1
|
Buldain J, Vitorino R, Lima T, Avella I, Zuazo Ó, Martínez-Freiría F. Intraspecific venom variation in the Iberian asp viper (Vipera aspis zinnikeri) across natural and intensive agricultural habitats. J Proteomics 2025; 310:105337. [PMID: 39448027 DOI: 10.1016/j.jprot.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Snake venom composition varies at different levels. To date, comparative venom studies have seldom taken into account the role of habitat type in the occurrence of snake venom variation. Here we investigated the presence of venom variation across different populations of the Iberian asp viper (Vipera aspis zinnikeri) inhabiting two contrasting habitats: natural vs. intensive agricultural. We used shotgun proteomics to describe the protein composition of the venoms of six adults from two distinct localities. Furthermore, to test whether local conditions and habitat can alter venom composition in this taxon, we compared the SDS-PAGE profiles of 40 adult venoms from six populations, three in natural habitats and three in intensive agricultural environments. The venoms were composed of 21 toxin families, of which five (CTL, PLA2, VEGF, svSP, and svMP) comprised 69-82 % of each proteome. The relative abundances of toxin families varied considerably at inter- and intra-population levels. Linear regression performed on non-metric multidimensional scaling values showed a significant effect of locality of origin and habitat type on the differences detected between individual SDS-PAGE venom profiles. Our results suggest the presence of regional variation in V. a. zinnikeri venom, potentially reinforcing the role of local pressures in shaping snake venom composition. SIGNIFICANCE: This work provides the first proteomic characterization of the venom of the Iberian asp viper, Vipera aspis zinnikeri, obtained by means of shotgun proteomics. The statistical analysis of 40 individual SDS-PAGE venom profiles highlights that venom variation in this taxon can be associated with geographical origin and habitat type of the area where each viper was collected. Our results suggest the presence of regional variation in V. a. zinnikeri venom, reinforcing the role that local pressures may play as drivers of snake venom variation.
Collapse
Affiliation(s)
- Jon Buldain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Óscar Zuazo
- Calle La Puebla 1, Santo Domingo de la Calzada, 26250, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
2
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Lino-López GJ, Ruiz-May E, Elizalde-Contreras JM, Jiménez-Vargas JM, Rodríguez-Vázquez A, González-Carrillo G, Bojórquez-Velázquez E, García-Villalvazo PE, Bermúdez-Guzmán MDJ, Zatarain-Palacios R, Vázquez-Vuelvas OF, Valdez-Velázquez LL, Corzo G. Proteomic Analysis of Heloderma horridum horridum Venom: Assessment to Its Transcriptome and Newfound Proteins. J Proteome Res 2024; 23:3638-3648. [PMID: 39038168 DOI: 10.1021/acs.jproteome.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.
Collapse
Affiliation(s)
- Gisela J Lino-López
- Facultad de Ciencias Químicas, Universidad de Colima, 28400 Coquimatlan, Colima, México
- Departamento de Control Biológico, CNRF-DGSV-SENASICA-SADER, Km 1.5 Carretera Tecomán-Estación FFCC, Col. Tepeyac, 28110 Tecomán, Colima, México
| | - Eliel Ruiz-May
- Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz,México
| | | | | | - Armando Rodríguez-Vázquez
- Centro de Conservación de Vida Silvestre El Palapo, Parcela No. 75 Z-1 P2/2, Predio Las Cuevas del Ejido Agua Zarca, 28400 Coquimatlan, Colima, México
| | - Gabino González-Carrillo
- Tecnológico Nacional de México/ITJMMPyH, U.A. Tamazula. Carretera Tamazula Santa Rosa No. 329, 49650 Tamazula de Gordiano, Jalisco, México
| | | | | | - Manuel de J Bermúdez-Guzmán
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), 28100 Tecomán, Colima, México
| | | | | | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Di Nicola MR, Crevani M, Avella I, Cerullo A, Dorne JLCM, Paolino G, Zattera C. A Guide to the Clinical Management of Vipera Snakebite in Italy. Toxins (Basel) 2024; 16:255. [PMID: 38922149 PMCID: PMC11209566 DOI: 10.3390/toxins16060255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study provides an updated, detailed set of guidelines for the management and treatment of Vipera snakebite tailored for Italian clinicians. It includes taxonomic keys for snake identification, insights into viper venom composition, and recommendations for clinical management. Emphasis is placed on quick and reliable identification of medically relevant snake species, along with appropriate first aid measures. Criteria for antivenom administration are outlined, as well as indications on managing potential side effects. While the protocol is specific to Italy, its methodology can potentially be adapted for other European countries, depending on local resources. The promotion of comprehensive data collection and collaboration among Poison Control Centres is advocated to optimise envenomation management protocols and improve the reporting of epidemiological data concerning snakebite at the country level.
