1
|
Ye J, Qiu C, Zhang L. Knockdown of Leucine-rich alpha-2-glycoprotein 1 alleviates renal ischemia-reperfusion injury by inhibiting NOX4-mediated apoptosis, inflammation, and oxidative stress. Exp Cell Res 2025; 444:114341. [PMID: 39566877 DOI: 10.1016/j.yexcr.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Renal ischemia-reperfusion (I/R) injury leads mainly to acute kidney injury. Leucine-rich alpha-2-glycoprotein 1 (LRG) is upregulated in kidney tissues of mice after renal I/R injury. However, its role in renal I/R injury has not been fully elucidated. A mouse model of renal I/R injury was constructed by unilateral renal pedicle clamping and reperfusion. Mice undergoing I/R procedures exhibited renal function impairment and increased LRG protein expression compared with mice receiving sham operations. Tail vein injection with lentivirus carrying shLRG decreased renal I/R injury-induced increase in caspase-3 activity, IL-1β and IL-18 concentrations, and ROS production. Furthermore, shRNA-mediated LRG knockdown in HK-2 cells protected against H/R-induced cell damage. LRG could upregulate the expression of NADPH oxidase 4 (NOX4). We also determined the increased NOX4 expression in kidney tissues of renal I/R-operated mice and H/R-treated HK-2 cells. NOX4 overexpression reversed the inhibitory role of LRG knockdown in HK-2 cell damage caused by H/R. Collectively, our findings demonstrate that LRG knockdown decreases the NOX4 expression, thereby alleviating renal I/R injury by inhibiting cell apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Jianfeng Ye
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cheng Qiu
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lexi Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Chen C, Zhang J, Yu T, Feng H, Liao J, Jia Y. LRG1 Contributes to the Pathogenesis of Multiple Kidney Diseases: A Comprehensive Review. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:237-248. [PMID: 38799248 PMCID: PMC11126829 DOI: 10.1159/000538443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/08/2024] [Indexed: 05/29/2024]
Abstract
Background The increasing prevalence of kidney diseases has become a significant public health issue, with a global prevalence exceeding 10%. In order to accurately identify biochemical changes and treatment outcomes associated with kidney diseases, novel methods targeting specific genes have been discovered. Among these genes, leucine-rich α-2 glycoprotein 1 (LRG1) has been identified to function as a multifunctional pathogenic signaling molecule in multiple diseases, including kidney diseases. This study aims to provide a comprehensive overview of the current evidence regarding the roles of LRG1 in different types of kidney diseases. Summary Based on a comprehensive review, it was found that LRG1 was upregulated in the urine, serum, or renal tissues of patients or experimental animal models with multiple kidney diseases, such as diabetic nephropathy, kidney injury, IgA nephropathy, chronic kidney diseases, clear cell renal cell carcinoma, end-stage renal disease, canine leishmaniosis-induced kidney disease, kidney fibrosis, and aristolochic acid nephropathy. Mechanistically, the role of LRG1 in kidney diseases is believed to be detrimental, potentially through its regulation of various genes and signaling cascades, i.e., fibronectin 1, GPR56, vascular endothelial growth factor (VEGF), VEGFR-2, death receptor 5, GDF15, HIF-1α, SPP1, activin receptor-like kinase 1-Smad1/5/8, NLRP3-IL-1b, and transforming growth factor β pathway. Key Messages Further research is needed to fully comprehend the molecular mechanisms by which LRG1 contributes to the pathogenesis and pathophysiology of kidney diseases. It is anticipated that targeted treatments focusing on LRG1 will be utilized in clinical trials and implemented in clinical practice in the future.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Jingwei Zhang
- Department of Urology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Dean People’s Hospital, Jiujiang, China
| | - Haiya Feng
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Yifei Jia
- Department of Burn Surgery, Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
3
|
Lasaad S, Crambert G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. Int J Mol Sci 2024; 25:5956. [PMID: 38892145 PMCID: PMC11172470 DOI: 10.3390/ijms25115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM), Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR 8228, F-75006 Paris, France
| |
Collapse
|
4
|
