1
|
Goldberg K, Lobov A, Antonello P, Shmueli MD, Yakir I, Weizman T, Ulman A, Sheban D, Laser E, Kramer MP, Shteinvil R, Chen G, Ibraheem A, Sysoeva V, Fishbain-Yoskovitz V, Mohapatra G, Abramov A, Shimshi S, Ogneva K, Nandy M, Amidror S, Bootz-Maoz H, Kuo SH, Dezorella N, Kacen A, Javitt A, Lau GW, Yissachar N, Hayouka Z, Merbl Y. Cell-autonomous innate immunity by proteasome-derived defence peptides. Nature 2025; 639:1032-1041. [PMID: 40044870 PMCID: PMC11946893 DOI: 10.1038/s41586-025-08615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
For decades, antigen presentation on major histocompatibility complex class I for T cell-mediated immunity has been considered the primary function of proteasome-derived peptides1,2. However, whether the products of proteasomal degradation play additional parts in mounting immune responses remains unknown. Antimicrobial peptides serve as a first line of defence against invading pathogens before the adaptive immune system responds. Although the protective function of antimicrobial peptides across numerous tissues is well established, the cellular mechanisms underlying their generation are not fully understood. Here we uncover a role for proteasomes in the constitutive and bacterial-induced generation of defence peptides that impede bacterial growth both in vitro and in vivo by disrupting bacterial membranes. In silico prediction of proteome-wide proteasomal cleavage identified hundreds of thousands of potential proteasome-derived defence peptides with cationic properties that may be generated en route to degradation to act as a first line of defence. Furthermore, bacterial infection induces changes in proteasome composition and function, including PSME3 recruitment and increased tryptic-like cleavage, enhancing antimicrobial activity. Beyond providing mechanistic insights into the role of proteasomes in cell-autonomous innate immunity, our study suggests that proteasome-cleaved peptides may have previously overlooked functions downstream of degradation. From a translational standpoint, identifying proteasome-derived defence peptides could provide an untapped source of natural antibiotics for biotechnological applications and therapeutic interventions in infectious diseases and immunocompromised conditions.
Collapse
Affiliation(s)
- Karin Goldberg
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Arseniy Lobov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Paola Antonello
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Yakir
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Weizman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ulman
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Laser
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Shteinvil
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Guoyun Chen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Angham Ibraheem
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Vera Sysoeva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Abramov
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sandy Shimshi
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kseniia Ogneva
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Madhurima Nandy
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Amidror
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadar Bootz-Maoz
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shanny H Kuo
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Kacen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Aaron Javitt
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Gee W Lau
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Nissan Yissachar
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yifat Merbl
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Downing P, Howe M, Sacco M, Santos LL, Menkhorst E, Teh WT, Lucky T, Zhou W, Dimitriadis E. WD-repeat containing protein-61 regulates endometrial epithelial cell adhesion indicating an important role in receptivity. Mol Hum Reprod 2024; 30:gaae039. [PMID: 39531333 PMCID: PMC11630898 DOI: 10.1093/molehr/gaae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Endometrial receptivity is crucial for successful embryo implantation during early pregnancy. The human endometrium undergoes remodeling within each menstrual cycle to prepare or become receptive to an implanting blastocyst in the mid-secretory phase. However, the mechanisms behind these changes are not fully understood. Recently, using hormone-treated endometrial organoids to model receptivity, we identified that the transcriptional regulator WD-repeat-containing protein-61 (WDR61) was reduced in organoids derived from infertile women. In this study, we aimed to determine the role of WDR61 in endometrial receptivity. Here, we demonstrated that WDR61 immunolocalizes in the nuclei and cytosol of endometrial glandular epithelium, luminal epithelium, and stroma. The staining intensity of WDR61 was significantly higher during the receptive mid-secretory phase compared to the non-receptive proliferative phase in fertile women. In a functional experiment to model blastocyst adhesion to the endometrial epithelium, we found that adhesion of cytotrophoblast progenitor spheroids was blocked when siRNA was used to knockdown WDR61 in primary endometrial epithelial cells. Similarly, in Ishikawa cells (a receptive human endometrial epithelial cell line), siRNA knockdown of WDR61 significantly reduced the cell adhesive and proliferative capacities. qPCR revealed that WDR61 knockdown reduced expression of key genes involved in receptivity including HOXD10, MMP2, and CD44. Chromatin immunoprecipitation sequencing demonstrated that WDR61 directly targeted 2022 genes in Ishikawa cells, with functions including focal adhesion, intracellular signaling and epithelial-mesenchymal transition. Overall, these findings suggest that WDR61 promotes endometrial receptivity by modulating epithelial cell focal adhesions, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Poppy Downing