Collapse
Affiliation(s)
- Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Wildlife Health Ghent, Ghent University, 9820 Merelbeke, Belgium
- Asociación Herpetológica Española, Apartado de correos 191, 28911 Leganés, Spain
| | - Marta Crevani
- Poison Control Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Ignazio Avella
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Anna Cerullo
- Department of Veterinary Sciences, University of Turin, L.go Braccini 2, 10095 Grugliasco, Italy
| | - Jean-Lou C. M. Dorne
- Methodological and Scientific Support Unit, European Food Safety Authority, Via Carlo Magno 1A, 43100 Parma, Italy
| | - Giovanni Paolino
- Unit of Dermatology and Cosmetology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Caterina Zattera
- Unit of Emergency Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo University Hospital, University of Pavia, P.Le Golgi, 19, 27100 Pavia, Italy
| |
Collapse
|
5
|
Stazi M, Megighian A, D'Este G, Negro S, Ivanušec A, Lonati D, Pirazzini M, Križaj I, Montecucco C. An agonist of CXCR4 induces a rapid recovery from the neurotoxic effects of Vipera ammodytes and Vipera aspis venoms. J Neurochem 2024; 168:428-440. [PMID: 36912731 DOI: 10.1111/jnc.15803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023]
Abstract
People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.
Collapse
Affiliation(s)
- M Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - G D'Este
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - S Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Doctoral School, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - D Lonati
- Pavia Poison Control Centre - National Toxicology Information Centre - Clinical and Experimental Lab, Toxicology Unit, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy
| | - M Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - C Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- National Research Council, Institute of Neuroscience, Padova, Italy
| |
Collapse
|
6
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
7
|
The Deadly Toxin Arsenal of the Tree-Dwelling Australian Funnel-Web Spiders. Int J Mol Sci 2022; 23:ijms232113077. [PMID: 36361863 PMCID: PMC9658043 DOI: 10.3390/ijms232113077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Collapse
|
8
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Enriquez-Ochoa D, Meléndez-Martínez D, Aguilar-Yáñez JM, Licona-Cassani C, Mayolo-Deloisa K. Development of aqueous two-phase systems-based approaches for the selective recovery of metalloproteases and phospholipases A 2 toxins from Crotalus molossus nigrescens venom. BIORESOUR BIOPROCESS 2021; 8:136. [PMID: 38650265 PMCID: PMC10992436 DOI: 10.1186/s40643-021-00487-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022] Open
Abstract
Snake venoms are rich sources of proteins with potential biotechnological and pharmaceutical applications. Among them, metalloproteases (MPs) and phospholipases A2 (PLA2) are the most abundant. Their isolation involves a multistep chromatographic approach, which has proven to be effective, however implies high operating costs and long processing times. In this study, a cost-effective and simple method based on aqueous two-phase systems (ATPS) was developed to recover MPs and PLA2 from Crotalus molossus nigrescens venom. A system with PEG 400 g mol-1, volume ratio (VR) 1, tie line length (TLL) 25% w/w and pH 7 showed the best performance for PLA2 recovery. In systems with PEG 400 g mol-1, VR 1, TLL 15% w/w, pH 7 and 1 and 3% w/w of NaCl, selective recovery of MP subtype P-III was achieved; whereas, in a system with PEG 400 g mol-1, VR 1, TLL 25% w/w and pH 8.5, MP subtypes P-I and P-III were recovered. Due to their low costs, ethanol-salt systems were also evaluated, however, failed to differentially partition PLA2 and MPs. The use of ATPS could contribute to the simplification and cost reduction of protein isolation processes from snake venoms and other toxin fluids, as well as potentially aid their biochemical, proteomic and biological analyses.
Collapse
Affiliation(s)
- Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico
| | - José Manuel Aguilar-Yáñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico
| | - Cuauhtemoc Licona-Cassani
- Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico.
- Tecnologico de Monterrey The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico.
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico.