Ye Q, Xu G, Xue C, Pang S, Xie B, Huang G, Li H, Chen X, Yang R, Li W. Urinary SPP1 has potential as a non-invasive diagnostic marker for focal segmental glomerulosclerosis. FEBS Open Bio 2023; 13:2061-2080. [PMID: 37696527 PMCID: PMC10626280 DOI: 10.1002/2211-5463.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a type of chronic glomerular nephropathy showing characteristic glomerular sclerosis, diagnosed by kidney biopsy. However, it is difficult and expensive to monitor disease progression with repeated renal biopsy in clinical practice, and thus here we explored the feasibility of urine biomarkers as non-invasive diagnostic tools. We downloaded scRNA-seq datasets of 20 urine cell samples and 3 kidney tissues and obtained two gene lists encoding extracellular proteins for bioinformatic analysis; in addition, we identified key EP-Genes by immunohistochemical staining and performed bulk RNA sequencing with 12 urine samples. We report that urine cells and kidney cells were correlated. A total of 64 EP-Genes were acquired by intersecting genes of distal tubular cluster with extracellular proteins. Function enrichment analysis showed that EP-Genes might be involved in the immune response and extracellular components. Six key EP-Genes were identified and correlated with renal function. IMC showed that key EP-Genes were located mainly in tubules. Cross verification and examination of a urine RNAseq dataset showed that SPP1 had diagnostic potential for FSGS. The presence of urine SPP1 was primarily associated with macrophage infiltration in kidney, and the pathogenesis of FSGS may be related to innate immunity. Urinary cells seemed to be strongly similar to kidney cells. In summary, SPP1 levels reflect renal function and may have potential as a biomarker for non-invasive diagnosis of FSGS.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guiling Xu
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Chao Xue
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shuting Pang
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Boji Xie
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guanwen Huang
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Haoyu Li
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xuesong Chen
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rirong Yang
- Centre for Genomic and Personalized MedicineDepartment of ImmunologySchool of Basic Medical SciencesGuangxi Medical UniversityNanning530021China
| | - Wei Li
- Department of NephrologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
5
|
Pejchinovski I, Turkkan S, Pejchinovski M. Recent Advances of Proteomics in Management of Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2648. [PMID: 37627907 PMCID: PMC10453063 DOI: 10.3390/diagnostics13162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Kidney Injury (AKI) is currently recognized as a life-threatening disease, leading to an exponential increase in morbidity and mortality worldwide. At present, AKI is characterized by a significant increase in serum creatinine (SCr) levels, typically followed by a sudden drop in glomerulus filtration rate (GFR). Changes in urine output are usually associated with the renal inability to excrete urea and other nitrogenous waste products, causing extracellular volume and electrolyte imbalances. Several molecular mechanisms were proposed to be affiliated with AKI development and progression, ultimately involving renal epithelium tubular cell-cycle arrest, inflammation, mitochondrial dysfunction, the inability to recover and regenerate proximal tubules, and impaired endothelial function. Diagnosis and prognosis using state-of-the-art clinical markers are often late and provide poor outcomes at disease onset. Inappropriate clinical assessment is a strong disease contributor, actively driving progression towards end stage renal disease (ESRD). Proteins, as the main functional and structural unit of the cell, provide the opportunity to monitor the disease on a molecular level. Changes in the proteomic profiles are pivotal for the expression of molecular pathways and disease pathogenesis. Introduction of highly-sensitive and innovative technology enabled the discovery of novel biomarkers for improved risk stratification, better and more cost-effective medical care for the ill patients and advanced personalized medicine. In line with those strategies, this review provides and discusses the latest findings of proteomic-based biomarkers and their prospective clinical application for AKI management.
Collapse
Affiliation(s)
- Ilinka Pejchinovski
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Sibel Turkkan
- Department of Quality Assurance, Nikkiso Europe GmbH, 30885 Langenhagen, Germany; (I.P.); (S.T.)