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Madeleine Howe
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Michaela Sacco
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Leilani L Santos
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Ellen Menkhorst
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Wan Tinn Teh
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- The Royal Women’s Hospital, Parkville, Melbourne, Australia
- Melbourne IVF, Melbourne, Australia
- Epworth HealthCare, Melbourne, Australia
| | - Tarana Lucky
- The Royal Women’s Hospital, Parkville, Melbourne, Australia
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Wei Zhou
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynecology and Newborn Health, University of Melbourne, Parkville, Melbourne, Australia
- Gynaecology Research Centre, Royal Women's Hospital, Parkville, Melbourne, Australia
| |
Collapse
|
3
|
Yuan C, Xie K, Feng L, Gao S, Cai L. The role and challenges of regulating endometrial microbiome in uterine health and diseases. Crit Rev Microbiol 2024; 50:937-954. [PMID: 38488586 DOI: 10.1080/1040841x.2024.2320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 10/09/2024]
Abstract
The uterine environment provides necessary conditions for the existence of endometrial microbiota, which in turn plays an important role in maintaining the homeostasis of the uterine environment. The endometrial microbiome is highly susceptible to external factors such as age, hormones, menstrual, pregnancy, etc. When the microbiota is imbalanced, it will further promote the occurrence of uterine diseases such as endometritis and endometrial cancer. Regulating the microbiome of the endometrium is of positive significance for promoting uterine health. Among them, antibiotics, probiotics, prebiotics, and microbial transplantation may be important pathways for regulating endometrial microbiota in the future. However, there is currently no unified plan for evaluating the endometrial microbiota. In addition, due to the small sample size, it is easy to be contaminated by exogenous bacterial DNA, which poses great challenges for studying the mechanism of microbial community regulating uterine health. Therefore, there are still many areas worth exploring for the future of endometrial microbiome.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms 2024; 12:1641. [PMID: 39203483 PMCID: PMC11357228 DOI: 10.3390/microorganisms12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Recurrent Pregnancy Loss (RPL) affects 1-2% of women, and its triggering factors are unclear. Several studies have shown that the vaginal, endometrial, and gut microbiota may play a role in RPL. A decrease in the quantity of Lactobacillus crispatus in local microbiota has been associated with an increase in local (vaginal and endometrial) inflammatory response and immune cell activation that leads to pregnancy loss. The inflammatory response may be triggered by gram-negative bacteria, lipopolysaccharides (LPS), viral infections, mycosis, or atypia (tumor growth). Bacterial structures and metabolites produced by microbiota could be involved in immune cell modulation and may be responsible for immune cell activation and molecular mimicry. Gut microbiota metabolic products may increase the amount of circulating pro-inflammatory lymphocytes, which, in turn, will migrate into vaginal or endometrial tissues. Local pro-inflammatory Th1 and Th17 subpopulations and a decrease in local Treg and tolerogenic NK cells are accountable for the increase in pregnancy loss. Local microbiota may modulate the local inflammatory response, increasing pregnancy success. Analyzing local and gut microbiota may be necessary to characterize some RPL patients. Although oral supplementation of probiotics has not been shown to modify vaginal or endometrial microbiota, the metabolites produced by it may benefit patients. Lactobacillus crispatus transplantation into the vagina may enhance the required immune tolerogenic response to achieve a normal pregnancy. The effect of hormone stimulation and progesterone to maintain early pregnancy on microbiota has not been adequately studied, and more research is needed in this area. Well-designed clinical trials are required to ascertain the benefit of microbiota modulation in RPL.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc (FNOL), Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
5
|
Dai W, Liang J, Guo R, Zhao Z, Na Z, Xu D, Li D. Bioengineering approaches for the endometrial research and application. Mater Today Bio 2024; 26:101045. [PMID: 38600921 PMCID: PMC11004221 DOI: 10.1016/j.mtbio.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Zhongyu Zhao
- Innovation Institute, China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
6
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
7
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
9
|
Herrera L, Martin-Inaraja M, Bengoetxea A, Vendrell A, Pérez-Fernández S, Eguizabal C, Matorras R. Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters. J Assist Reprod Genet 2023; 40:2241-2250. [PMID: 37436645 PMCID: PMC10440323 DOI: 10.1007/s10815-023-02862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters. METHODS The population under study consisted of 43 women aged 18-40 undergoing infertility workup at our University Hospital in 2021-2022. The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27-29 days. An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood. RESULTS Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4-5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood. CONCLUSION We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Ainara Bengoetxea