- Tecnologico de Monterrey The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
10
|
Abalde S, Dutertre S, Zardoya R. A Combined Transcriptomics and Proteomics Approach Reveals the Differences in the Predatory and Defensive Venoms of the Molluscivorous Cone Snail Cylinder ammiralis (Caenogastropoda: Conidae). Toxins (Basel) 2021; 13:toxins13090642. [PMID: 34564647 PMCID: PMC8472973 DOI: 10.3390/toxins13090642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venoms are complex mixtures of proteins that have evolved repeatedly in the animal kingdom. Cone snail venoms represent one of the best studied venom systems. In nature, this venom can be dynamically adjusted depending on its final purpose, whether to deter predators or hunt prey. Here, the transcriptome of the venom gland and the proteomes of the predation-evoked and defensive venoms of the molluscivorous cone snail Cylinder ammiralis were catalogued. A total of 242 venom-related transcripts were annotated. The conotoxin superfamilies presenting more different peptides were O1, O2, T, and M, which also showed high expression levels (except T). The three precursors of the J superfamily were also highly expressed. The predation-evoked and defensive venoms showed a markedly distinct profile. A total of 217 different peptides were identified, with half of them being unique to one venom. A total of 59 peptides ascribed to 23 different protein families were found to be exclusive to the predatory venom, including the cono-insulin, which was, for the first time, identified in an injected venom. A total of 43 peptides from 20 protein families were exclusive to the defensive venom. Finally, comparisons of the relative abundance (in terms of number of peptides) of the different conotoxin precursor superfamilies showed that most of them present similar abundance regardless of the diet.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Department of Zoology, Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
- Correspondence:
| | | | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| |
Collapse
|
11
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
12
|
Chowdhury A, Zdenek CN, Lewin MR, Carter R, Jagar T, Ostanek E, Harjen H, Aldridge M, Soria R, Haw G, Fry BG. Venom-Induced Blood Disturbances by Palearctic Viperid Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. Front Immunol 2021; 12:688802. [PMID: 34177943 PMCID: PMC8222980 DOI: 10.3389/fimmu.2021.688802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Palearctic vipers are medically significant snakes in the genera Daboia, Macrovipera, Montivipera, and Vipera which occur throughout Europe, Central Asia, Near and Middle East. While the ancestral condition is that of a small-bodied, lowland species, extensive diversification has occurred in body size, and niche specialization. Using 27 venom samples and a panel of in vitro coagulation assays, we evaluated the relative coagulotoxic potency of Palearctic viper venoms and compared their neutralization by three antivenoms (Insoserp Europe, VIPERFAV and ViperaTAb) and two metalloprotease inhibitors (prinomastat and DMPS). We show that variation in morphology parallels variation in the Factor X activating procoagulant toxicity, with the three convergent evolutions of larger body sizes (Daboia genus, Macrovipera genus, and Vipera ammodytes uniquely within the Vipera genus) were each accompanied by a significant increase in procoagulant potency. In contrast, the two convergent evolutions of high altitude specialization (the Montivipera genus and Vipera latastei uniquely within the Vipera genus) were each accompanied by a shift away from procoagulant action, with the Montivipera species being particularly potently anticoagulant. Inoserp Europe and VIPERFAV antivenoms were both effective against a broad range of Vipera species, with Inoserp able to neutralize additional species relative to VIPERFAV, reflective of its more complex antivenom immunization mixture. In contrast, ViperaTAb was extremely potent in neutralizing V. berus but, reflective of this being a monovalent antivenom, it was not effective against other Vipera species. The enzyme inhibitor prinomastat efficiently neutralized the metalloprotease-driven Factor X activation of the procoagulant venoms. In contrast, DMPS (2,3-dimercapto-1-propanesulfonic acid), which as been suggested as another potential treatment option in the absence of antivenom, DMPS failed against all venoms tested. Overall, our results highlight the evolutionary variations within Palearctic vipers and help to inform clinical management of viper envenomation.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Matthew R. Lewin
- California Academy of Sciences, San Francisco, CA, United States
- Ophirex, Inc., Corte Madera, CA, United States
| | | | | | | | - Hannah Harjen
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Grace Haw
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
13
|
Di Nicola MR, Pontara A, Kass GEN, Kramer NI, Avella I, Pampena R, Mercuri SR, Dorne JLCM, Paolino G. Vipers of Major clinical relevance in Europe: Taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology 2021; 453:152724. [PMID: 33610611 DOI: 10.1016/j.tox.2021.152724] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