| | - Martin Pejchinovski
- Department of Analytical Instruments Group, Thermo Fisher Scientific, 82110 Germering, Germany
| |
Collapse
|
6
|
Winter LM, Reinhardt D, Schatter A, Tissen V, Wiora H, Gerlach D, Tontsch-Grunt U, Colbatzky F, Stierstorfer B, Yun SW. Molecular basis of GDF15 induction and suppression by drugs in cardiomyocytes and cancer cells toward precision medicine. Sci Rep 2023; 13:12061. [PMID: 37495707 PMCID: PMC10372009 DOI: 10.1038/s41598-023-38450-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
GDF15 has recently emerged as a key driver of the development of various disease conditions including cancer cachexia. Not only the tumor itself but also adverse effects of chemotherapy have been reported to contribute to increased GDF15. Although regulation of GDF15 transcription by BET domain has recently been reported, the molecular mechanisms of GDF15 gene regulation by drugs are still unknown, leaving uncertainty about the safe and effective therapeutic strategies targeting GDF15. We screened various cardiotoxic drugs and BET inhibitors for their effects on GDF15 regulation in human cardiomyocytes and cancer cell lines and analyzed in-house and public gene signature databases. We found that DNA damaging drugs induce GDF15 in cardiomyocytes more strongly than drugs with other modes of action. In cancer cells, GDF15 induction varied depending on drug- and cell type-specific gene signatures including mutations in PI3KCA, TP53, BRAF and MUC16. GDF15 suppression by BET inhibition is particularly effective in cancer cells with low activity of the PI3K/Akt axis and high extracellular concentrations of pantothenate. Our findings provide insights that the risk for GDF15 overexpression and concomitant cachexia can be reduced by a personalized selection of anticancer drugs and patients for precision medicine.
Collapse
Affiliation(s)
- Lisa-Maria Winter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Diana Reinhardt
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Ariane Schatter
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Vivien Tissen
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Heike Wiora
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Daniel Gerlach
- Boehringer Ingelheim RCV, GmbH & Co KG, 1120, Vienna, Austria
| | | | - Florian Colbatzky
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Birgit Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany
| | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorfer Strasse 65, 88397, Biberach an Der Riß, Germany.
| |
Collapse
|
7
|
González MA, Barrera-Chacón R, Peña FJ, Fernández-Cotrina J, Robles NR, Pérez-Merino EM, Martín-Cano FE, Duque FJ. Urinary proteome of dogs with renal disease secondary to leishmaniosis. Res Vet Sci 2022; 149:108-118. [PMID: 35777279 DOI: 10.1016/j.rvsc.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 10/17/2022]
Abstract
Canine leishmaniosis is frequently associated with the development of renal disease. Its pathogenesis is complex and not fully understood. For this reason, this study aimed to describe the urinary proteome, and identify possible new biomarkers in dogs with kidney disease secondary to leishmaniosis. Urine samples were collected from 20 dogs, 5 from healthy dogs, and 15 from stages Leishvet III and IV. Urine samples were analyzed by UHPLC-MS/MS. The data are available via ProteomeXchange with identifier PXD029165. A total of 951 proteins were obtained. After bioinformatic analysis, 93 urinary proteins were altered in the study group. Enrichment analysis performed on these proteins showed an overrepresentation of the complement activation pathway, among others. Finally, 12 discriminant variables were found in dogs with renal disease secondary to leishmaniosis, highlighting C4a anaphylatoxin, apolipoprotein A-I, haptoglobin, leucine-rich alpha-2-glycoprotein 1, and beta-2-microglobulin. This study is the first to describe the urinary proteomics of dogs with renal disease caused by leishmaniosis, and it provides new possible biomarkers for the diagnosis and monitoring of this disease.
Collapse
Affiliation(s)
- Mario A González
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain.
| | | | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Javier Fernández-Cotrina
- LeishmanCeres Laboratory (GLP Compliance Certified), Parasitology Unit, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Nicolás R Robles
- Nephrology Service, Badajoz University Hospital, University of Extremadura, 06080 Badajoz, Spain
| | - Eva M Pérez-Merino
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain
| | - Francisco J Duque
- Animal Medicine Department, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
8
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
9
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Lin M, Liu J, Zhang F, Qi G, Tao S, Fan W, Chen M, Ding K, Zhou F. The role of leucine-rich alpha-2-glycoprotein-1 in proliferation, migration, and invasion of tumors. J Cancer Res Clin Oncol 2022; 148:283-291. [PMID: 35037101 DOI: 10.1007/s00432-021-03876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leucine-rich alpha-2-glycoprotein-1 (LRG1) is widely involved in proliferation, migration, and invasion of various tumor cells. Recent studies have evaluated the potential of LRG1 as both an early tumor and a prognostic biomarker. METHOD The relevant literature from PubMed is reviewed in this article. RESULTS It has been found that LRG1 mainly acts on the regulatory mechanisms of angiogenesis, epithelial-mesenchymal transition (EMT), and apoptosis by transforming growth factor (TGF-β) signaling pathway as well as affecting the occurrence and development of the tumors. Moreover, with advancement of research, LRG1 regulation pathways which are independent of TGF-β signaling pathway have been gradually revealed in different tumor cells; There are several studies on the biological effects of LRG1 as an inflammatory factor, vascular growth regulator, cell adhesion, and a cell viability influencing factor. In addition, various tumor suppression methods which are based on regulation of LRG1 levels have also shown high potential clinical value. CONCLUSIONS LRG1 are critical for the processes of tumorigenesis, development, and metastasis in various tumors. The present study reviewed the latest research on the achievements of LRG1 in tumor genesis and development. Further, this study also discussed the related molecular mechanisms of various biological functions of LRG1.