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Alberto Vendrell
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Silvia Pérez-Fernández
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Department of Medical-Surgical Specialties, Basque Country University, Lejona, Spain
- Instituto Valenciano de Infertilidad - IVI Bilbao, IVIRMA, Lejona, Spain
| |
Collapse
|
10
|
Guo J, Zhou W, Sacco M, Downing P, Dimitriadis E, Zhao F. Using organoids to investigate human endometrial receptivity. Front Endocrinol (Lausanne) 2023; 14:1158515. [PMID: 37693361 PMCID: PMC10484744 DOI: 10.3389/fendo.2023.1158515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/13/2023] [Indexed: 09/12/2023] Open
Abstract
The human endometrium is only receptive to an implanting blastocyst in the mid-secretory phase of each menstrual cycle. Such time-dependent alterations in function require intricate interplay of various factors, largely coordinated by estrogen and progesterone. Abnormal endometrial receptivity is thought to contribute to two-thirds of the implantation failure in humans and therefore significantly hindering IVF success. Despite the incontrovertible importance of endometrial receptivity in implantation, the precise mechanisms involved in the regulation of endometrial receptivity remain poorly defined. This is mainly due to a lack of proper in vitro models that recapitulate the in vivo environment of the receptive human endometrium. Organoids were recently established from human endometrium with promising features to better mimic the receptive phase. Endometrial organoids show long-term expandability and the capability to preserve the structural and functional characteristics of the endometrial tissue of origin. This three-dimensional model maintains a good responsiveness to steroid hormones in vitro and replicates key morphological features of the receptive endometrium in vivo, including pinopodes and pseudostratified epithelium. Here, we review the current findings of endometrial organoid studies that have been focused on investigating endometrial receptivity and place an emphasis on methods to further refine and improve this model.
Collapse
Affiliation(s)
- Junhan Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michaela Sacco
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Poppy Downing
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Kanaka V, Drakakis P, Loutradis D, Tsangaris GT. Proteomics in the study of female fertility: an update. Expert Rev Proteomics 2023; 20:319-330. [PMID: 37874610 DOI: 10.1080/14789450.2023.2275683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
12
|
Bi X, Zhou L, Zhang JJ, Feng S, Hu M, Cooper DN, Lin J, Li J, Wu DD, Zhang G. Lineage-specific accelerated sequences underlying primate evolution. SCIENCE ADVANCES 2023; 9:eadc9507. [PMID: 37262186 PMCID: PMC10413682 DOI: 10.1126/sciadv.adc9507] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Understanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease. Our study also yielded detailed maps of LinARs in other primate lineages that may have influenced lineage-specific phenotypic innovation and adaptation. Functional experimentation identified gibbon LinARs, which could have participated in the developmental regulation of their unique limb structures, whereas some LinARs in the Colobinae were associated with metabolite detoxification which may have been adaptive in relation to their leaf-eating diet. Overall, our study broadens knowledge of the functional roles of LinARs in primate evolution.
Collapse
Affiliation(s)
- Xupeng Bi
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaohong Feng
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Mei Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Jiangwei Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jiali Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Mun DG, Budhraja R, Bhat FA, Zenka RM, Johnson KL, Moghekar A, Pandey A. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Proteomics 2023; 23:e2200507. [PMID: 36752121 DOI: 10.1002/pmic.202200507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
A quadrupole time-of-flight mass spectrometer coupled with a trapped ion mobility spectrometry (timsTOF) operated in parallel accumulation-serial fragmentation (PASEF) mode has recently emerged as a platform capable of providing four-dimensional (4D) features comprising of elution time, collision cross section (CCS), mass-to-charge ratio, and intensity of peptides. The PASEF mode provides ∼100% ion sampling efficiency both in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes without sacrificing sensitivity. In addition, targeted measurements using PASEF integrated parallel reaction monitoring (PRM) mode have also been described. However, only limited number of studies have used timsTOF for analysis of clinical samples. Although Orbitrap mass spectrometers have been used for biomarker discovery from cerebrospinal fluid (CSF) in a variety of neurological diseases, these Orbitrap-derived datasets cannot readily be applied for driving experiments on timsTOF mass spectrometers. We generated a catalog of peptides and proteins in human CSF in DDA mode on a timsTOF mass spectrometer and used these data to build a spectral library. This strategy allowed us to use elution times and ion mobility values from the spectral library to design PRM experiments for quantifying previously discovered biomarkers from CSF samples in Alzheimer's disease. When the same samples were analyzed using a DIA approach combined with a spectral library search, a higher number of proteins were identified than in a library-free approach. Overall, we have established a spectral library of CSF as a resource and demonstrated its utility for PRM and DIA studies, which should facilitate studies of neurological disorders.
