel Y, Tian X, Zheng D, Wajeeha N, Xu J, Ke Y, Zhang Z, Peng X, Lu L, Sun G, Guo D, Wang M. Global analysis of HBV-mediated host proteome and ubiquitylome change in HepG2.2.15 human hepatoblastoma cell line. Cell Biosci 2021; 11:75. [PMID: 33865438 PMCID: PMC8052555 DOI: 10.1186/s13578-021-00588-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major health issue worldwide and the leading cause of cirrhosis and hepatocellular carcinoma (HCC). It has been reported previously that HBV invasion can extensively alter transcriptome, the proteome of exosomes and host cell lipid rafts. The impact of HBV on host proteins through regulating their global post-translational modifications (PTMs), however, is not well studied. Viruses have been reported to exploit cellular processes by enhancing or inhibiting the ubiquitination of specific substrates. Nevertheless, host cell physiology in terms of global proteome and ubiquitylome has not been addressed yet. Here by using HBV-integrated HepG2.2.15 model cell line we first report that HBV significantly modify the host global ubiquitylome. As currently the most widely used HBV cell culture model, HepG2.2.15 can be cultivated for multiple generations for protein labeling, and can replicate HBV, express HBV proteins and secrete complete HBV Dane particles, which makes it a suitable cell line for ubiquitylome analysis to study HBV replication, hepatocyte immune response and HBV-related HCC progression. Our previous experimental results showed that the total ubiquitination level of HepG2.2.15 cell line was significantly higher than that of the corresponding parental HepG2 cell line. By performing a Ubiscan quantification analysis based on stable isotope labeling of amino acids in cell culture (SILAC) of HepG2.2.15 and HepG2 cell lines, we identified a total of 7188 proteins and the protein levels of nearly 19% of them were changed over 2-folds. We further identified 3798 ubiquitinated Lys sites in 1476 host proteins with altered ubiquitination in response to HBV. Our results also showed that the global proteome and ubiquitylome were negatively correlated, indicating that ubiquitination might be involved in the degradation of host proteins upon HBV integration. We first demonstrated the ubiquitination change of VAMP3, VAMP8, DNAJB6, RAB8A, LYN, VDAC2, OTULIN, SLC1A4, SLC1A5, HGS and TOLLIP. In addition, we described 5 novel host factors SLC1A4, SLC1A5, EIF4A1, TOLLIP and BRCC36 that efficiently reduced the amounts of secreted HBsAg and HBeAg. Overall, the HBV-mediated host proteome and ubiquitylome change we reported will provide a valuable resource for further investigation of HBV pathogenesis and host-virus interaction networks.
Collapse
Affiliation(s)
- Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yousaf Tanzeel
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dandan Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Naz Wajeeha
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jiaqi Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yujia Ke
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Zuopeng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xiaojun Peng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, People's Republic of China
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China. .,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China.
| | - Deyin Guo
- School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
14
|
Maat H, Atsma TJ, Hogeling SM, Rodríguez López A, Jaques J, Olthuis M, de Vries MP, Gravesteijn C, Brouwers-Vos AZ, van der Meer N, Datema S, Salzbrunn J, Huls G, Baas R, Martens JHA, van den Boom V, Schuringa JJ. The USP7-TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. iScience 2021; 24:102435. [PMID: 34113809 PMCID: PMC8169803 DOI: 10.1016/j.isci.2021.102435] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
In an attempt to unravel functionality of the non-canonical PRC1.1 Polycomb complex in human leukemogenesis, we show that USP7 and TRIM27 are integral components of PRC1.1. USP7 interactome analyses show that PRC1.1 is the predominant Polycomb complex co-precipitating with USP7. USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding, coinciding with reduced H2AK119ub and H3K27ac levels and diminished gene transcription of active PRC1.1-controlled loci, whereas H2AK119ub marks are also lost at PRC1 loci. TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1, and TRIM27 knockdown partially rescues USP7 inhibitor sensitivity. USP7 inhibitors effectively impair proliferation in AML cells in vitro, also independent of the USP7-MDM2-TP53 axis, and MLL-AF9-induced leukemia is delayed in vivo in human leukemia xenografts. We propose a model where USP7 counteracts TRIM27 E3 ligase activity, thereby maintaining PRC1.1 integrity and function. Moreover, USP7 inhibition may be a promising new strategy to treat AML patients. We identify USP7 and TRIM27 as integral components of non-canonical PRC1.1 USP7 inhibition results in PRC1.1 disassembly and loss of chromatin binding TRIM27 and USP7 are reciprocally required for incorporation into PRC1.1 USP7 inhibitors effectively impair AML proliferation, also independent of TP53
Collapse
Affiliation(s)
- Henny Maat
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Tjerk Jan Atsma
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Shanna M Hogeling
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aida Rodríguez López
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jennifer Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Mirjam Olthuis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marcel P de Vries
