1
|
Tserga A, Saulnier-Blache JS, Palamaris K, Pouloudi D, Gakiopoulou H, Zoidakis J, Schanstra JP, Vlahou A, Makridakis M. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Int J Mol Sci 2024; 25:1387. [PMID: 38338666 PMCID: PMC10855735 DOI: 10.3390/ijms25031387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by histological changes including fibrosis and inflammation. Evidence supports that DKD is mediated by the innate immune system and more specifically by the complement system. Using Ins2Akita T1D diabetic mice, we studied the connection between the complement cascade, inflammation, and fibrosis in early DKD. Data were extracted from a previously published quantitative-mass-spectrometry-based proteomics analysis of kidney glomeruli of 2 (early DKD) and 4 months (moderately advanced DKD)-old Ins2Akita mice and their controls A Spearman rho correlation analysis of complement- versus inflammation- and fibrosis-related protein expression was performed. A cross-omics validation of the correlation analyses' results was performed using public-domain transcriptomics datasets (Nephroseq). Tissue sections from 43 patients with DKD were analyzed using immunofluorescence. Among the differentially expressed proteins, the complement cascade proteins C3, C4B, and IGHM were significantly increased in both early and later stages of DKD. Inflammation-related proteins were mainly upregulated in early DKD, and fibrotic proteins were induced in moderately advanced stages of DKD. The abundance of complement proteins with fibrosis- and inflammation-related proteins was mostly positively correlated in early stages of DKD. This was confirmed in seven additional human and mouse transcriptomics DKD datasets. Moreover, C3 and IGHM mRNA levels were found to be negatively correlated with the estimated glomerular filtration rate (range for C3 rs = -0.58 to -0.842 and range for IGHM rs = -0.6 to -0.74) in these datasets. Immunohistology of human kidney biopsies revealed that C3, C1q, and IGM proteins were induced in patients with DKD and were correlated with fibrosis and inflammation. Our study shows for the first time the potential activation of the complement cascade associated with inflammation-mediated kidney fibrosis in the Ins2Akita T1D mouse model. Our findings could provide new perspectives for the treatment of early DKD as well as support the use of Ins2Akita T1D in pre-clinical studies.
Collapse
Affiliation(s)
- Aggeliki Tserga
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Kostantinos Palamaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Despoina Pouloudi
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 34400 Athens, Greece; (K.P.); (D.P.); (H.G.)
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
- Department of Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece
| | - Joost Peter Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1297, Institute of Cardiovascular and Metabolic Disease, 31432 Toulouse, France; (J.S.S.-B.); (J.P.S.)
- Department of Biology, Université Toulouse III Paul-Sabatier, 31062 Toulouse, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| | - Manousos Makridakis
- Biomedical Research Foundation, Academy of Athens, Department of Biotechnology, Soranou Efessiou 4, 11527 Athens, Greece; (A.T.); (J.Z.); (A.V.)
| |
Collapse
|
2
|
Franco M, Cano-Martínez A, Ramos-Godínez MDP, López-Marure R, Donis-Maturano L, Sosa JS, Bautista-Pérez R. Immunolocalization of Sphingolipid Catabolism Enzymes along the Nephron: Novel Early Urinary Biomarkers of Renal Damage. Int J Mol Sci 2023; 24:16633. [PMID: 38068956 PMCID: PMC10706607 DOI: 10.3390/ijms242316633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.