Collapse
Affiliation(s)
- Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Firdous A Bhat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman M Zenka
- Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Manipal Academy of Higher Education, Manipal, Karnataka, India.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Joshi AA, Vocanson M, Nicolas JF, Wolf P, Patra V. Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Front Immunol 2023; 14:1125635. [PMID: 36761743 PMCID: PMC9907850 DOI: 10.3389/fimmu.2023.1125635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that significantly affects the patient's quality of life. A disrupted skin barrier, type 2 cytokine-dominated inflammation, and microbial dysbiosis with increased Staphylococcus aureus colonization are critical components of AD pathogenesis. Patients with AD exhibit decreased expression of antimicrobial peptides (AMPs) which is linked to increased colonization by Staphylococcus aureus. The skin microbiome itself is a source of several AMPs. These host- and microbiome-derived AMPs define the microbial landscape of the skin based on their differential antimicrobial activity against a range of skin microbes or their quorum sensing inhibitory properties. These are particularly important in preventing and limiting dysbiotic colonization with Staphylococcus aureus. In addition, AMPs are critical for immune homeostasis. In this article, we share our perspectives about the implications of microbial derived AMPs in AD patients and their potential effects on overlapping factors involved in AD. We argue and discuss the potential of bacterial AMPs as therapeutics in AD.
Collapse
Affiliation(s)
- Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jean-Francois Nicolas
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,Department of Allergology & Clinical Immunology, Lyon-Sud University Hospital, Lyon, France
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,*Correspondence: Vijaykumar Patra,
| |
Collapse
|
16
|
Zhou W, Barton S, Cui J, Santos LL, Yang G, Stern C, Kieu V, Teh WT, Ang C, Lucky T, Sgroi J, Ye L, Dimitriadis E. Infertile human endometrial organoid apical protein secretions are dysregulated and impair trophoblast progenitor cell adhesion. Front Endocrinol (Lausanne) 2022; 13:1067648. [PMID: 36589798 PMCID: PMC9794621 DOI: 10.3389/fendo.2022.1067648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Embryo implantation failure leads to infertility. As an important approach to regulate implantation, endometrial epithelial cells produce and secrete factors apically into the uterine cavity in the receptive phase to prepare the initial blastocyst adhesion and implantation. Organoids were recently developed from human endometrial epithelium with similar apical-basal polarity compared to endometrial gland making it an ideal model to study endometrial epithelial secretions. METHODS Endometrial organoids were established using endometrial biopsies from women with primary infertility and normal fertility. Fertile and infertile organoids were treated with hormones to model receptive phase of the endometrial epithelium and intra-organoid fluid (IOF) was collected to compare the apical protein secretion profile and function on trophoblast cell adhesion. RESULTS Our data show that infertile organoids were dysregulated in their response to estrogen and progesterone treatment. Proteomic analysis of organoid apical secretions identified 150 dysregulated proteins between fertile and infertile groups (>1.5-fold change). Trophoblast progenitor spheroids (blastocyst surrogates) treated with infertile organoid apical secretions significantly compromised their adhesion to organoid epithelial cell monolayers compared to fertile group (P < 0.0001). DISCUSSION This study revealed that endometrial organoid apical secretions alter trophoblast cell adhesiveness relative to fertility status of women. It paves the way to determine the molecular mechanisms by which endometrial epithelial apical released factors regulate blastocyst initial attachment and implantation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Siena Barton
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Jinwei Cui
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Leilani L. Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Guannan Yang
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Catharyn Stern
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Melbourne IVF, Melbourne, VIC, Australia
| | - Violet Kieu
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Melbourne IVF, Melbourne, VIC, Australia
| | - Wan Tinn Teh
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Melbourne IVF, Melbourne, VIC, Australia
- Epworth HealthCare, Melbourne, VIC, Australia
| | - Catarina Ang
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
| | - Tarana Lucky
- The Royal Women’s Hospital, Parkville, VIC, Australia
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Joseph Sgroi
- Melbourne IVF, Melbourne, VIC, Australia
- Epworth HealthCare, Melbourne, VIC, Australia
| | - Louie Ye
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- *Correspondence: Evdokia Dimitriadis,
| |
Collapse
|
17
|
Toson B, Simon C, Moreno I. The Endometrial Microbiome and Its Impact on Human Conception. Int J Mol Sci 2022; 23:ijms23010485. [PMID: 35008911 PMCID: PMC8745284 DOI: 10.3390/ijms23010485] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Changes in the female genital tract microbiome are consistently correlated to gynecological and obstetrical pathologies, and tract dysbiosis can impact reproductive outcomes during fertility treatment. Nonetheless, a consensus regarding the physiological microbiome core inside the uterine cavity has not been reached due to a myriad of study limitations, such as sample size and experimental design variations, and the influence of endometrial bacterial communities on human reproduction remains debated. Understanding the healthy endometrial microbiota and how changes in its composition affect fertility would potentially allow personalized treatment through microbiome management during assisted reproductive therapies, ultimately leading to improvement of clinical outcomes. Here, we review current knowledge regarding the uterine microbiota and how it relates to human conception.
