1
|
Chen L, Ni C, Lu D, Zhang S, Li Y, Wang D, Hua B, Ni H, Xu L, Yao M. Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα. Neuropharmacology 2025; 266:110284. [PMID: 39725125 DOI: 10.1016/j.neuropharm.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research. This study aimed to systematically investigate the analgesic effects of C16 in rats with BCP induced by MADB 106 breast cancer cells (MADB 106-induced BCP) and elucidate the underlying molecular mechanisms. A range of experimental methods, including kinase profiling, transcriptome sequencing, behavioral tests, immunofluorescence, and biochemical analyses, were employed to comprehensively assess the role of C16 in the MADB 106-induced BCP model. The results indicated that C16 significantly alleviated bone cancer pain induced by Luciferin-MADB 106 cells (10ˆ6 cells) in a dose-dependent manner. Importantly, kinase profiling and validation experiments identified CaMKIα in spinal dorsal horn neurons as the primary target of C16's analgesic effect on MADB 106-induced BCP. Continuous intrathecal administration of C16 markedly suppressed the expression of CREB and P-CREB and reduced the expression of neuroligin 2 in the spinal cords of BCP rats, thereby clarifying the mechanism of action of C16 in alleviating MADB 106-induced BCP. These findings suggest that C16 possesses significant therapeutic potential for mitigating MADB 106-induced BCP nociceptive hypersensitivity, providing a foundation for the future development of novel drugs targeting MADB 106-induced BCP. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Liping Chen
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dashan Lu
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Shuyao Zhang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Yuhua Li
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Dongjie Wang
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Bohan Hua
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| | - Ming Yao
- The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
2
|
Esmaili F, Qin Y, Wang D, Xu D. Kinase-substrate prediction using an autoregressive model. Comput Struct Biotechnol J 2025; 27:1103-1111. [PMID: 40190572 PMCID: PMC11968300 DOI: 10.1016/j.csbj.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 04/09/2025] Open
Abstract
Kinase-specific phosphorylation plays a critical role in cellular signaling and various diseases. However, even in model organisms, the substrates of most kinases remain unidentified. Currently, there is no reliable method to predict kinase-substrate relationships. In this study, we introduce an innovative approach leveraging an autoregressive model to predict kinase-substrate pairs. Unlike traditional methods focused on predicting site-specific phosphorylation, our approach addresses kinase-specific protein substrate prediction at the protein level. We redefine this problem as a special type of protein-protein interaction prediction task. Our model integrates protein large language model ESM-2 as the encoder and employs an autoregressive decoder to classify protein-kinase interactions in a binary fashion. We adopted a hard negative strategy, based on kinase embedding distances generated from ESM-2, to compel the model to effectively distinguish positive from negative data. We conducted a top‑k analysis to assess how well our model can prioritize the most likely kinase candidates. Our method is also capable of zero-shot prediction, meaning it can predict substrates for a kinase in case of no known substrates, which cannot be achieved by site-specific prediction methods. Our model's robust generalization to novel kinase and underrepresented groups showcases its versatility and broad utility. Code and data are available at https://github.com/farz1995/substrate_kinase_prediction.
Collapse
Affiliation(s)
- Farzaneh Esmaili
- Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yongfang Qin
- Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Duolin Wang
- Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Fan M, Hu J, Xu X, Chen J, Zhang W, Zheng X, Pan J, Xu W, Feng S. Mass spectrometry-based multi-omics analysis reveals distinct molecular features in early and advanced stages of hepatocellular carcinoma. Heliyon 2024; 10:e38182. [PMID: 39381095 PMCID: PMC11456867 DOI: 10.1016/j.heliyon.2024.e38182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) is a serious primary solid tumor that is prevalent worldwide. Due to its high mortality rate, it is crucial to explore both early diagnosis and advanced treatment for HCC. In recent years, multi-omics approaches have emerged as promising tools to identify biomarkers and investigate molecular mechanisms of biological processes and diseases. In this study, we performed proteomics, phosphoproteomics, metabolomics, and lipidomics to reveal the molecular features of early- and advanced-stage HCC. The data obtained from these omics were analyzed separately and then integrated to provide a comprehensive understanding of the disease. The multi-omics results unveiled intricate biological pathways and interaction networks underlying the initiation and progression of HCC. Moreover, we proposed specific potential biomarker panels for both early- and advanced-stage HCC by overlapping our data with CPTAC database for HCC diagnosis, and deduced novel insights and mechanisms related to HCC origination and development, such as glucose depletion during tumor progression, ROCK1 deactivation and GSK3A activation.