Collapse
Affiliation(s)
- Martha Franco
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | | | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | - Luis Donis-Maturano
- Faculty of Higher Studies Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - José Santamaría Sosa
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Rocio Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Liu L, Liu H, Zhu K, Zhang L, Yin X, Han L, Wang M, Gao S, Xiao X, Yang J, Huang C, Huang Y. Proteome analysis reveals novel serum biomarkers for Henoch-Schönlein purpura in Chinese children. J Proteomics 2023; 276:104841. [PMID: 36796721 DOI: 10.1016/j.jprot.2023.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Henoch-Schönlein purpura (HSP) is diagnosed based on characteristic skin changes. This study aimed to identify the serum biomarkers of HSP in children. EXPERIMENTAL DESIGN We performed proteomic analysis of serum samples from 38 paired pre- and posttherapy HSP patients and 22 healthy controls using a combination of magnetic bead-based weak cation exchange and MALDI-TOF MS. ClinProTools was used to screen the differential peaks. Then, LC-ESI-MS/MS was performed to identify the proteins. ELISA was used to verify the expression of whole protein in the serum of 92 HSP patients, 14 peptic ulcer disease (PUD) patients and 38 healthy controls, which were prospectively collected. Finally, logistic regression analysis was performed to analyze the diagnostic value of the above predictors and existing clinical indicators. RESULTS Seven potential HSP serum biomarker peaks (m/z:1228.95, m/z:1781.22, m/z:1468.43, m/z:1619.53, m/z:1868.41, m/z:1694.05, m/z:1743.25) with higher expression in the pretherapy group and one peak (m/z:1947.41) with lower expression in the pretherapy group were all identified as peptide regions of albumin (ALB), complement C4-A precursor (C4A), tubulin beta chain (TUBB), isoform 1 of fibrinogen alpha chain (FGA), and ezrin (EZR). The expression of identified proteins was validated by ELISA. Multivariate logistic regression analysis showed that serum C4A EZR and ALB were independent risk factors for HSP, serum C4A and lgA were independent risk factors for HSPN, and serum D-dimer was an independent risk factor for abdominal HSP. CONCLUSIONS AND CLINICAL RELEVANCE These findings revealed the specific etiology of HSP from the perspective of serum proteomics. The identified proteins might serve as potential biomarkers for HSP and HSPN diagnoses. SIGNIFICANCE Henoch-Schönlein purpura (HSP) is the most common systemic vasculitis in children, and its diagnosis depends primarily on characteristic skin changes. Early diagnosis of non-rash patients is difficult, especially for abdominal and renal types (Henoch-Schönlein purpura nephritis, HSPN). HSPN has poor outcomes, is diagnosed based on urinary protein and/or haematuria, and cannot be detected early in HSP. Patients with an earlier diagnosis of HSPN appear to have better renal outcomes. Our plasma proteomic analysis of HSP in children revealed that HSP patients could be distinguished from healthy controls and peptic ulcer disease patients using complement C4-A precursor (C4A), ezrin, and albumin. C4A and IgA could distinguish HSPN from HSP in the early stages, and D-dimer was a sensitive index used to distinguish abdominal HSP; identifying these biomarkers could promote the early diagnosis of HSP, especially pediatric HSPN and abdominal HSP, thereby improving precision therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| | - Hailing Liu
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Kaili Zhu
- Department of Pediatrics, Xi'an No 3 People's Hospital, Xi'an, Shaanxi Province 71006, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaomei Yin
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Lin Han
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Miaomiao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Shanfeng Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xuan Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yanping Huang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China.