Collapse
Affiliation(s)
- Bruno Toson
- INCLIVA Biomedical Research Institute, Av. Menendez y Pelayo 4, 46010 Valencia, Spain;
| | - Carlos Simon
- Igenomix Foundation/INCLIVA Biomedical Research Institute, Narcis Monturiol Estarriol 11B, 46980 Paterna, Spain
- Department of Obstetrics and Gynecology, University of Valencia, Av. Blásco Ibáñez 15, 46010 Valencia, Spain
- Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Ave, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Correspondence: (C.S.); (I.M.)
| | - Inmaculada Moreno
- Igenomix Foundation/INCLIVA Biomedical Research Institute, Narcis Monturiol Estarriol 11B, 46980 Paterna, Spain
- Correspondence: (C.S.); (I.M.)
| |
Collapse
|
18
|
Peeters MKR, Baggerman G, Gabriels R, Pepermans E, Menschaert G, Boonen K. Ion Mobility Coupled to a Time-of-Flight Mass Analyzer Combined With Fragment Intensity Predictions Improves Identification of Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides. Front Cell Dev Biol 2021; 9:720570. [PMID: 34604223 PMCID: PMC8484717 DOI: 10.3389/fcell.2021.720570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Bioactive peptides exhibit key roles in a wide variety of complex processes, such as regulation of body weight, learning, aging, and innate immune response. Next to the classical bioactive peptides, emerging from larger precursor proteins by specific proteolytic processing, a new class of peptides originating from small open reading frames (sORFs) have been recognized as important biological regulators. But their intrinsic properties, specific expression pattern and location on presumed non-coding regions have hindered the full characterization of the repertoire of bioactive peptides, despite their predominant role in various pathways. Although the development of peptidomics has offered the opportunity to study these peptides in vivo, it remains challenging to identify the full peptidome as the lack of cleavage enzyme specification and large search space complicates conventional database search approaches. In this study, we introduce a proteogenomics methodology using a new type of mass spectrometry instrument and the implementation of machine learning tools toward improved identification of potential bioactive peptides in the mouse brain. The application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting retention times, improve the database searching based on a large and comprehensive custom database containing both sORFs and alternative ORFs. Finally, the identification of peptides is further enhanced by applying the post-processing semi-supervised learning tool Percolator. Applying this workflow, the first peptidomics workflow combined with spectral intensity and retention time predictions, we identified a total of 167 predicted sORF-encoded peptides, of which 48 originating from presumed non-coding locations, next to 401 peptides from known neuropeptide precursors, linked to 66 annotated bioactive neuropeptides from within 22 different families. Additional PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to 84, while an additional 204 peptides completed the list of peptides from neuropeptide precursors. Altogether, this study provides insights into a new robust pipeline that fuses technological advancements from different fields ensuring an improved coverage of the neuropeptidome in the mouse brain.
Collapse
Affiliation(s)
- Marlies K. R. Peeters
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Ralf Gabriels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Gerben Menschaert
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
- OHMX.bio, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| |
Collapse
|
19
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
20
|
Antibacterial and Antifungal Activity of the Human Endometrial Fluid during the Natural Cycle. Infect Dis Obstet Gynecol 2021; 2021:8849664. [PMID: 34220191 PMCID: PMC8221874 DOI: 10.1155/2021/8849664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Some microbiota patterns have been associated with favorable IVF prognosis and others with pathological conditions. The endometrial fluid aspirate (EFA) contains antibacterial proteins that are enriched in implantative IVF cycles, but the antimicrobial effect of EFA has not been addressed. We aimed to evaluate the antimicrobial activity of the human endometrial fluid during the natural cycle. Methods EFA was obtained through an embryo transfer catheter in 38 women, aged 18-40 years, with regular cycles attending to a fertility clinic. The antimicrobial activity of EFAs was tested against two strains of Staphylococcus aureus; one strain each of Streptococcus agalactiae, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae; and three yeasts (Candida albicans, Candida glabrata, and Candida krusei). Results All samples exhibited antibacterial activity against S. aureus. In addition, 32.4% of EFAs were active against one of the other microorganisms assayed, 16.2% against two, and 5.4% against four of them. In contrast, none exhibited antibacterial activity against E. coli or K. pneumoniae. The antimicrobial activity differs considerably between EFA samples, and we failed to observe a cycle-related pattern. Conclusions EFA presented two antimicrobial activity patterns: (a) one common to all the samples, exhibiting activity against S. aureus and lack of activity against E. coli and K. pneumoniae, and (b) an individualized pattern, showing activity against some of the other microorganisms tested. The intensity of antibacterial activity differs between EFA samples. Our data suggest that the uterine microbiota is controlled by means of endometrial fluid components.