Collapse
Affiliation(s)
- Mingzhu Fan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jin Hu
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoyan Xu
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Jia Chen
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenwen Zhang
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Xiaoping Zheng
- Pathology Department, Shulan (Hangzhou) Hospital, Hangzhou, 311112, Zhejiang, China
| | - Jinheng Pan
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wei Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Hangzhou Tongchuang Medical Laboratory, Shulan Health Group, Hangzhou, 310015, Zhejiang, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, 310024, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
4
|
Tozuka T, Noro R, Yoshida K, Takahashi S, Hirao M, Matsuda K, Kato Y, Nakamichi S, Takeuchi S, Matsumoto M, Miyanaga A, Kunugi S, Honda K, Adachi J, Seike M. Phosphoproteomic Analysis Identified Mutual Phosphorylation of FAK and Src as a Mechanism of Osimertinib Resistance in EGFR-Mutant Lung Cancer. JTO Clin Res Rep 2024; 5:100668. [PMID: 38646155 PMCID: PMC11031815 DOI: 10.1016/j.jtocrr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Osimertinib is a standard treatment for patients with EGFR-mutant NSCLC. Although some osimertinib resistance mechanisms have been identified, nearly 50% of the mechanisms remain to be elucidated. This study was aimed at identifying non-genetic mechanisms underlying osimertinib resistance. Methods We established two osimertinib-resistant cell lines from EGFR mutation-positive PC-9 and HCC827 NSCLC cell lines (PC-9OR and HCC827OR, respectively) using a stepwise method. We compared the phosphoproteomic profiles of the osimertinib-resistant and parental cells using mass spectrometry. Upstream kinases were identified using the application Kinase Enrichment Analysis version 3. Results Phosphoproteomic analysis revealed 80 phosphorylation sites that were mutually up-regulated in PC-9OR and HCC827OR cells. The Kinase Enrichment Analysis version 3 analysis identified focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src) as upstream kinases of these up-regulated phosphoproteins. The small-interfering RNA-mediated knockdown of FAK reduced Src phosphorylation and that of Src reduced FAK phosphorylation in both cell lines. Furthermore, FAK- or Src-specific small-interfering RNA treatments restored EGFR phosphorylation in PC-9OR and HCC827OR cells. The combination of FAK and Src inhibitors inhibited PC-9OR and HCC827OR cell proliferation in vitro and suppressed tumor growth in a xenograft mouse model. Immunohistochemistry of tumors from patients with EGFR-mutant NSCLC suggested that phosphorylated FAK and Src are involved in initial and acquired resistance to osimertinib. Conclusions Phosphoproteomic analysis may help elucidate the mechanisms of resistance to molecular-targeted therapies in lung cancer. Mutual phosphorylation of FAK and Src is involved in osimertinib resistance. Thus, FAK and Src inhibition may be novel treatment strategies for osimertinib-resistant NSCLC.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Keisuke Yoshida
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Kato
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kazufumi Honda
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Institution for Advanced Medical Science, Nippon Medical School, Tokyo, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
5
|
Mestareehi A, Abu-Farsakh N. Impact of Protein Phosphatase Expressions on the Prognosis of Hepatocellular Carcinoma Patients. ACS OMEGA 2024; 9:10299-10331. [PMID: 38463290 PMCID: PMC10918787 DOI: 10.1021/acsomega.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
The study was conducted to unveil the significance of protein phosphatases in the prognosis of hepatocellular carcinoma (HCC) patients and its related molecular biological attributes as well as to discover novel potential biomarkers for therapeutic significance and diagnostic purposes that may benefit clinical practice. Analyzing a data set from 159 HCC patients using high-throughput phosphoproteomics, we examined the dysregulated expression of protein phosphatases. Employing bioinformatic and pathway analyses, we explored differentially expressed genes linked to protein phosphatases. A protein-protein interaction network was constructed using the search tool for the retrieval of interacting genes/proteins database. We quantified a total of 11,547 phosphorylation sites associated with 4043 phosphoproteins from HCC patients. Within this data set, we identified 105 identified phosphorylation sites associated with protein phosphatases; 28 genes were upregulated and 3 were downregulated in HCC. Enriched pathways using Gene Set Enrichment Analysis encompassed oocyte meiosis, proteoglycans in cancer, the oxytocin signaling pathway, the cGMP-PKG signaling pathway, the vascular smooth muscle, and the cAMP signaling pathway. The Kyoto encyclopedia of genes and genomes (KEGG) analysis highlighted pathways like mitogen-activated protein kinase, AMPK, and PI3K-Akt, indicating potential involvement in HCC progression. Notably, the PPI network identified hub genes, emphasizing their interconnections and potential roles in HCC. In our study, we found significantly upregulated levels of CDC25C, PPP1R13L, and PPP1CA, which emerge as promising avenues. This significant expression could serve as potent diagnostic and prognostic markers to enhance the effectiveness of HCC cancer treatment, offering efficiency and accuracy in patient assessment. The findings regarding protein phosphatases reveal their elevated expression in HCC, correlating with unfavorable prognosis. Moreover, the outcomes of gene ontology and KEGG pathway analyses suggest that protein phosphatases may influence liver cancer by engaging diverse targets and pathways, ultimately fostering the progression of HCC. These results underscore the substantial potential of protein phosphatases as key contributors to HCC's development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance the comprehension of the intricate molecular mechanisms underpinning HCC.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
| | - Noor Abu-Farsakh
- Department
of Gastroenterology and Hepatology, Internal Medicine Department, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
6
|
Huang Y, Shao X, Liu Y, Yan K, Ying W, He F, Wang D. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples. Anal Chem 2023; 95:17974-17980. [PMID: 38011496 DOI: 10.1021/acs.analchem.3c02623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Global phosphoproteome profiling can provide insights into cellular signaling and disease pathogenesis. To achieve comprehensive phosphoproteomic analyses with minute quantities of material, we developed a rapid and sensitive phosphoproteomics sample preparation strategy based on ultrasound. We found that ultrasonication-assisted digestion can significantly improve peptide identification by 20% due to the generation of longer peptides that can be detected by mass spectrometry. By integrating this rapid ultrasound-assisted peptide-identification-enhanced proteomic method (RUPE) with streamlined phosphopeptide enrichment steps, we established RUPE-phospho, a fast and efficient strategy to characterize protein phosphorylation in mass-limited samples. This approach dramatically reduces the sample loss and processing time: 24 samples can be processed in 3 h; 5325 phosphosites, 4549 phosphopeptides, and 1888 phosphoproteins were quantified from 5 μg of human embryonic kidney (HEK) 293T cell lysate. In addition, 9219 phosphosites were quantified from 1-2 mg of OCT-embedded mouse brain with 120 min streamlined RUPE-phospho workflow. RUPE-phospho facilitates phosphoproteome profiling for microscale samples and will provide a powerful tool for proteomics-driven precision medicine research.