Collapse
Affiliation(s)
- Meng Lin
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinmeng Liu
- Laboratory of Biochemistry and Molecular Biology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fengping Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Shuqi Tao
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Wenyuan Fan
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Min Chen
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Kang Ding
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Jiang WJ, Xu CT, Du CL, Dong JH, Xu SB, Hu BF, Feng R, Zang DD, Meng XM, Huang C, Li J, Ma TT. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 2022; 12:324-339. [PMID: 34987648 PMCID: PMC8690920 DOI: 10.7150/thno.63735] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Macrophage infiltration around lipotoxic tubular epithelial cells (TECs) is a hallmark of diabetic nephropathy (DN). However, how these two types of cells communicate remains obscure. We previously demonstrated that LRG1 was elevated in the process of kidney injury. Here, we demonstrated that macrophage-derived, LRG1-enriched extracellular vesicles (EVs) exacerbated DN. Methods: We induced an experimental T2DM mouse model with a HFD diet for four months. Renal primary epithelial cells and macrophage-derived EVs were isolated from T2D mice by differential ultracentrifugation. To investigate whether lipotoxic TEC-derived EV (EVe) activate macrophages, mouse bone marrow-derived macrophages (BMDMs) were incubated with EVe. To investigate whether activated macrophage-derived EVs (EVm) induce lipotoxic TEC apoptosis, EVm were cocultured with primary renal tubular epithelial cells. Subsequently, we evaluated the effect of LRG1 in EVe by investigating the apoptosis mechanism. Results: We demonstrated that incubation of primary TECs of DN or HK-2 mTECs with lysophosphatidyl choline (LPC) increased the release of EVe. Interestingly, TEC-derived EVe activated an inflammatory phenotype in macrophages and induced the release of macrophage-derived EVm. Furthermore, EVm could induce apoptosis in TECs injured by LPC. Importantly, we found that leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EVe activated macrophages via a TGFβR1-dependent process and that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-enriched EVm induced apoptosis in injured TECs via a death receptor 5 (DR5)-dependent process. Conclusion: Our findings indicated a novel cell communication mechanism between tubular epithelial cells and macrophages in DN, which could be a potential therapeutic target.
Collapse
|
12
|
Giamougiannis P, Silva RVO, Freitas DLD, Lima KMG, Anagnostopoulos A, Angelopoulos G, Naik R, Wood NJ, Martin-Hirsch PL, Martin FL. Raman spectroscopy of blood and urine liquid biopsies for ovarian cancer diagnosis: identification of chemotherapy effects. JOURNAL OF BIOPHOTONICS 2021; 14:e202100195. [PMID: 34296515 DOI: 10.1002/jbio.202100195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Blood plasma and serum Raman spectroscopy for ovarian cancer diagnosis has been applied in pilot studies, with promising results. Herein, a comparative analysis of these biofluids, with a novel assessment of urine, was conducted by Raman spectroscopy application in a large patient cohort. Spectra were obtained through samples measurements from 116 ovarian cancer patients and 307 controls. Principal component analysis identified significant spectral differences between cancers without previous treatment (n = 71) and following neo-adjuvant chemotherapy (NACT), (n = 45). Application of five classification algorithms achieved up to 73% sensitivity for plasma, high specificities and accuracies for both blood biofluids, and lower performance for urine. A drop in sensitivities for the NACT group in plasma and serum, with an opposite trend in urine, suggest that Raman spectroscopy could identify chemotherapy-related changes. This study confirms that biofluids' Raman spectroscopy can contribute in ovarian cancer's diagnostic work-up and demonstrates its potential in monitoring treatment response.