| |
Collapse
|
4
|
Schiel R, Block M, Steveling A, Stein G, Lücking S, Scherberich J. Serum Uromodulin in Children and Adolescents with Type 1 Diabetes Mellitus and Controls: Its Potential Role in Kidney Health. Exp Clin Endocrinol Diabetes 2023; 131:142-152. [PMID: 36104158 DOI: 10.1055/a-1944-2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Uromodulin is a kidney-specific tubular protein, and its assessment in serum (sUMOD) reveals the potential as a novel marker for function and the integrity of renal parenchymal cells and does not directly depend on the glomerular filtration rate. Early diabetic nephropathy parallels glomerular hyperfiltration, often leading to diagnostic misinterpretation. Moreover, traditional kidney function markers are not able to diagnose structural lesions. Recent data show that sUMOD is linked to glucose intolerance in adults. Thus, we launched to assess the hypothesis that sUMOD is also associated with kidney function, biometric data, and quality of metabolic control in children/adolescents with type 1 diabetes. PATIENTS AND METHODS Patients with type 1 diabetes (n=135) and healthy controls (n=69) were recruited to participate in the trial. Clinical, biometrical data, sUMOD, and other laboratory parameters were assessed. RESULTS The mean concentrations of sUMOD in diabetic patients and controls were comparable (201.19±103.22 vs. 198.32±84.27 ng/mL, p=0.832). However, in contrast to healthy controls, sUMOD levels in patients with diabetes were associated with serum-creatinine (r=-0.368, p<0.0001), age (r=-0.350, p<0.0001), height (r=-0.379, p<0.0001), body weight (r=-0.394, p<0.0001), Body mass index (r=-0.292, p=0.001), daily insulin dosage (r=-0.300, p<0.0001), HbA1c (%) (r=-0.190, p=0.027), standardized HbA1c/IFCC (mmol/mol) (r=-0.189, p=0.028), and systolic (r=-0.299, p<0.0001) and diastolic (r=-0.235, p=0.006) arterial blood pressure. CONCLUSIONS Our study shows that children/adolescents with type 1 diabetes disclose similar sUMOD concentrations as healthy controls. Serum UMOD appears to indicate higher risks for kidney tissue remodeling and possibly subsequent cardiovascular alterations. However, further studies are mandatory to settle these findings.
Collapse
Affiliation(s)
- Ralf Schiel
- MEDIGREIF-Inselklinik Heringsdorf GmbH, Department of Diabetes and Metabolic Diseases, Ostseebad Heringsdorf, Germany
| | - Mathias Block
- Euroimmun Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Antje Steveling
- University of Greifswald, School of Medicine, Internal Medicine A, Greifswald, Germany
| | - Günter Stein
- Friedrich-Schiller-University, School of Medicine, Internal Medicine, Nephrology, Jena, Germany
| | - Sarah Lücking
- MEDIGREIF-Inselklinik Heringsdorf GmbH, Department of Diabetes and Metabolic Diseases, Ostseebad Heringsdorf, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, München-Klinik, Teaching Hospital of The Ludwig-Maximilians University, München
| |
Collapse
|
5
|
Jung CY, Yoo TH. Novel biomarkers for diabetic kidney disease. Kidney Res Clin Pract 2022; 41:S46-S62. [DOI: 10.23876/j.krcp.22.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
Although diabetic kidney disease (DKD) remains one of the leading causes of reduced lifespan in patients with diabetes mellitus; its prevalence has failed to decline over the past 30 years. To identify those at high risk of developing DKD and disease progression at an early stage, extensive research has been ongoing in the search for prognostic and surrogate endpoint biomarkers for DKD. Although biomarkers are not used routinely in clinical practice or prospective clinical trials, many biomarkers have been developed to improve the early identification and prognostication of patients with DKD. Novel biomarkers that capture one specific mechanism of the DKD disease process have been developed, and studies have evaluated the prognostic value of assay-based biomarkers either in small sets or in combinations involving multiple biomarkers. More recently, several studies have assessed the prognostic value of omics- based biomarkers that include proteomics, metabolomics, and transcriptomics. This review will first describe the biomarkers used in current practice and their limitations, and then summarize the current status of novel biomarkers for DKD with respect to assay- based protein biomarkers, proteomics, metabolomics, and transcriptomics.