Collapse
Affiliation(s)
- Yuanxuan Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuanyuan Liu
- The π-HuB Project Infrastructure, Guangzhou 510000, China
| | - Kehan Yan
- The π-HuB Project Infrastructure, Guangzhou 510000, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
- The π-HuB Project Infrastructure, Guangzhou 510000, China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Dongxue Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Science-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
- The π-HuB Project Infrastructure, Guangzhou 510000, China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
7
|
Schraink T, Blumenberg L, Hussey G, George S, Miller B, Mathew N, González-Robles TJ, Sviderskiy V, Papagiannakopoulos T, Possemato R, Fenyö D, Ruggles KV. PhosphoDisco: A Toolkit for Co-regulated Phosphorylation Module Discovery in Phosphoproteomic Data. Mol Cell Proteomics 2023; 22:100596. [PMID: 37394063 PMCID: PMC10416063 DOI: 10.1016/j.mcpro.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Kinases are key players in cancer-relevant pathways and are the targets of many successful precision cancer therapies. Phosphoproteomics is a powerful approach to study kinase activity and has been used increasingly for the characterization of tumor samples leading to the identification of novel chemotherapeutic targets and biomarkers. Finding co-regulated phosphorylation sites which represent potential kinase-substrate sets or members of the same signaling pathway allows us to harness these data to identify clinically relevant and targetable alterations in signaling cascades. Unfortunately, studies have found that databases of co-regulated phosphorylation sites are only experimentally supported in a small number of substrate sets. To address the inherent challenge of defining co-regulated phosphorylation modules relevant to a given dataset, we developed PhosphoDisco, a toolkit for determining co-regulated phosphorylation modules. We applied this approach to tandem mass spectrometry based phosphoproteomic data for breast and non-small cell lung cancer and identified canonical as well as putative new phosphorylation site modules. Our analysis identified several interesting modules in each cohort. Among these was a new cell cycle checkpoint module enriched in basal breast cancer samples and a module of PRKC isozymes putatively co-regulated by CDK12 in lung cancer. We demonstrate that modules defined by PhosphoDisco can be used to further personalized cancer treatment strategies by establishing active signaling pathways in a given patient tumor or set of tumors, and in providing new ways to classify tumors based on signaling activity.
Collapse
Affiliation(s)
- Tobias Schraink
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Lili Blumenberg
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Grant Hussey
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sabrina George
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Brecca Miller
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Nithu Mathew
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Tania J González-Robles
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Vladislav Sviderskiy
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Kelly V Ruggles
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Wang AJ, Song D, Hong YM, Liu NN. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age. Mol Omics 2023; 19:283-296. [PMID: 36916422 DOI: 10.1039/d2mo00288d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Colorectal cancer (CRC) is a multifactorial heterogeneous disease largely due to both genetic predisposition and environmental factors including the gut microbiota, a dynamic microbial ecosystem inhabiting the gastrointestinal tract. Elucidation of the molecular mechanisms by which the gut microbiota interacts with the host may contribute to the pathogenesis, diagnosis, and promotion of CRC. However, deciphering the influence of genetic variants and interactions with the gut microbial ecosystem is rather challenging. Despite recent advancements in single omics analysis, the application of multi-omics approaches to integrate multiple layers of information in the microbiome and host to introduce effective prevention, diagnosis, and treatment strategies is still in its infancy. Here, we integrate host- and microbe-based multi-omics studies, respectively, to provide a strategy to explore potential causal relationships between gut microbiota and colorectal cancer. Specifically, we summarize the recent multi-omics studies such as metagenomics combined with metabolomics and metagenomics combined with genomics. Meanwhile, the sample size and sample types commonly used in multi-omics research, as well as the methods of data analysis, were also generalized. We highlight multiple layers of information from multi-omics that need to be verified by different types of models. Together, this review provides new insights into the clinical diagnosis and treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- An-Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Yue-Mei Hong
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
9
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
11
|
Xu M, Liu X, Wang Q, Zhu Y, Jia C. Phosphoproteomic analysis reveals the effects of sleep deprivation on the hippocampus in mice. Mol Omics 2022; 18:677-685. [PMID: 35776070 DOI: 10.1039/d2mo00061j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sleep is essential for brain physiology, including nerve repair, neuronal activity, and metabolite clearance. The hippocampus is responsible for short-term memory, long-term memory, and spatial positioning. Herein, we investigated the effects of sleep deprivation on protein phosphorylation and related signaling pathways in the mouse hippocampus. The treatment group was sleep deprived for nine hours a day, and at the end of sleep deprivation, we removed the hippocampus for phosphoproteomic analysis. Through this analysis, we identified 65 sites and 27 proteins whose phosphorylation was significantly different between sleep-deprived animals and control animals. Differentially phosphorylated proteins (DPPs) were mainly distributed in the postsynaptic density, cytoplasm, and synapse. They participated in metabolic pathways, endocytosis, oxidative phosphorylation and other processes, and they were associated with Huntington's disease, Parkinson's disease, Alzheimer's disease, etc. Functional analysis of the phosphoproteome shows that sleep deprivation significantly affects the level of protein phosphorylation in the hippocampus of mice. This is the first reported study that has used phosphoproteomics to investigate the effects of sleep deprivation on hypothalamic regions. This study provides data resources that can serve as a valuable reference for sleep mechanism research, sleep disorder treatment, and drug development.
Collapse
Affiliation(s)
- Mengting Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xinyue Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China. .,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianqian Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Yunping Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
12
|
Xu N, Yao Z, Shang G, Ye D, Wang H, Zhang H, Qu Y, Xu F, Wang Y, Qin Z, Zhu J, Zhang F, Feng J, Tian S, Liu Y, Zhao J, Hou J, Guo J, Hou Y, Ding C. Integrated proteogenomic characterization of urothelial carcinoma of the bladder. J Hematol Oncol 2022; 15:76. [PMID: 35659036 PMCID: PMC9164575 DOI: 10.1186/s13045-022-01291-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Urothelial carcinoma (UC) is the most common pathological type of bladder cancer, a malignant tumor. However, an integrated multi-omics analysis of the Chinese UC patient cohort is lacking. Methods We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 116 Chinese UC patients, comprising 45 non-muscle-invasive bladder cancer patients (NMIBCs) and 71 muscle-invasive bladder cancer patients (MIBCs). Result Proteogenomic integration analysis indicated that SND1 and CDK5 amplifications on chromosome 7q were associated with the activation of STAT3, which was relevant to tumor proliferation. Chromosome 5p gain in NMIBC patients was a high-risk factor, through modulating actin cytoskeleton implicating in tumor cells invasion. Phosphoproteomic analysis of tumors and morphologically normal human urothelium produced UC-associated activated kinases, including CDK1 and PRKDC. Proteomic analysis identified three groups, U-I, U-II, and U-III, reflecting distinct clinical prognosis and molecular signatures. Immune subtypes of UC tumors revealed a complex immune landscape and suggested the amplification of TRAF2 related to the increased expression of PD-L1. Additionally, increased GARS, related to subtype U-II, was validated to promote pentose phosphate pathway by inhibiting activities of PGK1 and PKM2. Conclusions This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in urothelial carcinoma of the bladder. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01291-7.