Collapse
Affiliation(s)
- Panagiotis Giamougiannis
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Raissa V O Silva
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Daniel L D Freitas
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Antonios Anagnostopoulos
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Georgios Angelopoulos
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Raj Naik
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Nicholas J Wood
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Pierre L Martin-Hirsch
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | | |
Collapse
|
13
|
Jiang W, Xu C, Xu S, Su W, Du C, Dong J, Feng R, Huang C, Li J, Ma T. Macrophage-derived, LRG1-enriched extracellular vesicles exacerbate aristolochic acid nephropathy in a TGFβR1-dependent manner. Cell Biol Toxicol 2021; 38:629-648. [PMID: 34677723 DOI: 10.1007/s10565-021-09666-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some herbal medicines, but treatment remains ineffective. We previously found that leucine-rich α-2-glycoprotein 1 (LRG1), which regulates cellular processes, plays an important role in a kidney injury model. However, the underlying mechanism by which LRG1 regulates AAN is still unknown. In this study, we established an AAN model in vivo, a coculture system of macrophages and TECs, and a macrophage/TEC conditioned media culture model in vitro. We found that macrophage infiltration promoted injury, oxidative stress, and apoptosis in TECs. Furthermore, the role of macrophages in AAN was dependent on macrophage-derived extracellular vesicles (EVs). Importantly, we found that macrophage-derived, LRG1-enriched EVs induced TEC injury and apoptosis via a TGFβR1-dependent process. This study may help design a better therapeutic strategy to treat AAN patients.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Songbing Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wan Su
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
14
|
O'Neill T, Hudda MT, Patel R, Liu WK, Young AM, Patel HR, Afshar M. A new prognostic model for predicting 30-day mortality in acute oncology patients. Expert Rev Anticancer Ther 2021; 21:1171-1177. [PMID: 34325618 DOI: 10.1080/14737140.2021.1945446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Acute oncology services (AOS) provide rapid review and expedited pathways for referral to specialist care for cancer patients. Blood tests may support AOS in providing estimates of prognosis. We aimed to develop and validate a prognostic model of 30-day mortality based on routine blood markers to inform an AOS decision to actively treat or palliate patients. METHODS AND MATERIALS Using clinical data from 752 AOS referrals, multivariable logistic regression analysis was conducted to develop a 30-day mortality prognostic model. Internal validation and then internal-external cross-validation were used to examine overfitting and generalizability of the model's predictive performance. RESULTS Urea, alkaline phosphatase, albumin and neutrophils were the strongest predictors of outcome. The model separated patients into distinct prognostic groups from the cross-validation (C Statistic: 0.70; 95% CI: 0.64-0.76). Admission year was included as a predictor in the model to improve the model calibration. CONCLUSION The developed prediction model was able to classify patients into distinct prognostic risk groups, which is clinically useful for delivering an evidence-based AOS. Collation of data from other AOS centers would allow for the development of a more generalizable prognostic model.