Collapse
|
21
|
Matorras R, Valls R, Azkargorta M, Burgos J, Rabanal A, Elortza F, Mas JM, Sardon T. Proteomics based drug repositioning applied to improve in vitro fertilization implantation: an artificial intelligence model. Syst Biol Reprod Med 2021; 67:281-297. [PMID: 34126818 DOI: 10.1080/19396368.2021.1928792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Embryo implantation is one of the most inefficient steps in assisted reproduction, so the identifying drugs with a potential clinical application to improve it has a strong interest. This work applies artificial intelligence and systems biology-based mathematical modeling strategies to unveil potential treatments by computationally analyzing and integrating available molecular and clinical data from patients. The mathematical models of embryo implantation computationally generated here simulate the molecular networks underneath this biological process. Once generated, these models were analyzed in order to identify potential repositioned drugs (drugs already used for other indications) able to improve embryo implantation by modulating the molecular pathways involved. Interestingly, the repositioning analysis has identified drugs considering two endpoints: (1) drugs able to modulate the activity of proteins whose role in embryo implantation is already bibliographically acknowledged, and (2) drugs that modulate key proteins in embryo implantation previously predicted through a mechanistic analysis of the mathematical models. This second approach increases the scope open for examination and potential novelty of the repositioning strategy. As a result, a list of 23 drug candidates to improve embryo implantation after IVF was identified by the mathematical models. This list includes many of the compounds already tested for this purpose, which reinforces the predictive capacity of our approach, together with novel repositioned candidates (e.g., Infliximab, Polaprezinc, and Amrinone). In conclusion, the present study exploits existing molecular and clinical information to offer new hypotheses regarding molecular mechanisms in embryo implantation and therapeutic candidates to improve it. This information will be very useful to guide future research.Abbreviations: IVF: in vitro fertilization; EI: Embryo implantation; TPMS: Therapeutic Performance Mapping System; MM: mathematical models; ANN: Artificial Neuronal Networks; TNFα: tumour necrosis factor factor-alpha; HSPs: heat shock proteins; VEGF: vascular endothelial growth factor; PPARA: peroxisome proliferator activated receptor-α PXR: pregnane X receptor; TTR: transthyretin; BED: Biological Effectors Database; MLP: multilayer perceptron.
Collapse
Affiliation(s)
- Roberto Matorras
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain.,IVIRMA Bilbao, Bilbao, Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Jorge Burgos
- Biocruces Bizkaia Health Research Institute. Osakidetza. Cruces University Hospital, University of the Basque Country, Bilbao, Spain
| | - Aintzane Rabanal
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | | | | |
Collapse
|
22
|
García-Vázquez FA, Moros-Nicolás C, López-Úbeda R, Rodríguez-Tobón E, Guillén-Martínez A, Ross JW, Luongo C, Matás C, Hernández-Caravaca I, Avilés M, Izquierdo-Rico MJ. Evidence of haptoglobin in the porcine female genital tract during oestrous cycle and its effect on in vitro embryo production. Sci Rep 2021; 11:12041. [PMID: 34103548 PMCID: PMC8187724 DOI: 10.1038/s41598-021-90810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Recent evidence supports involvement of the acute phase protein haptoglobin in numerous events during mammalian reproduction. The present study represents an in-depth investigation of haptoglobin expression and secretion in the porcine oviduct and uterus, and assesses its effect on porcine in vitro embryo production. A systematic study was made of sows in different oestrous stages: late follicular, early luteal and late luteal stages. Relative haptoglobin mRNA abundance was quantified by RT-qPCR. In addition, expression of the protein was analysed by immunohistochemistry and the results were complemented by Western-blot and proteomic analyses of the oviductal and uterine fluids. In vitro porcine fertilization and embryo culture were carried out in the presence of haptoglobin. The results indicate that haptoglobin mRNA expression in the porcine oviduct and uterus is most abundant during the late luteal stage of the oestrous cycle. By means of Western blot and proteomic analyses haptoglobin presence was demonstrated in the oviduct epithelium and in the oviductal and uterine fluids in different stages of the oestrous cycle. The addition of haptoglobin during gamete co-incubation had no effect on sperm penetration, monospermy or efficiency rates; however, compared with the control group, blastocyst development was significantly improved when haptoglobin was present (haptoglobin: 64.50% vs. control: 37.83%; p < 0.05). In conclusion, the presence of haptoglobin in the oviduct and uterus of sows at different stages of the oestrous cycle suggests that it plays an important role in the reproduction process. The addition of haptoglobin during in vitro embryo production improved the blastocyst rates.