Collapse
Affiliation(s)
- Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fujiang Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jianyuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.,Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Mees I, Tran H, Roberts A, Lago L, Li S, Roberts BR, Hannan AJ, Renoir T. Quantitative Phosphoproteomics Reveals Extensive Protein Phosphorylation Dysregulation in the Cerebral Cortex of Huntington's Disease Mice Prior to Onset of Symptoms. Mol Neurobiol 2022; 59:2456-2471. [PMID: 35083661 DOI: 10.1007/s12035-021-02698-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation plays a role in many important cellular functions such as cellular plasticity, gene expression, and intracellular trafficking. All of these are dysregulated in Huntington's disease (HD), a devastating neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene. However, no studies have yet found protein phosphorylation differences in preclinical HD mouse models. Our current study investigated changes occurring in the cortical phosphoproteome of 8-week-old (prior to motor deficits) and 20-week-old (fully symptomatic) R6/1 transgenic HD mice. When comparing 8-week-old HD mice with their wild-type (WT) littermates, we found 660 peptides differentially phosphorylated, which were mapped to 227 phosphoproteins. These proteins were mainly involved in synaptogenesis, cytoskeleton organization, axon development, and nervous system development. Tau protein, found hyperphosphorylated at multiple sites in early symptomatic HD mice, also appeared as a main upstream regulator for the changes observed. Surprisingly, we found fewer changes in the phosphorylation profile of HD mice at the fully symptomatic stage, with 29 peptides differentially phosphorylated compared to WT mice, mapped to 25 phosphoproteins. These proteins were involved in cAMP signaling, dendrite development, and microtubule binding. Furthermore, huntingtin protein appeared as an upstream regulator for the changes observed at the fully symptomatic stage, suggesting impacts on kinases and phosphatases that extend beyond the mutated polyglutamine tract. In summary, our findings show that the most extensive changes in the phosphorylation machinery appear at an early presymptomatic stage in HD pathogenesis and might constitute a new target for the development of treatments.
Collapse
Affiliation(s)
- Isaline Mees
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anne Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Larissa Lago
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Blaine R Roberts
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
14
|
Yang W, Lei C, Song S, Jing W, Jin C, Gong S, Tian H, Guo T. Immune checkpoint blockade in the treatment of malignant tumor: current statue and future strategies. Cancer Cell Int 2021; 21:589. [PMID: 34727927 PMCID: PMC8565029 DOI: 10.1186/s12935-021-02299-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/24/2021] [Indexed: 01/08/2023] Open
Abstract
After being stagnant for decades, there has finally been a paradigm shift in the treatment of cancer with the emergence and application of immune checkpoint inhibitors (ICIs). The most extensively utilized ICIs are targeting the pathways involving programmed death-1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4). PD-1, as an crucial immune inhibitory molecule, by and large reasons the immune checkpoint response of T cells, making tumor cells get away from immune surveillance. Programmed cell death ligand-1 (PD-L1) is exceptionally expressed in most cancers cells and approves non-stop activation of the PD-1 pathway in the tumor microenvironment. PD-1/PD-L1 inhibitors can block the combination of PD-1 and PD-L1, inhibit hostile to regulatory signals, and restore the activity of T cells, thereby bettering immune response. The current researchers assume that the efficacy of these drugs is related to PD-L1 expression in tumor tissue, tumor mutation burden (TMB), and other emerging biomarkers. Although malignant tumors can benefit from the immunotherapy of PD-1/PD-L1 inhibitors, formulating a customized medication model and discovering biomarkers that can predict efficacy are the new trend in the new era of malignant tumor immunotherapy. This review summarizes the mechanism of action of PD-1/PD-L1 inhibitors, their clinical outcomes on various malignant tumors, their efficacy biomarkers, as well as predictive markers of irAEs.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Caining Lei
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medicine College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Shaoming Song
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Wutang Jing
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chuanwei Jin
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medicine College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, People's Republic of China
| | - Shiyi Gong
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Hongwei Tian
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Tiankang Guo
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
15
|
Eom SY, Kim MM. The inhibitory effect of Agrimonia Pilosa methanolic extract on matrix metalloproteinases in HT1080 cells. J Food Biochem 2021; 45:e13894. [PMID: 34374443 DOI: 10.1111/jfbc.13894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
The risk of cancer increases with aging due to the accumulation of cellular deterioration that can spread to other organs through the blood and lymphatic vessels. Therefore, the inhibition of metastasis is a major concern for the treatment of cancer. Several synthetic drugs have been developed for the treatment of various cancers. However, these drugs are effective; nonspecific action and side effects on the normal human cells limit their wide acceptance, thus demanding some potential alternative. Hence, the present study emphasizes investigating the effect of a methanolic extract of Agrimonia Pilosa (APLME) on matrix metalloproteinases (MMPs) in human fibroblast sarcoma cells. The action of APLME on MMP-2 and MMP-9 was investigated using gelatin zymography. APLME suppressed the activities of MMP-2 and MMP-9 in PMA (phorbol myristate acetate)-treated HT1080 cells. In addition, western blot analysis and immunofluorescence were performed to investigate the effect of APLME on the expression of the proteins that are the major proteins involved in cell invasion and metastasis. APLME treatment inhibited the expression of MMP-2 and MMP-9 in addition to the activations of JNK, ERK, and AKT-1. Furthermore, APLME was observed to suppress cell invasion related to metastasis using cell invasion assay. Therefore, the above findings indicate that APLME inhibits the expression activity of MMP-2 and MMP-9 via inactivation of ERK and JNK in addition to AKT-1, leading to inhibiting cell invasion. Therefore, these results indicate that APLME may be used as a candidate substance for inhibiting cell invasion. PRACTICAL APPLICATIONS: Cancer increases the cell invasion to other organs through the blood and lymphatic vessels. Cancer cells deplete the nutrients and create new blood vessels that infiltrate and metastasize to other tissues. Therefore, this present study examined the effect of Agrimonia Pilosa on cell invasion. It was found that Agrimonia Pilosa methanolic extract inhibited the invasion of cancer cells through the inactivation of ERK and JNK. In addition, APLME reduced the activation and protein expression of MMP-2 and MMP-9 in addition to AKT-1. Thus, APLME can be utilized as a potential alternative therapeutic agent for inhibiting metastasis.