Collapse
Affiliation(s)
- Tess O'Neill
- Department of Medicine, Barts and the London NHS Trust, London, London, UK
| | - Mohammed T Hudda
- St George's University of London, Population Health Research Institute, London, UK
| | - Reena Patel
- Department of Medicine, St George's University of London, London, UK
| | - Wing Kin Liu
- Department of Medicine, St George's University of London, London, UK
| | - Anna-Mary Young
- Department of Medicine, St George's University of London, London, UK
| | - Hitendra Rh Patel
- Department of Urology and Endocrine Surgery,University Hospital North Norway, Tromso, Troms Norway
| | - Mehran Afshar
- Department of Medicine, St George's University of London, London, UK
| |
Collapse
|
15
|
Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. J Nephrol 2021; 34:1819-1832. [PMID: 33847920 DOI: 10.1007/s40620-021-01020-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growth Differentiation Factor-15 (GDF15) is a member of the TGF-β superfamily. Increased serum GDF15 has been associated with increased risk of chronic kidney disease (CKD) progression. However, no prior studies have addressed the significance of urinary GDF15 in adult CKD. METHODS We measured serum and urinary GDF15 in a prospective cohort of 84 patients who underwent kidney biopsy and assessed their association with outcomes (survival, kidney replacement therapy) during a follow-up of 29 ± 17 months. RESULTS There was a statistically significant correlation between serum and urine GDF15 values. However, while serum GDF15 values increased with decreasing glomerular filtration rate, urinary GDF15 did not. Immunohistochemistry located kidney GDF15 expression mainly in tubular cells, and kidney GDF15 staining correlated with urinary GDF15 values. Urine GDF15 was significantly higher in patients with a histologic diagnosis of diabetic nephropathy than in diabetic patients without diabetic nephropathy. This was not the case for serum GDF15. Both serum and urine GDF15 were negatively associated with patient survival in multivariate models. However, when both urine and serum GDF15 were present in the model, lower urine GDF15 predicted patient survival [B coefficient (SEM) - 0.395 (0.182) p 0.03], and higher urine GDF15 predicted a composite of mortality or kidney replacement therapy [0.191 (0.06) p 0.002], while serum GDF15 was not predictive. Decision tree analysis yielded similar results. The area under the curve (AUC) of the receiver operating curve (ROC) for urine GDF15 as a predictor of mortality was 0.95 (95% CI 0.89-1.00, p < 0.001). CONCLUSIONS In conclusion, urinary GDF15 is associated with kidney histology patterns, mortality and the need for renal replacement therapy (RRT) in CKD patients who underwent a kidney biopsy.
Collapse
|
16
|
Chen SM, Chen TH, Chang HT, Lin TY, Lin CY, Tsai PY, Imai K, Chen CM, Lee JA. Methylglyoxal and D-lactate in cisplatin-induced acute kidney injury: Investigation of the potential mechanism via fluorogenic derivatization liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) proteomic analysis. PLoS One 2020; 15:e0235849. [PMID: 32649695 PMCID: PMC7351171 DOI: 10.1371/journal.pone.0235849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Nephrotoxicity severely limits the chemotherapeutic efficacy of cisplatin (CDDP). Oxidative stress is associated with CDDP-induced acute kidney injury (AKI). Methylglyoxal (MG) forms advanced glycation end products that elevate oxidative stress. We aimed to explore the role of MG and its metabolite D-lactate and identify the proteins involved in CDDP-induced AKI. Six-week-old female BALB/c mice were intraperitoneally administered CDDP (5 mg/kg/day) for 3 or 5 days. Blood urea nitrogen (42.6 ± 7.4 vs. 18.3 ± 2.5; p < 0.05) and urinary N-acetyl-β-D-glucosaminide (NAG; 4.89 ± 0.61 vs. 2.43 ± 0.31 U/L; p < 0.05) were significantly elevated in the CDDP 5-day group compared to control mice. Histological analysis confirmed AKI was successfully induced. Confocal microscopy revealed TNF-α was significantly increased in the CDDP 5-day group. Fluorogenic derivatized liquid chromatography-tandem mass spectrometry (FD-LC-MS/MS) showed the kidney MG (36.25 ± 1.68 vs. 18.95 ± 2.24 mg/g protein, p < 0.05) and D-lactate (1.78 ± 0.29 vs. 1.12 ± 0.06 mol/g protein, p < 0.05) contents were significantly higher in the CDDP 5-day group than control group. FD-LC-MS/MS proteomics identified 33 and nine altered peaks in the CDDP 3-day group and CDDP 5-day group (vs. control group); of the 35 proteins identified using the MOSCOT database, 11 were antioxidant-related. Western blotting confirmed that superoxide dismutase 1 (SOD-1) and parkinson disease protein 7 (DJ-1) are upregulated and may participate with MG in CDDP-induced AKI. This study demonstrates TNF-α, MG, SOD-1 and DJ-1 play crucial roles in CDDP-induced AKI.
Collapse
Affiliation(s)
- Shih-Ming Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hui Chen
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ting Chang
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Health, Taipei City Government, Taipei, Taiwan
| | - Tzu-Yao Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yu Lin
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pei-Yun Tsai
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan-Fang Hospital, Taipei, Taiwan
| | - Kazuhiro Imai
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Chien-Ming Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Jen-Ai Lee
- Department of Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|