Collapse
|
6
|
Tang X, Zheng W, Hu J, Deng H, Tang L, Zou Z, Liu Y, Qin H, Ye Y, Chen H. Proteomics-based analysis of potential therapeutic targets in patients with peritoneal dialysis-associated peritonitis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140796. [PMID: 35661691 DOI: 10.1016/j.bbapap.2022.140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Peritoneal dialysis-associated peritonitis (PDAP) is the most common complication in peritoneal dialysis patients. We propose screening for characteristic expressed proteins in the dialysate of PDAP patients to provide clues for the diagnosis of PDAP and its therapeutic targets. METHODS Dialysate samples were collected from patients with a first diagnosis of PDAP (n = 15) and from patients who had not experienced peritonitis (Control, n = 15). Data-independent acquisition (DIA) proteomic analysis was used to screen for differentially expressed proteins (DEPs). Co-expression networks were constructed via weighted gene co-expression network analysis (WGCNA) for detection of gene modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional annotation of DEPs and gene modules. Hub proteins were validated using the parallel reaction monitoring (PRM) method. RESULTS A total of 142 DEPs in the dialysate of PDAP patients were identified. 70 proteins were upregulated and 72 proteins were downregulated. GO and KEGG analysis showed that DEPs were mainly enriched in cell metabolism, glycolysis/glycogenesis and hypoxia-inducible factor-1 signaling pathway. Subsequently, a co-expression network was constructed and four gene modules were detected. Myeloperoxidase (MPO) and myeloperoxidase (HP) were the key proteins of the blue and turquoise modules, respectively. Additionally, PRM analysis showed that the expression of MPO and HP was significantly upregulated in the PDAP group compared to the non-peritonitis group, which was consistent with our proteomics data. CONCLUSION MPO and HP were differentially expressed in the dialysate of PDAP patients and may be potential diagnostic and therapeutic targets for PDAP.
Collapse
Affiliation(s)
- Xingming Tang
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China.
| | - Wei Zheng
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Jieping Hu
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Huizhao Deng
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Liwen Tang
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Ziliang Zou
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Yinglin Liu
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Hui Qin
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Yuqiu Ye
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| | - Huimin Chen
- Department of Nephropathy and Rheumatism, Dongguan Tungwah Hospital, Dongguan, China
| |
Collapse
|
7
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
8
|
Dehydration Status Aggravates Early Renal Impairment in Children: A Longitudinal Study. Nutrients 2022; 14:nu14020335. [PMID: 35057516 PMCID: PMC8778530 DOI: 10.3390/nu14020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Dehydration is common in children for physiological and behavioral reasons. The objective of this study was to assess changes in hydration status and renal impairment across school weekdays. We conducted a longitudinal study of three repeated measures of urinalysis within one week in November 2019 in a child cohort in Beijing, China. We measured urine specific gravity (USG) to determine the dehydration status, and the concentration of β2-microglobulin (β2-MG) and microalbumin (MA) to assess renal function impairment among 1885 children with a mean age of 7.7 years old. The prevalence of dehydration was 61.9%, which was significantly higher in boys (64.3%). Using chi-square tests and linear mixed-effects regression models, we documented the trends of the renal indicators’ change over time among different hydration statuses. Compared to Mondays, there were apparent increases of β2-MG concentrations on Wednesdays (β = 0.029, p < 0.001) and Fridays (β = 0.035, p < 0.001) in the dehydrated group, but not in the euhydrated group. As for the MA concentrations, only the decrease on Fridays (β = −1.822, p = 0.01) was significant in the euhydrated group. An increased trend of elevated β2-MG concentration was shown in both the euhydrated group (Z = −3.33, p < 0.001) and the dehydrated group (Z = −8.82, p < 0.001). By contrast, there was a decreased trend of elevated MA concentrations in the euhydrated group (Z = 3.59, p < 0.001) but not in the dehydrated group. A new indicator ratio, β2-MG/MA, validated the consistent trends of renal function impairment in children with dehydration. Renal impairment trends worsened as a function of school days during the week and the dehydration status aggravated renal impairment during childhood across school weekdays, especially tubular abnormalities in children.