Collapse
Affiliation(s)
- Su Yeon Eom
- Department of Applied Chemistry & Food Engineering, Dong-Eui University, Busan, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, Republic of Korea
| |
Collapse
|
16
|
Afrose SS, Junaid M, Akter Y, Tania M, Zheng M, Khan MA. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov Today 2020; 25:2294-2306. [PMID: 32721537 DOI: 10.1016/j.drudis.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
Kinases are enzymes that are important for cellular functions, but their overexpression has strong connections with carcinogenesis, rendering them important targets for anticancer drugs. Thymoquinone (TQ) is a natural compound with proven anticancer activities, at least in preclinical studies. TQ can target several kinases, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), polo-like kinase 1 (PLK1), and tyrosine kinase in different cancer cells and animal models. Inhibiting the activity of kinases or suppressing their expression might be among the mechanisms of TQ anticancer activity. In this review, we discuss the role of TQ in kinase regulation in different cancer models.
Collapse
Affiliation(s)
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
17
|
Li C, Sun YD, Yu GY, Cui JR, Lou Z, Zhang H, Huang Y, Bai CG, Deng LL, Liu P, Zheng K, Wang YH, Wang QQ, Li QR, Wu QQ, Liu Q, Shyr Y, Li YX, Chen LN, Wu JR, Zhang W, Zeng R. Integrated Omics of Metastatic Colorectal Cancer. Cancer Cell 2020; 38:734-747.e9. [PMID: 32888432 DOI: 10.1016/j.ccell.2020.08.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022]
Abstract
We integrate the genomics, proteomics, and phosphoproteomics of 480 clinical tissues from 146 patients in a Chinese colorectal cancer (CRC) cohort, among which 70 had metastatic CRC (mCRC). Proteomic profiling differentiates three CRC subtypes characterized by distinct clinical prognosis and molecular signatures. Proteomic and phosphoproteomic profiling of primary tumors alone successfully distinguishes cases with metastasis. Metastatic tissues exhibit high similarities with primary tumors at the genetic but not the proteomic level, and kinase network analysis reveals significant heterogeneity between primary colorectal tumors and their liver metastases. In vivo xenograft-based drug tests using 31 primary and metastatic tumors show personalized responses, which could also be predicted by kinase-substrate network analysis no matter whether tumors carry mutations in the drug-targeted genes. Our study provides a valuable resource for better understanding of mCRC and has potential for clinical application.
Collapse
Affiliation(s)
- Chen Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Di Sun
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guan-Yu Yu
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing-Ru Cui
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zheng Lou
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hang Zhang
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ya Huang
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen-Guang Bai
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lu-Lu Deng
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Peng Liu
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Kuo Zheng
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan-Hua Wang
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qin-Qin Wang
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Qing Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yu Shyr
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yi-Xue Li
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luo-Nan Chen
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Wei Zhang
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
18
|
Pu C, Zhao H, Gu Q, Zheng Y, Lan M. Targeted immobilization of titanium (IV) on magnetic mesoporous nanomaterials derived from metal-organic frameworks for high-efficiency phosphopeptide enrichment in biological samples. Mikrochim Acta 2020; 187:568. [PMID: 32929585 DOI: 10.1007/s00604-020-04556-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/07/2020] [Indexed: 10/24/2022]
Abstract
A selectively modified porous metal/carbon nanocomposite was fabricated to enhance the enrichment of low-abundance phosphopeptides from biological samples. The carbon matrix derived from the metal-organic framework provides a suitable pore size to allow the diffusion of peptides, while the deliberately modified metal nanoparticles within the pores enhance their interaction with the phosphopeptides. This nanocomposite shows extremely high enrichment selectivity for phosphopeptides in the MALDI-TOF MS detection, even when the molar ratio of α-casein digests versus bovine serum albumin digests was up to about 1:20,000. By combining such nanocomposite with nano-LC-MS/MS, 4556 unique phosphopeptides were identified with high selectivity (95.2%) from HeLa cell extracts. Furthermore, phosphopeptides from prostate tissue digests were also determined. A total of 277 and 1242 phosphopeptides were identified from normal and tumor tissues of a patient with prostate cancer, respectively. This indicates that phosphorylation and prostate cancer can be related to each other.
Collapse
Affiliation(s)
- Chenlu Pu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yu Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
19
|
Investigation of cancer drug resistance mechanisms by phosphoproteomics. Pharmacol Res 2020; 160:105091. [PMID: 32712320 DOI: 10.1016/j.phrs.2020.105091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Cancer cell mutations can be identified by genomic and transcriptomic techniques. However, they are not sufficient to understand the full complexity of cancer heterogeneity. Analyses of proteins expressed in cancers and their modification profiles show how these mutations could be translated at the functional level. Protein phosphorylation is a major post-translational modification critical for regulating several cellular functions. The covalent addition of phosphate groups to serine, threonine, and tyrosine is catalyzed by protein kinases. Over the past years, kinases were strongly associated with cancer, thus inhibition of protein kinases emanated as novel cancer treatment. However, cancers frequently develop drug resistance. Therefore, a better understanding of drug effects on tumors is urgently needed. In this perspective, phosphoproteomics arose as advanced tool to monitor cancer therapies and to discover novel drugs. This review highlights the role of phosphoproteomics in predicting sensitivity or resistance of cancers towards tyrosine kinase inhibitors and cytotoxic drugs. It also shows the importance of phosphoproteomics in identifying biomarkers that could be applied in clinical diagnostics to predict responses to drugs.