- Department of Pharmacy, Interfaculty Mass Spectrometry Center, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Chantal Gravesteijn
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Annet Z Brouwers-Vos
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha van der Meer
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Suzan Datema
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jonas Salzbrunn
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gerwin Huls
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Roy Baas
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, RIMLS, Radboud University, Nijmegen, The Netherlands
| | - Vincent van den Boom
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
15
|
Orr JN, Waugh R, Colas I. Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:667314. [PMID: 33897750 PMCID: PMC8058418 DOI: 10.3389/fpls.2021.667314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Meiosis is a specialized cell division which is essential to sexual reproduction. The success of this highly ordered process involves the timely activation, interaction, movement, and removal of many proteins. Ubiquitination is an extraordinarily diverse post-translational modification with a regulatory role in almost all cellular processes. During meiosis, ubiquitin localizes to chromatin and the expression of genes related to ubiquitination appears to be enhanced. This may be due to extensive protein turnover mediated by proteasomal degradation. However, degradation is not the only substrate fate conferred by ubiquitination which may also mediate, for example, the activation of key transcription factors. In plant meiosis, the specific roles of several components of the ubiquitination cascade-particularly SCF complex proteins, the APC/C, and HEI10-have been partially characterized indicating diverse roles in chromosome segregation, recombination, and synapsis. Nonetheless, these components remain comparatively poorly understood to their counterparts in other processes and in other eukaryotes. In this review, we present an overview of our understanding of the role of ubiquitination in plant meiosis, highlighting recent advances, remaining challenges, and high throughput methods which may be used to overcome them.
Collapse
Affiliation(s)
- Jamie N. Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
16
|
Mono-ubiquitination of Rabphilin 3A by UBE3A serves a non-degradative function. Sci Rep 2021; 11:3007. [PMID: 33542309 PMCID: PMC7862399 DOI: 10.1038/s41598-021-82319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.
Collapse
|
17
|
Hansen FM, Tanzer MC, Brüning F, Bludau I, Stafford C, Schulman BA, Robles MS, Karayel O, Mann M. Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nat Commun 2021; 12:254. [PMID: 33431886 PMCID: PMC7801436 DOI: 10.1038/s41467-020-20509-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein ubiquitination is involved in virtually all cellular processes. Enrichment strategies employing antibodies targeting ubiquitin-derived diGly remnants combined with mass spectrometry (MS) have enabled investigations of ubiquitin signaling at a large scale. However, so far the power of data independent acquisition (DIA) with regards to sensitivity in single run analysis and data completeness have not yet been explored. Here, we develop a sensitive workflow combining diGly antibody-based enrichment and optimized Orbitrap-based DIA with comprehensive spectral libraries together containing more than 90,000 diGly peptides. This approach identifies 35,000 diGly peptides in single measurements of proteasome inhibitor-treated cells - double the number and quantitative accuracy of data dependent acquisition. Applied to TNF signaling, the workflow comprehensively captures known sites while adding many novel ones. An in-depth, systems-wide investigation of ubiquitination across the circadian cycle uncovers hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within individual membrane protein receptors and transporters, highlighting new connections between metabolism and circadian regulation.
Collapse
Affiliation(s)
- Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria C Tanzer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franziska Brüning
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany.
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
Wu C, Ba Q, Lu D, Li W, Salovska B, Hou P, Mueller T, Rosenberger G, Gao E, Di Y, Zhou H, Fornasiero EF, Liu Y. Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Dev Cell 2020; 56:111-124.e6. [PMID: 33238149 DOI: 10.1016/j.devcel.2020.10.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 02/02/2023]
Abstract
To date, the effects of specific modification types and sites on protein lifetime have not been systematically illustrated. Here, we describe a proteomic method, DeltaSILAC, to quantitatively assess the impact of site-specific phosphorylation on the turnover of thousands of proteins in live cells. Based on the accurate and reproducible mass spectrometry-based method, a pulse labeling approach using stable isotope-labeled amino acids in cells (pSILAC), phosphoproteomics, and a unique peptide-level matching strategy, our DeltaSILAC profiling revealed a global, unexpected delaying effect of many phosphosites on protein turnover. We further found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness, enriched in Cyclin-dependent kinase substrates, and evolutionarily conserved, whereas the glutamic acids surrounding phosphosites significantly delay protein turnover. Our method represents a generalizable approach and provides a rich resource for prioritizing the effects of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology.