Collapse
|
9
|
Yudhana A, Mukhopadhyay S, Prima ODA, Akbar SA, Nuraisyah F, Mufandi I, Fauzi KH, Nasyah NA. Multi sensor application-based for measuring the quality of human urine on first-void urine. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
Gaviraghi M, Rabellino A, Andolfo A, Brand M, Brombin C, Bagnato P, De Feudis G, Raimondi A, Locatelli A, Tosoni D, Mazza D, Gianni L, Tonon G, Yarden Y, Tacchetti C, Daniele T. Direct stimulation of ERBB2 highlights a novel cytostatic signaling pathway driven by the receptor Thr 701 phosphorylation. Sci Rep 2020; 10:16906. [PMID: 33037285 PMCID: PMC7547737 DOI: 10.1038/s41598-020-73835-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
ERBB2 is a ligand-less tyrosine kinase receptor expressed at very low levels in normal tissues; when overexpressed, it is involved in malignant transformation and tumorigenesis in several carcinomas. In cancer cells, ERBB2 represents the preferred partner of other members of the ERBB receptor family, leading to stronger oncogenic signals, by promoting both ERK and AKT activation. The identification of the specific signaling downstream of ERBB2 has been impaired by the lack of a ligand and of an efficient way to selectively activate the receptor. In this paper, we found that antibodies (Abs) targeting different epitopes on the ERBB2 extracellular domain foster the activation of ERBB2 homodimers, and surprisingly induce a unique cytostatic signaling cascade promoting an ERK-dependent ERBB2 Thr701 phosphorylation, leading to AKT de-phosphorylation, via PP2A Ser/Thr phosphatases. Furthermore, the immunophilin Cyclophilin A plays a crucial role in this pathway, acting as a negative modulator of AKT de-phosphorylation, possibly by competing with Ser/Thr phosphatases for binding to AKT. Altogether, our data show that Ab recognizing ERBB2 extracellular domain function as receptor agonists, promoting ERBB2 homodimer activation, leading to an anti-proliferative signaling. Thus, the ultimate outcome of ERBB2 activity might depend on the dimerization status: pro-oncogenic in the hetero-, and anti-oncogenic in the homo-dimeric form.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Andrea Rabellino
- Department of Experimental Medicine, University of Genoa, via De Toni 14, 16132, Genoa, Italy.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Annapaola Andolfo
- Protein Microsequencing Facility, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Matthias Brand
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Chiara Brombin
- University Centre for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy
| | - Paola Bagnato
- Department of Experimental Medicine, University of Genoa, via De Toni 14, 16132, Genoa, Italy
| | - Giuseppina De Feudis
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy
| | - Alberta Locatelli
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Daniela Tosoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20100, Milan, Italy
| | - Davide Mazza
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy
| | - Luca Gianni
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Giovanni Tonon
- Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Yosef Yarden
- Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, via Olgettina 58, 20132, Milan, Italy.