Collapse
|
20
|
Wang M, Wan H, Wang S, Liao L, Huang Y, Guo L, Liu F, Shang L, Huang J, Ji D, Xia X, Jiang B, Chen D, Xiong K. RSK3 mediates necroptosis by regulating phosphorylation of RIP3 in rat retinal ganglion cells. J Anat 2020; 237:29-47. [PMID: 32162697 PMCID: PMC7309291 DOI: 10.1111/joa.13185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein 3 (RIP3) plays an important role in the necroptosis signaling pathway. Our previous studies have shown that the RIP3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis occurs in retinal ganglion cell line 5 (RGC-5) following oxygen-glucose deprivation (OGD). However, upstream regulatory pathways of RIP3 are yet to be uncovered. The purpose of the present study was to investigate the role of p90 ribosomal protein S6 kinase 3 (RSK3) in the phosphorylation of RIP3 in RGC-5 cell necroptosis following OGD. Our results showed that expression of RSK3, RIP3, and MLKL was upregulated in necroptosis of RGC-5 after OGD. A computer simulation based on our preliminary results indicated that RSK3 might interact with RIP3, which was subsequently confirmed by co-immunoprecipitation. Further, we found that the application of a specific RSK inhibitor, LJH685, or rsk3 small interfering RNA (siRNA), downregulated the phosphorylation of RIP3. However, the overexpression of rip3 did not affect the expression of RSK3, thereby indicating that RSK3 could be a possible upstream regulator of RIP3 phosphorylation in OGD-induced necroptosis of RGC-5 cells. Moreover, our in vivo results showed that pretreatment with LJH685 before acute high intraocular pressure episodes could reduce the necroptosis of retinal neurons and improve recovery of impaired visual function. Taken together, our findings suggested that RSK3 might work as an upstream regulator of RIP3 phosphorylation during RGC-5 necroptosis.
Collapse
Affiliation(s)
- Mi Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Hao Wan
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Shuchao Wang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lvshuang Liao
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Yanxia Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Limin Guo
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Fengxia Liu
- Department of Human AnatomySchool of Basic Medical ScienceXinjiang Medical UniversityUrumqiChina
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual SciencesAffiliated Eye Hospital of Nanchang UniversityNanchangChina
| | - Jufang Huang
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Dan Ji
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaobo Xia
- Hunan Key Laboratory of OphthalmologyChangshaChina
- Department of OphthalmologyXiangya HospitalCentral South UniversityChangshaChina
| | - Bin Jiang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Dan Chen
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| | - Kun Xiong
- Department of Anatomy and NeurobiologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Hunan Key Laboratory of OphthalmologyChangshaChina
| |
Collapse
|
21
|
Scheidt T, Alka O, Gonczarowska-Jorge H, Gruber W, Rathje F, Dell’Aica M, Rurik M, Kohlbacher O, Zahedi RP, Aberger F, Huber CG. Phosphoproteomics of short-term hedgehog signaling in human medulloblastoma cells. Cell Commun Signal 2020; 18:99. [PMID: 32576205 PMCID: PMC7310537 DOI: 10.1186/s12964-020-00591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aberrant hedgehog (HH) signaling is implicated in the development of various cancer entities such as medulloblastoma. Activation of GLI transcription factors was revealed as the driving force upon pathway activation. Increased phosphorylation of essential effectors such as Smoothened (SMO) and GLI proteins by kinases including Protein Kinase A, Casein Kinase 1, and Glycogen Synthase Kinase 3 β controls effector activity, stability and processing. However, a deeper and more comprehensive understanding of phosphorylation in the signal transduction remains unclear, particularly during early response processes involved in SMO activation and preceding GLI target gene regulation. METHODS We applied temporal quantitative phosphoproteomics to reveal phosphorylation dynamics underlying the short-term chemical activation and inhibition of early hedgehog signaling in HH responsive human medulloblastoma cells. Medulloblastoma cells were treated for 5.0 and 15 min with Smoothened Agonist (SAG) to induce and with vismodegib to inhibit the HH pathway. RESULTS Our phosphoproteomic profiling resulted in the quantification of 7700 and 10,000 phosphosites after 5.0 and 15 min treatment, respectively. The data suggest a central role of phosphorylation in the regulation of ciliary assembly, trafficking, and signal transduction already after 5.0 min treatment. ERK/MAPK signaling, besides Protein Kinase A signaling and mTOR signaling, were differentially regulated after short-term treatment. Activation of Polo-like Kinase 1 and inhibition of Casein Kinase 2A1 were characteristic for vismodegib treatment, while SAG treatment induced Aurora Kinase A activity. Distinctive phosphorylation of central players of HH signaling such as SMO, SUFU, GLI2 and GLI3 was observed only after 15 min treatment. CONCLUSIONS This study provides evidence that phosphorylation triggered in response to SMO modulation dictates the localization of hedgehog pathway components within the primary cilium and affects the regulation of the SMO-SUFU-GLI axis. The data are relevant for the development of targeted therapies of HH-associated cancers including sonic HH-type medulloblastoma. A deeper understanding of the mechanisms of action of SMO inhibitors such as vismodegib may lead to the development of compounds causing fewer adverse effects and lower frequencies of drug resistance. Video Abstract.
Collapse
Affiliation(s)
- Tamara Scheidt
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Oliver Alka
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Present address: CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 Brazil
| | - Wolfgang Gruber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Present address: EVER Valinject GmbH, 4866 Unterach am Attersee, Austria
| | - Florian Rathje
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | | | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - René P. Zahedi
- Leibniz-Institute of Analytical Sciences- ISAS - e.V, Dortmund, Germany
- Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Fritz Aberger
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories and Molecular Cancer Research and Tumor Immunology, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Zarrinpar A, Kim UB, Boominathan V. Phenotypic Response and Personalized Medicine in Liver Cancer and Transplantation: Approaches to Complex Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali Zarrinpar
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Biochemistry and Molecular Biology, College of MedicineUniversity of Florida Gainesville FL 32610 USA
- Department of Bioengineering, Herbert Wertheim College of EngineeringUniversity of Florida Gainesville FL 32610 USA
| | - Un Bi Kim
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Vijay Boominathan
- Department of Surgery, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| |
Collapse
|
23
|
Sun YN, Huang JQ, Chen ZZ, Du M, Ren FZ, Luo J, Fang B. Amyotrophy Induced by a High-Fat Diet Is Closely Related to Inflammation and Protein Degradation Determined by Quantitative Phosphoproteomic Analysis in Skeletal Muscle of C57BL/6 J Mice. J Nutr 2020; 150:294-302. [PMID: 31618431 DOI: 10.1093/jn/nxz236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. OBJECTIVE The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. METHODS Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. RESULTS Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. CONCLUSIONS Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.