Snakebites in Europe are mostly due to bites from Viperidae species of the genus Vipera. This represents a neglected public health hazard with poorly defined incidence, morbidity and mortality. In Europe, fourteen species of "true vipers" (subfamily Viperinae) are present, eleven of which belong to the genus Vipera. Amongst these, the main medically relevant species due to their greater diffusion across Europe and the highest number of registered snakebites are six, namely: Vipera ammodytes, V. aspis, V. berus, V. latastei, V. seoanei and V. ursinii. Generally speaking, viper venom composition is characterised by many different toxin families, like phospholipases A2, snake venom serine proteases, snake venom metalloproteases, cysteine-rich secretory proteins, C-type lectins, disintegrins, haemorrhagic factors and coagulation inhibitors. A suspected snakebite is often associated with severe pain, erythema, oedema and, subsequently, the onset of an ecchymotic area around one or two visible fang marks. In the field, the affected limb should be immobilised and mildly compressed with a bandage, which can then be removed once the patient is being treated in hospital. The clinician should advise the patient to remain calm to reduce blood circulation and, therefore, decrease the spread of the toxins. In the case of pain, an analgesic therapy can be administered, the affected area can be treated with hydrogen peroxide or clean water. However, anti-inflammatory drugs and disinfection with alcohol or alcoholic substances should be avoided. For each patient, clinical chemistry and ECG are always a pre-requisite as well as the evaluation of the tetanus immunisation status and for which immunisation may be provided if needed. The treatment of any clinical complication, due to the envenomation, does not differ from treatments of emergency nature. Antivenom is recommended when signs of systemic envenomation exist or in case of advanced local or systemic progressive symptoms. Recommendations for future work concludes. The aim of this review is to support clinicians for the clinical management of viper envenomation, through taxonomic keys for main species identification, description of venom composition and mode of action of known toxins and provide a standardised clinical protocol and antivenom administration.
Collapse
Affiliation(s)
| | - Andrea Pontara
- Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - George E N Kass
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Ignazio Avella
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal; Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia - CSIC, Calle Jaime Roig 11, 46010, Valencia, Spain
| | - Riccardo Pampena
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Italy
| | | | - Jean Lou C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | | |
Collapse
|
14
|
Dunbar JP, Fort A, Redureau D, Sulpice R, Dugon MM, Quinton L. Venomics Approach Reveals a High Proportion of Lactrodectus-Like Toxins in the Venom of the Noble False Widow Spider Steatoda nobilis. Toxins (Basel) 2020; 12:E402. [PMID: 32570718 PMCID: PMC7354476 DOI: 10.3390/toxins12060402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
The noble false widow spider Steatoda nobilis originates from the Macaronesian archipelago and has expanded its range globally. Outside of its natural range, it may have a negative impact on native wildlife, and in temperate regions it lives in synanthropic environments where it frequently encounters humans, subsequently leading to envenomations. S. nobilis is the only medically significant spider in Ireland and the UK, and envenomations have resulted in local and systemic neurotoxic symptoms similar to true black widows (genus Latrodectus). S. nobilis is a sister group to Latrodectus which possesses the highly potent neurotoxins called α-latrotoxins that can induce neuromuscular paralysis and is responsible for human fatalities. However, and despite this close relationship, the venom composition of S. nobilis has never been investigated. In this context, a combination of transcriptomic and proteomic cutting-edge approaches has been used to deeply characterise S. nobilis venom. Mining of transcriptome data for the peptides identified by proteomics revealed 240 annotated sequences, of which 118 are related to toxins, 37 as enzymes, 43 as proteins involved in various biological functions, and 42 proteins without any identified function to date. Among the toxins, the most represented in numbers are α-latrotoxins (61), δ-latroinsectotoxins (44) and latrodectins (6), all of which were first characterised from black widow venoms. Transcriptomics alone provided a similar representation to proteomics, thus demonstrating that our approach is highly sensitive and accurate. More precisely, a relative quantification approach revealed that latrodectins are the most concentrated toxin (28%), followed by α-latrotoxins (11%), δ-latroinsectotoxins (11%) and α-latrocrustotoxins (11%). Approximately two-thirds of the venom is composed of Latrodectus-like toxins. Such toxins are highly potent towards the nervous system of vertebrates and likely responsible for the array of symptoms occurring after envenomation by black widows and false widows. Thus, caution should be taken in dismissing S. nobilis as harmless. This work paves the way towards a better understanding of the competitiveness of S. nobilis and its potential medical importance.
Collapse
Affiliation(s)
- John P. Dunbar
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (J.P.D.); (M.M.D.)
| | - Antoine Fort
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.F.); (R.S.)
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium;
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.F.); (R.S.)
| | - Michel M. Dugon
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Ireland; (J.P.D.); (M.M.D.)
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|