| | - Tiziana Daniele
- Department of Experimental Medicine, University of Genoa, via De Toni 14, 16132, Genoa, Italy. .,Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
11
|
Beige J, Drube J, von der Leyen H, Pape L, Rupprecht H. Früherkennung mittels Urinproteomanalyse. Internist (Berl) 2020; 61:1094-1105. [DOI: 10.1007/s00108-020-00863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Fang X, Lu M, Xia Z, Gao C, Cao Y, Wang R, Wang M, Wu H. Use of liquid chromatography-tandem mass spectrometry to perform urinary proteomic analysis of children with IgA nephropathy and Henoch-Schönlein purpura nephritis. J Proteomics 2020; 230:103979. [PMID: 32932007 DOI: 10.1016/j.jprot.2020.103979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022]
Abstract
The emerging technology of urinary proteomics has become an efficient biological approach for identifying biomarkers and characterizing pathogenesis in renal involvement. In this study, we attempted to elucidate the relationship between IgAN and HSPN in children, employing LC-MS/MS to perform urinary proteomic analyses using the DIA method. Early-morning spot urine was collected from patients with biopsy-proven IgAN (n = 19) and HSPN (n = 19) prior to treatment and renal biopsy in the Department of Pediatrics, Jinling Hospital, Nanjing, China, and did healthy volunteers (n = 14), from June 2018 to December 2019. Two hundred seventy-six urinary proteins and 125 urinary proteins were determined to be differentially expressed in children with IgAN (n = 4) and HSPN (n = 4), respectively, compared to the urinary proteins of healthy children (n = 4) (p < 0.05). GO analysis demonstrated that the differentially expressed proteins of the two groups, which were located in the extracellular matrix and cell membrane, were primarily involved in biological processes, including metabolic processes, immune system processes, cellular adhesion, cell proliferation, signaling, and biological regulation. KEGG analysis revealed that the differentially expressed proteins of the two groups were associated with cell adhesion molecules, ECM-receptor interactions, the PI3K-Akt signaling pathway, the complement and coagulation cascades, regulation of actin cytoskeleton, cholesterol metabolism, and platelet activation. The target proteins (alpha-1B-glycoprotein (A1BG) and afamin (AFM)), which participated in the complement and coagulation cascades and the regulation of complement activation, were further investigated in the independent validation cohort by ELISA. These proteins were significantly increased in children with IgAN (n = 15) and HSPN (n = 15) compared with the proteins observed in healthy controls (n = 10, P < 0.05). The validated results were consistent with the mass spectrometry results. SIGNIFICANCE: IgAN and HSPN both result from the glomerular deposition of abnormally glycosylated IgA1 with mesangial proliferative changes, and both diseases are common glomerulopathies in the pediatric population that are believed to be correlated. Interestingly, our data, by combining urinary proteomic analyses, showed that several uniform enrichment pathways played an important role in the progression of IgAN and HSPN, suggesting that we might reduce the renal involvement of the two diseases in children through these pathways. The same urinary proteins along these pathways were observed to be differentially expressed in children with IgAN and HSPN, implying that these proteins may be potential biomarkers to identify the two diseases. Future studies examining larger cohorts are warranted to confirm the validity of our findings.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Mei Lu
- Department of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhengkun Xia
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China.
| | - Chunlin Gao
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China.
| | - Yan Cao
- Nanjing Maternal and Child Health Institute, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, Jiangsu, China
| | - Ren Wang
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Meiqiu Wang
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Heyan Wu
- Department of Pediatrics, Jinling Hospital, Nanjing 210002, Jiangsu, China
| |
Collapse
|
13
|
Currie G, Mary S, Delles C. Is there a role for proteomics in diabetic renal disease? Nephrol Dial Transplant 2020; 35:1133-1135. [PMID: 32777079 PMCID: PMC7417003 DOI: 10.1093/ndt/gfz017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gemma Currie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Van JAD, Clotet-Freixas S, Hauschild AC, Batruch I, Jurisica I, Elia Y, Mahmud FH, Sochett E, Diamandis EP, Scholey JW, Konvalinka A. Urinary proteomics links keratan sulfate degradation and lysosomal enzymes to early type 1 diabetes. PLoS One 2020; 15:e0233639. [PMID: 32453760 PMCID: PMC7250451 DOI: 10.1371/journal.pone.0233639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023] Open
Abstract
Diabetes is the leading cause of end-stage renal disease worldwide. Our understanding of the early kidney response to chronic hyperglycemia remains incomplete. To address this, we first investigated the urinary proteomes of otherwise healthy youths with and without type 1 diabetes and subsequently examined the enriched pathways that might be dysregulated in early disease using systems biology approaches. This cross-sectional study included two separate cohorts for the discovery (N = 30) and internal validation (N = 30) of differentially excreted proteins. Discovery proteomics was performed on a Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer. We then searched the pathDIP, KEGG, and Reactome databases to identify enriched pathways in early diabetes; the Integrated Interactions Database to retrieve protein-protein interaction data; and the PubMed database to compare fold changes of our signature proteins with those published in similarly designed studies. Proteins were selected for internal validation based on pathway enrichment and availability of commercial enzyme-linked immunosorbent assay kits. Of the 2451 proteins identified, 576 were quantified in all samples from the discovery cohort; 34 comprised the urinary signature for early diabetes after Benjamini-Hochberg adjustment (Q < 0.05). The top pathways associated with this signature included lysosome, glycosaminoglycan degradation, and innate immune system (Q < 0.01). Notably, all enzymes involved in keratan sulfate degradation were significantly elevated in urines from youths with diabetes (|fold change| > 1.6). Increased urinary excretion of monocyte differentiation antigen CD14, hexosaminidase A, and lumican was also observed in the validation cohort (P < 0.05). Twenty-one proteins from our signature have been reported elsewhere as potential mediators of early diabetes. In this study, we identified a urinary proteomic signature for early type 1 diabetes, of which lysosomal enzymes were major constituents. Our findings highlight novel pathways such as keratan sulfate degradation in the early kidney response to hyperglycemia.