Collapse
Affiliation(s)
- Ya-Nan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhong-Zhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China
| | - Jie Luo
- Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Phosphoproteomics Enables Molecular Subtyping and Nomination of Kinase Candidates for Individual Patients of Diffuse-Type Gastric Cancer. iScience 2019; 22:44-57. [PMID: 31751824 PMCID: PMC6931223 DOI: 10.1016/j.isci.2019.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
The diffuse-type gastric cancer (DGC) constitutes a subgroup of gastric cancer with poor prognosis and no effective molecular therapies. Here, we report a phosphoproteomic landscape of DGC derived from 83 tumors together with their nearby tissues. Based on phosphorylation, DGC could be classified into three molecular subtypes with distinct overall survival (OS) and chemosensitivity. We identified 16 kinases whose activities were associated with poor OS. These activated kinases covered several cancer hallmark pathways, with the MTOR signaling network being the most frequently activated. We proposed a patient-specific strategy based on the hierarchy of clinically actionable kinases for prioritization of kinases for further clinical evaluation. Our global data analysis indicates that in addition to finding activated kinase pathways in DGC, large-scale phosphoproteomics could be used to classify DGCs into subtypes that are associated with distinct clinical outcomes as well as nomination of kinase targets that may be inhibited for cancer treatments.
Collapse
|
25
|
Li H, Guan Y. Machine learning empowers phosphoproteome prediction in cancers. Bioinformatics 2019; 36:859-864. [PMID: 31410451 PMCID: PMC7868059 DOI: 10.1093/bioinformatics/btz639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Reversible protein phosphorylation is an essential post-translational modification regulating protein functions and signaling pathways in many cellular processes. Aberrant activation of signaling pathways often contributes to cancer development and progression. The mass spectrometry-based phosphoproteomics technique is a powerful tool to investigate the site-level phosphorylation of the proteome in a global fashion, paving the way for understanding the regulatory mechanisms underlying cancers. However, this approach is time-consuming and requires expensive instruments, specialized expertise and a large amount of starting material. An alternative in silico approach is predicting the phosphoproteomic profiles of cancer patients from the available proteomic, transcriptomic and genomic data. RESULTS Here, we present a winning algorithm in the 2017 NCI-CPTAC DREAM Proteogenomics Challenge for predicting phosphorylation levels of the proteome across cancer patients. We integrate four components into our algorithm, including (i) baseline correlations between protein and phosphoprotein abundances, (ii) universal protein-protein interactions, (iii) shareable regulatory information across cancer tissues and (iv) associations among multi-phosphorylation sites of the same protein. When tested on a large held-out testing dataset of 108 breast and 62 ovarian cancer samples, our method ranked first in both cancer tissues, demonstrating its robustness and generalization ability. AVAILABILITY AND IMPLEMENTATION Our code and reproducible results are freely available on GitHub: https://github.com/GuanLab/phosphoproteome_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongyang Li
- To whom correspondence should be addressed. or
| | | |
Collapse
|
26
|
Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput Struct Biotechnol J 2019; 17:661-674. [PMID: 31205619 PMCID: PMC6558092 DOI: 10.1016/j.csbj.2019.03.006] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023] Open
Abstract
The programmed cell death protein 1 (PD-1) pathway has received considerable attention due to its role in eliciting the immune checkpoint response of T cells, resulting in tumor cells capable of evading immune surveillance and being highly refractory to conventional chemotherapy. Application of anti-PD-1/PD-L1 antibodies as checkpoint inhibitors is rapidly becoming a promising therapeutic approach in treating tumors, and some of them have successfully been commercialized in the past few years. However, not all patients show complete responses and adverse events have been noted, suggesting a better understanding of PD-1 pathway mediated immunosuppression is needed to predict patient response and improve treatment efficacy. Here, we review the progresses on the studies of the mechanistic role of PD-1 pathway in the tumor immune evasion, recent clinical development and commercialization of PD-1 pathway inhibitors, the toxicities associated with PD-1 blockade observed in clinical trials as well as how to improve therapeutic efficacy and safety of cancer immunotherapy.
Collapse
Key Words
- 5-AZA-dC, 5-aza-2′-deoxycytidine
- ADCC, Antibody-dependent cellular cytotoxicity
- AEs, Adverse events
- AP1, Activator protein 1
- APCs, Antigen presenting cells
- ASCT, Autologous stem cell transplantation
- B2M, β2 microglobulin
- BATF, Basic leucine zipper transcriptional factor ATF-like
- BICR, Blinded Independent Central Review
- BV, Brentuximab vedotin
- CC, Cervical cancer
- CRC, Colorectal cancer
- CTLA-4, Cytotoxic T-lymphocyte–associated antigen 4
- CXCL9, C-X-C motif chemokine ligand 9
- Checkpoint blockade
- DCM, Dilated cardiomyopathy
- DCs, Dendritic cells
- DNMT, DNA methyltransferase
- DOR, Duration overall response
- DZNep, 3-Deazaneplanocin A
- ERK, Extracellular signal–regulated kinase
- EZH2, Enhancer of zeste homolog 2
- GC, Gastric cancer
- GEJ, GASTRIC or gastroesophageal junction
- HCC, Hepatocellular carcinoma
- HNSCC, Head and neck squamous cell carcinoma
- HR, Hazard ratio
- ICC, Investigator-choice chemotherapy
- ICOS, Inducible T-cell co-stimulator
- IFN, Interferon
- IHC, Immunohistochemistry
- ITIM, Immune-receptortyrosine-based inhibitory motif
- ITSM, Immune-receptortyrosine-based switch motif
- ITT, Intention-to-treat
- Immune surveillance
- Immunotherapy
- IrAEs, Immune related adverse events
- JMJD3, Jumonji Domain-Containing Protein 3
- LAG3, Lymphocyte-activation gene 3
- LCK, Tyrosine-protein kinase Lck
- MAP, Mitogen-activated protein
- MCC, Merkel cell carcinoma
- MHC, Major histocompatibility
- MSI-H, Microsatellite instability-high
- NF-κB, Nuclear factor-κB
- NFAT, Nuclear factor of activated T cells
- NSCLC, Non-small cell lung cancer
- ORR, Overall response rate
- OS, Overall survival
- PD-1
- PD-1, Programmed cell death 1
- PD-L1
- PD-L1, Programmed death-ligand 1
- PFS, Progression-free survival
- PI3K, Phosphoinositide 3-kinase
- PKC, Protein kinase C
- PMBCL, Primary mediastinal large B-cell lymphoma
- PRC2, Polycomb repressive complex 2
- PTEN, Phosphatase and tensin homolog
- PTPs, Protein tyrosine phosphatases
- RCC, Renal cell carcinoma
- SCLC, Small cell lung cancer
- SHP2, Src homology 2 domain-containing phosphatase 2
- SIRPα, Signal-regulatory protein alpha
- TCR, T-cell receptor
- TGF, Transforming growth factor
- TIICs, Tumor infiltrating immune cells
- TILs, Tumor-infiltrating lymphocytes
- TIM3, T-cell immunoglobulin and mucin-domain containing-3
- TMB, Tumor mutation burden
- TME, Tumor microenvironment
- UC, Urothelial carcinoma
- VEGF, Vascular endothelial growth factor
- ZAP70, Zeta-chain-associated protein kinase 70
- cHL, Classical Hodgkin lymphoma
- cTnI, Cardiac troponin I
- dMMR, DNA mismatch repair deficiency
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
- Department of Biomedicine, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai 200032, PR China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Borui Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Wei Chen
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou 350005, PR China
| | - Liqiang Weng
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou 350025, PR China
| |
Collapse
|
27
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
28
|
Ferreira M, Beullens M, Bollen M, Van Eynde A. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:16-30. [PMID: 30056088 PMCID: PMC7114192 DOI: 10.1016/j.bbamcr.2018.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.