Collapse
Affiliation(s)
- Francisco A. García-Vázquez
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carla Moros-Nicolás
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rebeca López-Úbeda
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ernesto Rodríguez-Tobón
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Ascensión Guillén-Martínez
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Jason W. Ross
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA USA
| | - Chiara Luongo
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Carmen Matás
- grid.10586.3a0000 0001 2287 8496Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Iván Hernández-Caravaca
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Manuel Avilés
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Mª José Izquierdo-Rico
- grid.10586.3a0000 0001 2287 8496Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain ,grid.452553.0Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain ,CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
23
|
Hartman E, Wallblom K, van der Plas MJA, Petrlova J, Cai J, Saleh K, Kjellström S, Schmidtchen A. Bioinformatic Analysis of the Wound Peptidome Reveals Potential Biomarkers and Antimicrobial Peptides. Front Immunol 2021; 11:620707. [PMID: 33613550 PMCID: PMC7888259 DOI: 10.3389/fimmu.2020.620707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Wound infection is a common and serious medical condition with an unmet need for improved diagnostic tools. A peptidomic approach, aided by mass spectrometry and bioinformatics, could provide novel means of identifying new peptide biomarkers for wound healing and infection assessment. Wound fluid is suitable for peptidomic analysis since it is both intimately tied to the wound environment and is readily available. In this study we investigate the peptidomes of wound fluids derived from surgical drainages following mastectomy and from wound dressings following facial skin grafting. By applying sorting algorithms and open source third party software to peptidomic label free tandem mass spectrometry data we provide an unbiased general methodology for analyzing and differentiating between peptidomes. We show that the wound fluid peptidomes of patients are highly individualized. However, differences emerge when grouping the patients depending on wound type. Furthermore, the abundance of peptides originating from documented antimicrobial regions of hemoglobin in infected wounds may contribute to an antimicrobial wound environment, as determined by in silico analysis. We validate our findings by compiling literature on peptide biomarkers and peptides of physiological significance and cross checking the results against our dataset, demonstrating that well-documented peptides of immunological significance are abundant in infected wounds, and originate from certain distinct regions in proteins such as hemoglobin and fibrinogen. Ultimately, we have demonstrated the power using sorting algorithms and open source software to help yield insights and visualize peptidomic data.
Collapse
Affiliation(s)
- Erik Hartman
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Wallblom
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mariena J. A. van der Plas
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Karim Saleh
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Dermatology, Skane University Hospital, Lund, Sweden
| | - Sven Kjellström
- Division of Mass Spectrometry, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Dermatology, Skane University Hospital, Lund, Sweden
- Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Vallejo-Castillo L, Favari L, Vázquez-Leyva S, Mellado-Sánchez G, Macías-Palacios Z, López-Juárez LE, Valencia-Flores L, Medina-Rivero E, Chacón-Salinas R, Pavón L, Pérez-Tapia SM. Sequencing Analysis and Identification of the Primary Peptide Component of the Dialyzable Leukocyte Extract "Transferon Oral": The Starting Point to Understand Its Mechanism of Action. Front Pharmacol 2020; 11:569039. [PMID: 33117165 PMCID: PMC7577238 DOI: 10.3389/fphar.2020.569039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
"Transferon Oral" is a peptide-derived product with immunomodulatory properties obtained from the lysis and dialysis of human buffy coat. Its active pharmaceutical ingredient, generically known as Dialyzable Leucocyte Extract, is a mixture of peptide populations with reproducible proportions among batches. "Transferon Oral" modulates IFN-γ, TNF-α, and IL-6 and increases the survival rate in a herpes infection murine model when oropharyngeally (ORO) administered, which correlate with clinical observations where "Transferon Oral" is used as a therapeutic auxiliary in inflammatory diseases. Notwithstanding, how a peptide-derived product elicits systemic modulation of cytokines when ORO administered remains unclear. To shed light on the pharmacology of "Transferon Oral" its peptide components must be known. Ten "Transferon Oral" batches were sequenced by mass spectrometry and the intact peptides were identified. The most abundant peptides were the monomeric human Ubiquitin (Ub), a globular low-molecular mass protein, and an Ub variant which lacks the two-terminal Gly (Ub-GG). Recombinant Ub prevented murine death when ORO administered in a herpes infection murine model. Besides, the percentage of survival increased in groups treated with Transferon Oral+Ub and decreased in groups treated with Ub-depleted "Transferon Oral" respect to the group treated with "Transferon Oral" only. Our findings indicate that the biological properties of "Transferon Oral" are partially associated to the Ub content. They suggest that Ub may activate its extracellular receptor (CXCR-4) in the stomach eliciting systemic immunomodulatory effects via vagus nerve. This is the first report that identifies an active component of "Transferon Oral" with the potential for the development of oral peptide immunomodulators.