Collapse
Affiliation(s)
- Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Qian Ba
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pingfu Hou
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Torsten Mueller
- German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | | | - Erli Gao
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Yi Di
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Vere G, Kealy R, Kessler BM, Pinto-Fernandez A. Ubiquitomics: An Overview and Future. Biomolecules 2020; 10:E1453. [PMID: 33080838 PMCID: PMC7603029 DOI: 10.3390/biom10101453] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| | - Rachel Kealy
- St Anne’s College, University of Oxford, Oxford OX2 6HS, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute (CAMS), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| |
Collapse
|
20
|
Zhan H, Song L, Kamran A, Han F, Li B, Zhou Z, Liu T, Shen L, Li Y, Wang F, Yang J. Comprehensive Proteomic Analysis of Lysine Ubiquitination in Seedling Leaves of Nicotiana tabacum. ACS OMEGA 2020; 5:20122-20133. [PMID: 32832766 PMCID: PMC7439365 DOI: 10.1021/acsomega.0c01741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Lysine ubiquitination, a widely studied posttranslational modification, plays vital roles in various biological processes in eukaryotic cells. Although several studies have examined the plant ubiquitylome, no such research has been performed in tobacco, a model plant for molecular biology. Here, we comprehensively analyzed lysine ubiquitination in tobacco (Nicotiana tabacum) using LC-MS/MS along with highly sensitive immune-affinity purification. In total, 964 lysine-ubiquitinated (Kub) sites were identified in 572 proteins. Extensive bioinformatics studies revealed the distribution of these proteins in various cellular locations, including the cytoplasm, chloroplast, nucleus, and plasma membrane. Notably, 25% of the Kub proteins were located in the chloroplast of which 21 were enzymatically involved in important pathways, that is, photosynthesis and carbon fixation. Western blot analysis indicated that TMV infection can cause changes in ubiquitination levels. This is the first comprehensive proteomic analysis of lysine ubiquitination in tobacco, illustrating the vital role of ubiquitination in various physiological and biochemical processes and representing a valuable addition to the existing landscape of lysine ubiquitination.
Collapse
Affiliation(s)
- Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ali Kamran
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fei Han
- State
Tobacco Monopoly Administration, Beijing 100045, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Zhicheng Zhou
- Hunan
Tobacco Science Institute, Changsha 410004, China
| | - Tianbo Liu
- Hunan
Tobacco Science Institute, Changsha 410004, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- wangfenglong@ caas.cn
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- . Tel.: +86-532-88703236
| |
Collapse
|
21
|
Zhang D, Hu Y, Zhu Q, Huang J, Chen Y. Proteomic interrogation of antibiotic resistance and persistence in Escherichia coli - progress and potential for medical research. Expert Rev Proteomics 2020; 17:393-409. [PMID: 32567419 DOI: 10.1080/14789450.2020.1784731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction Escherichia coli strains possess two survival strategies to endure lethal antibiotic exposure including antibiotic resistance and persistence, in which persistence can contribute to the emergence of antibiotic resistance and increasing the risk of multidrug resistance. Using high-throughput proteomics for the comprehensive understanding of mechanisms of antibiotic resistance and persistence is an effective strategy for development of target-based anti-bacterial therapies. Areas covered In this review, we summarize a comprehensive proteomic perspective of antibiotic resistance and persistence in E. coli, and overview of anti-antibiotic resistance and anti-persister molecules and strategies for the development of potential therapies. Expert opinion Proteomics allows us to globally identify the critical proteins and pathways involved in antibiotic resistance and persistence. Advancements in methodologies of proteomics and multi-omic strategies are required to overcome the limitations of proteomics and better understand mechanisms of antibiotic resistance and persistence in E. coli, and to open the possibility for identification of new targets for alternative strategies in therapeutics.