Collapse
Affiliation(s)
- Mónica Ferreira
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
29
|
Larrouy-Maumus G. Lipids as Biomarkers of Cancer and Bacterial Infections. Curr Med Chem 2019; 26:1924-1932. [PMID: 30182838 DOI: 10.2174/0929867325666180904120029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Lipids are ubiquitous molecules, known to play important roles in various cellular processes. Alterations to the lipidome can therefore be used as a read-out of the signs of disease, highlighting the importance to consider lipids as biomarkers in addition of nucleic acid and proteins. Lipids are among the primary structural and functional constituents of biological tissues, especially cell membranes. Along with membrane formation, lipids play also a crucial role in cell signalling, inflammation and energy storage. It was shown recently that lipid metabolism disorders play an important role in carcinogenesis and development. As well, the role of lipids in disease is particularly relevant for bacterial infections, during which several lipid bacterial virulence factors are recognized by the human innate immune response, such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria, and lipoglycans in mycobacteria. Compared to nucleic acids and proteins, a complete analysis of the lipidome, which is the comprehensive characterization of different lipid families, is usually very challenging due to the heterogeneity of lipid classes and their intrinsic physicoproperties caused by variations in the constituents of each class. Understanding the chemical diversity of lipids is therefore crucial to understanding their biological relevance and, as a consequence, their use as potential biomarkers for non-infectious and infectious diseases. This mini-review exposes the current knowledge and limitations of the use of lipids as biomarkers of the top global killers which are cancer and bacterial infections.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Molecular subtyping of cancer and nomination of kinase candidates for inhibition with phosphoproteomics: Reanalysis of CPTAC ovarian cancer. EBioMedicine 2018; 40:305-317. [PMID: 30594550 PMCID: PMC6412074 DOI: 10.1016/j.ebiom.2018.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/27/2022] Open
Abstract
Background Molecular subtyping of cancer aimed to predict patient overall survival (OS) and nominate drug targets for patient treatments is central to precision oncology. Owing to the rapid development of phosphoproteomics, we can now measure thousands of phosphoproteins in human cancer tissues. However, limited studies report how to analyse the complex phosphoproteomic data for cancer subtyping and to nominate druggable kinase candidates. Findings In this work, we reanalysed the phosphoproteomic data of high-grade serous ovarian cancer (HGSOC) from the Clinical Proteomic Tumour Analysis Consortium (CPTAC). Our analysis classified HGSOC into 5 major subtypes that were associated with different OS and appeared to be more accurate than that achieved with protein profiling. We provided a workflow to identify 29 kinases whose increased activities in tumours are associated with poor survival. The altered kinase signalling landscape of HGSOC included the PI3K/AKT/mTOR, cell cycle and MAP kinase signalling pathways. We also developed a “patient-specific” hierarchy of clinically actionable kinases and selected kinase inhibitors by considering kinase activation and kinase inhibitor selectivity. Interpretation Our study offered a global phosphoproteomics data analysis workflow to aid in cancer molecular subtyping, determining phosphorylation-based cancer hallmarks and facilitating nomination of kinase inhibition in cancer.
Collapse
|
31
|
Therapeutic Targeting of mTOR in T-Cell Acute Lymphoblastic Leukemia: An Update. Int J Mol Sci 2018; 19:ijms19071878. [PMID: 29949919 PMCID: PMC6073309 DOI: 10.3390/ijms19071878] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood malignancy that arises from the clonal expansion of transformed T-cell precursors. Although T-ALL prognosis has significantly improved due to the development of intensive chemotherapeutic protocols, primary drug-resistant and relapsed patients still display a dismal outcome. In addition, lifelong irreversible late effects from conventional therapy are a growing problem for leukemia survivors. Therefore, novel targeted therapies are required to improve the prognosis of high-risk patients. The mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct multiprotein complexes, which are referred to as mTOR complex 1 (mTORC1) and mTORC2. These two complexes regulate a variety of physiological cellular processes including protein, lipid, and nucleotide synthesis, as well as autophagy in response to external cues. However, mTOR activity is frequently deregulated in cancer, where it plays a key oncogenetic role driving tumor cell proliferation, survival, metabolic transformation, and metastatic potential. Promising preclinical studies using mTOR inhibitors have demonstrated efficacy in many human cancer types, including T-ALL. Here, we highlight our current knowledge of mTOR signaling and inhibitors in T-ALL, with an emphasis on emerging evidence of the superior efficacy of combinations consisting of mTOR inhibitors and either traditional or targeted therapeutics.
Collapse
|