Collapse
Affiliation(s)
- Julie A. D. Van
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- * E-mail:
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Anne-Christin Hauschild
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Mathematics & Computer Science, University of Marburg, Marburg, Germany
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yesmino Elia
- Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - James W. Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Morita Y, Kurano M, Sakai E, Nishikawa T, Nishikawa M, Sawabe M, Aoki J, Yatomi Y. Analysis of urinary sphingolipids using liquid chromatography-tandem mass spectrometry in diabetic nephropathy. J Diabetes Investig 2020; 11:441-449. [PMID: 31580528 PMCID: PMC7078086 DOI: 10.1111/jdi.13154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS/INTRODUCTION Sphingolipids, such as ceramides and sphingosine, are involved in the pathogenesis of diabetes; however, the modulation of urinary sphingolipids in diabetic nephropathy has not been fully elucidated. Therefore, we aimed to develop a simultaneous measurement system for urinary sphingolipids using liquid chromatography-tandem mass spectrometry and to elucidate the modulation of urinary sphingolipids in diabetic nephropathy. MATERIALS AND METHODS We established a simultaneous measurement system for the urinary sphingosine, dihydrosphingosine, and six ceramide species (Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/18:1, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0), and we examined the urinary sphingolipids in 64 type 2 diabetes patients and 15 control participants. RESULTS The established measurement system for the urinary sphingolipids showed good precision for Cer d18:1/16:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0. We observed that the urinary levels of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0 and Cer d18:1/24:0 were elevated in patients with stage 3 of diabetic nephropathy, and were correlated with urinary biomarkers, such as albumin and N-acetyl-β-d-glucosaminidase, and sediment score. CONCLUSIONS Our method is useful for the measurement of ceramide in urine specimens, and urinary ceramides might be associated with the pathological condition of diabetic nephropathy, such as renal tubular injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Makoto Kurano
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Eri Sakai
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Takako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
| | - Masako Nishikawa
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Motoji Sawabe
- Department of Molecular PathologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Junken Aoki
- Laboratory of Molecular and Cellular BiochemistryGraduate School of Pharmaceutical SciencesTohoku UniversityMiyagiJapan
| | - Yutaka Yatomi
- Department of Clinical LaboratoryThe University of Tokyo HospitalTokyoJapan
- Department of Clinical Laboratory MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
16
|
Van JAD, Clotet-Freixas S, Zhou J, Batruch I, Sun C, Glogauer M, Rampoldi L, Elia Y, Mahmud FH, Sochett E, Diamandis EP, Scholey JW, Konvalinka A. Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro. Mol Cell Proteomics 2020; 19:501-517. [PMID: 31879271 PMCID: PMC7050109 DOI: 10.1074/mcp.ra119.001858] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.
Collapse
Affiliation(s)
- Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Joyce Zhou
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| |
Collapse
|