Collapse
Affiliation(s)
- Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Qiuqiang Zhu
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| | - Jiafu Huang
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China.,Engineering Technological Center of Mushroom Industry , Zhangzhou, China
| | - Yiyun Chen
- School of Biological Science and Biotechnology, Minnan Normal University , Zhangzhou, China
| |
Collapse
|
22
|
Salvaing J, Botella C, Albrieux C, Gros V, Block MA, Jouhet J. PUB11-Dependent Ubiquitination of the Phospholipid Flippase ALA10 Modifies ALA10 Localization and Affects the Pool of Linolenic Phosphatidylcholine. FRONTIERS IN PLANT SCIENCE 2020; 11:1070. [PMID: 32760418 PMCID: PMC7373794 DOI: 10.3389/fpls.2020.01070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 05/02/2023]
Abstract
Biogenesis of photosynthetic membranes depends on galactolipid synthesis, which relies on several cell compartments, notably the endoplasmic reticulum (ER) and the chloroplast envelope. Galactolipid synthesis involves lipid trafficking between both membrane compartments. In Arabidopsis, ALA10, a phospholipid flippase of the P4 type-ATPase family, counteracts the limitation of monogalactosyldiacylglycerol (MGDG) production and has a positive effect on leaf development. ALA10 locates in distinct domains of the ER depending on the ALIS (ALA interacting subunit) subunit it interacts with: close to the plasma membrane with ALIS1, or next to chloroplasts with ALIS5. It interacts with FAD2 (Fatty acid desaturase 2) and prevents accumulation of linolenic (18:3) containing phosphatidylcholine (PC) stimulating an increase of MGDG synthesis. Here we report that ALA10 interacts with PUB11 (plant U-box type 11), an E3 protein ubiquitin ligase, in vitro and in vivo. ALA10 is however ubiquitinated and degraded by the 26S proteasome in a PUB11-independent process. In pub11 null mutant, the proteasome-dependent degradation of ALA10 is retained and ALA10 is still subject to ubiquitination although its ubiquitination profile appears different. In the absence of PUB11, ALA10 is constrained to the ER close to chloroplasts, which is the usual location when ALA10 is overexpressed. Additionally, in this condition, the decrease of 18:3 containing PC is no longer observed. Taken together these results suggest, that ALA10 contributes in chloroplast-distal ER interacting domains, to reduce the 18:3 desaturation of PC and that PUB11 is involved in reconditioning of ALA10 from chloroplast-proximal to chloroplast-distal ER interacting domains.
Collapse
|
23
|
Sap KA, Guler AT, Bezstarosti K, Bury AE, Juenemann K, Demmers JA, Reits EA. Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains. Mol Cell Proteomics 2019; 18:1705-1720. [PMID: 31138642 PMCID: PMC6731087 DOI: 10.1074/mcp.ra119.001486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/21/2019] [Indexed: 01/31/2023] Open
Abstract
Huntington's disease is caused by a polyglutamine repeat expansion in the huntingtin protein which affects the function and folding of the protein, and results in intracellular protein aggregates. Here, we examined whether this mutation leads to altered ubiquitination of huntingtin and other proteins in both soluble and insoluble fractions of brain lysates of the Q175 knock-in Huntington's disease mouse model and the Q20 wild-type mouse model. Ubiquitination sites are detected by identification of Gly-Gly (diGly) remnant motifs that remain on modified lysine residues after digestion. We identified K6, K9, K132, K804, and K837 as endogenous ubiquitination sites of soluble huntingtin, with wild-type huntingtin being mainly ubiquitinated at K132, K804, and K837. Mutant huntingtin protein levels were strongly reduced in the soluble fraction whereas K6 and K9 were mainly ubiquitinated. In the insoluble fraction increased levels of huntingtin K6 and K9 diGly sites were observed for mutant huntingtin as compared with wild type. Besides huntingtin, proteins with various roles, including membrane organization, transport, mRNA processing, gene transcription, translation, catabolic processes and oxidative phosphorylation, were differently expressed or ubiquitinated in wild-type and mutant huntingtin brain tissues. Correlating protein and diGly site fold changes in the soluble fraction revealed that diGly site abundances of most of the proteins were not related to protein fold changes, indicating that these proteins were differentially ubiquitinated in the Q175 mice. In contrast, both the fold change of the protein level and diGly site level were increased for several proteins in the insoluble fraction, including ubiquitin, ubiquilin-2, sequestosome-1/p62 and myo5a. Our data sheds light on putative novel proteins involved in different cellular processes as well as their ubiquitination status in Huntington's disease, which forms the basis for further mechanistic studies to understand the role of differential ubiquitination of huntingtin and ubiquitin-regulated processes in Huntington's disease.