Collapse
Affiliation(s)
- Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Favari
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zaira Macías-Palacios
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leonardo E. López-Juárez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Valencia-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente., Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
25
|
Guo X, Li TC, Chen X. The endometrial proteomic profile around the time of embryo implantation†. Biol Reprod 2020; 104:11-26. [PMID: 32856701 DOI: 10.1093/biolre/ioaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023] Open
Abstract
Embryo implantation is an intricate process which requires competent embryo and receptive endometrium. The failure of endometrium to achieve receptivity is a recognized cause of infertility. However, due to multiplicity of events involved, the molecular mechanisms governing endometrial receptivity are still not fully understood. Traditional one-by-one approaches, including western blotting and histochemistry, are insufficient to examine the extensive changes of endometrial proteome. Although genomics and transcriptomics studies have identified several significant genes, the underlying mechanism remains to be uncovered owing to post-transcriptional and post-translational modifications. Proteomic technologies are high throughput in protein identification, and they are now intensively used to identify diagnostic and prognostic markers in the field of reproductive medicine. There is a series of studies analyzing endometrial proteomic profile, which has provided a mechanistic insight into implantation failure. These published studies mainly focused on the difference between pre-receptive and receptive stages of endometrium, as well as on the alternation of endometrial proteomics in women with reproductive failure. Here, we review recent data from proteomic analyses regarding endometrium around the time of embryo implantation and propose possible future research directions.
Collapse
Affiliation(s)
- Xi Guo
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
26
|
Benoist L, Houyvet B, Henry J, Corre E, Zanuttini B, Zatylny-Gaudin C. In-Depth In Silico Search for Cuttlefish ( Sepia officinalis) Antimicrobial Peptides Following Bacterial Challenge of Haemocytes. Mar Drugs 2020; 18:md18090439. [PMID: 32847054 PMCID: PMC7551771 DOI: 10.3390/md18090439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Cuttlefish (Sepia officinalis) haemocytes are potential sources of antimicrobial peptides (AMPs). To study the immune response to Vibrio splendidus and identify new AMPs, an original approach was developed based on a differential transcriptomic study and an in-depth in silico analysis using multiple tools. Two de novo transcriptomes were retrieved from cuttlefish haemocytes following challenge by V. splendidus or not. A first analysis of the annotated transcripts revealed the presence of Toll/NF-κB pathway members, including newly identified factors such as So-TLR-h, So-IKK-h and So-Rel/NF-κB-h. Out of the eight Toll/NF-κB pathway members, seven were found up-regulated following V. splendidus challenge. Besides, immune factors involved in the immune response were also identified and up-regulated. However, no AMP was identified based on annotation or conserved pattern searches. We therefore performed an in-depth in silico analysis of unannotated transcripts based on differential expression and sequence characteristics, using several tools available like PepTraq, a homemade software program. Finally, five AMP candidates were synthesized. Among them, NF19, AV19 and GK28 displayed antibacterial activity against Gram-negative bacteria. Each peptide had a different spectrum of activity, notably against Vibrio species. GK28—the most active peptide—was not haemolytic, whereas NF19 and AV19 were haemolytic at concentrations between 50 and 100 µM, 5 to 10 times higher than their minimum inhibitory concentration.
Collapse
Affiliation(s)
- Louis Benoist
- Normandy University, Unicaen, CNRS, BOREA, 14000 CAEN, France; (L.B.); (B.H.); (J.H.)
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CEDEX, 14032 Caen, France
| | - Baptiste Houyvet
- Normandy University, Unicaen, CNRS, BOREA, 14000 CAEN, France; (L.B.); (B.H.); (J.H.)
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CEDEX, 14032 Caen, France
- SATMAR, Société ATlantique de MARiculture, Research and Development Department, 50760 Gatteville, France
| | - Joël Henry
- Normandy University, Unicaen, CNRS, BOREA, 14000 CAEN, France; (L.B.); (B.H.); (J.H.)
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CEDEX, 14032 Caen, France
| | - Erwan Corre
- Plateforme ABiMS, Station Biologique de Roscoff (CNRS-Sorbonne Université), 29688 Roscoff, France;
| | - Bruno Zanuttini
- Normandy University, Unicaen, Ensicaen, CNRS, GREYC, 14000 Caen, France;
| | - Céline Zatylny-Gaudin
- Normandy University, Unicaen, CNRS, BOREA, 14000 CAEN, France; (L.B.); (B.H.); (J.H.)
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CEDEX, 14032 Caen, France
- Correspondence:
| |
Collapse
|