Collapse
Affiliation(s)
- Karen A Sap
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Arzu Tugce Guler
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Karel Bezstarosti
- §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Aleksandra E Bury
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Katrin Juenemann
- ¶Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin, Robert-Roessle-St. 10 13089 Berlin, Germany
| | - JeroenA A Demmers
- §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Eric A Reits
- ‡Department of Medical Biology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|
25
|
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, Berindan-Neagoe I. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer "Omics". Int J Mol Sci 2019; 20:ijms20102576. [PMID: 31130665 PMCID: PMC6567119 DOI: 10.3390/ijms20102576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is an essential analytical technology on which the emerging omics domains; such as genomics; transcriptomics; proteomics and metabolomics; are based. This quantifiable technique allows for the identification of thousands of proteins from cell culture; bodily fluids or tissue using either global or targeted strategies; or detection of biologically active metabolites in ultra amounts. The routine performance of MS technology in the oncological field provides a better understanding of human diseases in terms of pathophysiology; prevention; diagnosis and treatment; as well as development of new biomarkers; drugs targets and therapies. In this review; we argue that the recent; successful advances in MS technologies towards cancer omics studies provides a strong rationale for its implementation in biomedicine as a whole.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Mihail Buse
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lavinia Lorena Pruteanu
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cristina Adela Iuga
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca.
| | - Ovidiu Coza
- Department of Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca.
| | - Ioana Berindan-Neagoe
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuțǎ Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca.
| |
Collapse
|
26
|
Dybas JM, O'Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4 + T cells. Nat Immunol 2019; 20:747-755. [PMID: 31061531 DOI: 10.1038/s41590-019-0381-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4+ T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation. Analysis of ubiquitylated proteins identified by di-glycine remnant profiling indicated that activation of CD4+ T cells led to an increase in non-degradative ubiquitylation. This correlated with an increase in non-proteasome-targeted K29, K33 and K63 polyubiquitin chains. This study revealed over 1,200 proteins that were ubiquitylated in primary mouse CD4+ T cells and highlighted the relevance of non-proteasomally targeted ubiquitin chains in T cell signaling.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Claire E O'Leary
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula M Oliver
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Li N, Li H, Cao L, Zhan X. Quantitative analysis of the mitochondrial proteome in human ovarian carcinomas. Endocr Relat Cancer 2018; 25:909-931. [PMID: 29997262 DOI: 10.1530/erc-18-0243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Mitochondria play important roles in growth, signal transduction, division, tumorigenesis and energy metabolism in epithelial ovarian carcinomas (EOCs) without an effective biomarker. To investigate the proteomic profile of EOC mitochondrial proteins, a 6-plex isobaric tag for relative and absolute quantification (iTRAQ) proteomics was used to identify mitochondrial expressed proteins (mtEPs) in EOCs relative to controls, followed by an integrative analysis of the identified mtEPs and the Cancer Genome Atlas (TCGA) data from 419 patients. A total of 5115 quantified proteins were identified from purified mitochondrial samples, and 262 proteins were significantly related to overall survival in EOC patients. Furthermore, 63 proteins were identified as potential biomarkers for the development of an EOC, and our findings were consistent with previous reports on a certain extent. Pathway network analysis identified 70 signaling pathways. Interestingly, the results demonstrated that cancer cells exhibited an increased dependence on mitophagy, such as peroxisome, phagosome, lysosome, valine, leucine and isoleucine degradation and fatty acid degradation pathways, which might play an important role in EOC invasion and metastasis. Five proteins (GLDC, PCK2, IDH2, CPT2 and HMGCS2) located in the mitochondrion and enriched pathways were selected for further analysis in an EOC cell line and tissues, and the results confirmed reliability of iTRAQ proteomics. These findings provide a large-scale mitochondrial proteomic profiling with quantitative information, a certain number of potential protein biomarkers and a novel vision in the mitophagy bio-mechanism of a human ovarian carcinoma.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huanni Li
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lanqin Cao
- Department of Obstetrics and GynecologyXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug DesignXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer DrugsXiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The Laboratory of Medical GeneticsCentral South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|