1
|
Guardiola M, Rehues P, Amigó N, Arrieta F, Botana M, Gimeno-Orna JA, Girona J, Martínez-Montoro JI, Ortega E, Pérez-Pérez A, Sánchez-Margalet V, Pedro-Botet J, Ribalta J. Increasing the complexity of lipoprotein characterization for cardiovascular risk in type 2 diabetes. Eur J Clin Invest 2024; 54:e14214. [PMID: 38613414 DOI: 10.1111/eci.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
The burden of cardiovascular disease is particularly high among individuals with diabetes, even when LDL cholesterol is normal or within the therapeutic target. Despite this, cholesterol accumulates in their arteries, in part, due to persistent atherogenic dyslipidaemia characterized by elevated triglycerides, remnant cholesterol, smaller LDL particles and reduced HDL cholesterol. The causal link between dyslipidaemia and atherosclerosis in T2DM is complex, and our contention is that a deeper understanding of lipoprotein composition and functionality, the vehicle that delivers cholesterol to the artery, will provide insight for improving our understanding of the hidden cardiovascular risk of diabetes. This narrative review covers three levels of complexity in lipoprotein characterization: 1-the information provided by routine clinical biochemistry, 2-advanced nuclear magnetic resonance (NMR)-based lipoprotein profiling and 3-the identification of minor components or physical properties of lipoproteins that can help explain arterial accumulation in individuals with normal LDLc levels, which is typically the case in individuals with T2DM. This document highlights the importance of incorporating these three layers of lipoprotein-related information into population-based studies on ASCVD in T2DM. Such an attempt should inevitably run in parallel with biotechnological solutions that allow large-scale determination of these sets of methodologically diverse parameters.
Collapse
Affiliation(s)
- Montse Guardiola
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere Rehues
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Amigó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
- Biosfer Teslab, Reus, Spain
| | | | - Manuel Botana
- Departamento de Endocrinología y Nutrición, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - José A Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Josefa Girona
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Pérez-Pérez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Department of Endocrinology and Nutrition, Hospital del Mar, Barcelona, Spain
- Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Naber A, Demus D, Slieker RC, Nicolardi S, Beulens JWJ, Elders PJM, Lieverse AG, Sijbrands EJG, ‘t Hart LM, Wuhrer M, van Hoek M. Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes. Int J Mol Sci 2024; 25:5365. [PMID: 38791405 PMCID: PMC11121677 DOI: 10.3390/ijms25105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (β = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (β = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (β = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (β = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.
Collapse
Affiliation(s)
- Annemieke Naber
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (A.N.)
| | - Daniel Demus
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands (M.W.)
| | - Roderick C. Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands (M.W.)
| | - Joline W. J. Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Petra J. M. Elders
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, Location VUmc, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Aloysius G. Lieverse
- Department of Internal Medicine, Maxima Medical Center, P.O. Box 90052, 5600 PD Eindhoven, The Netherlands
| | - Eric J. G. Sijbrands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (A.N.)
| | - Leen M. ‘t Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Data Science, Section Molecular Epidemiology, Leiden University Medical Center, Postal Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands (M.W.)
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (A.N.)
| |
Collapse
|
3
|
Naber A, Demus D, Slieker R, Nicolardi S, Beulens JWJ, Elders PJM, Lieverse AG, Sijbrands EJG, 't Hart LM, Wuhrer M, van Hoek M. Apolipoprotein-CIII O-Glycosylation, a Link between GALNT2 and Plasma Lipids. Int J Mol Sci 2023; 24:14844. [PMID: 37834292 PMCID: PMC10573541 DOI: 10.3390/ijms241914844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.
Collapse
Affiliation(s)
- Annemieke Naber
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Daniel Demus
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Roderick Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Petra J M Elders
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, Location VUmc, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Aloysius G Lieverse
- Department of Internal Medicine, Maxima Medical Center, P.O. Box 90052, 5600 PD Eindhoven, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location Vrije Universiteit Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Amsterdam Public Health, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Data Science, Section Molecular Epidemiology, Leiden University Medical Center, Postal Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Sinari S, Koska J, Hu Y, Furtado J, Jensen MK, Budoff MJ, Nedelkov D, McClelland RL, Billheimer D, Reaven P. Apo CIII Proteoforms, Plasma Lipids, and Cardiovascular Risk in MESA. Arterioscler Thromb Vasc Biol 2023; 43:1560-1571. [PMID: 37317850 PMCID: PMC10516344 DOI: 10.1161/atvbaha.123.319035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Apo CIII (apolipoprotein CIII) is an important regulator of triglyceride metabolism and was associated with cardiovascular risk in several cohorts. It is present in 4 major proteoforms, a native peptide (CIII0a), and glycosylated proteoforms with zero (CIII0b), 1 (CIII1, most abundant), or 2 (CIII2) sialic acids, which may differentially modify lipoprotein metabolism. We studied the relationships of these proteoforms with plasma lipids and cardiovascular risk. METHODS Apo CIII proteoforms were measured by mass spectrometry immunoassay in baseline plasma samples of 5791 participants of Multi-Ethnic Study of Atherosclerosis, an observational community-based cohort. Standard plasma lipids were collected for up to 16 years and cardiovascular events (myocardial infarction, resuscitated cardiac arrest, or stroke) were adjudicated for up to 17 years. RESULTS Apo CIII proteoform composition differed by age, sex, race and ethnicity, body mass index, and fasting glucose. Notably, CIII1 was lower in older participants, men and Black and Chinese (versus White) participants, and higher in obesity and diabetes. In contrast, CIII2 was higher in older participants, men, Black, and Chinese persons, and lower in Hispanic individuals and obesity. Higher CIII2 to CIII1 ratio (CIII2/III1) was associated with lower triglycerides and higher HDL (high-density lipoprotein) in cross-sectional and longitudinal models, independently of clinical and demographic risk factors and total apo CIII. The associations of CIII0a/III1 and CIII0b/III1 with plasma lipids were weaker and varied through cross-sectional and longitudinal analyses. Total apo CIII and CIII2/III1 were positively associated with cardiovascular disease risk (n=669 events, hazard ratios, 1.14 [95% CI, 1.04-1.25] and 1.21 [1.11-1.31], respectively); however, the associations were attenuated after adjustment for clinical and demographic characteristics (1.07 [0.98-1.16]; 1.07 [0.97-1.17]). In contrast, CIII0b/III1 was inversely associated with cardiovascular disease risk even after full adjustment including plasma lipids (0.86 [0.79-0.93]). CONCLUSIONS Our data indicate differences in clinical and demographic relationships of apo CIII proteoforms, and highlight the importance of apo CIII proteoform composition in predicting future lipid patterns and cardiovascular disease risk.
Collapse
Affiliation(s)
- Shripad Sinari
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | | | | | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Public Health, University of Copenhagen, Copenhagen, DK
| | - Matthew J. Budoff
- Lundquist Institute at Harbor-University of California, Los Angeles (UCLA), Torrance, CA
| | | | | | - Dean Billheimer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Peter Reaven
- College of Health Solutions, Arizona State University, Phoenix, AZ
| |
Collapse
|
5
|
FitzHugh ZT, Schiller MR. Systematic Assessment of Protein C-Termini Mutated in Human Disorders. Biomolecules 2023; 13:biom13020355. [PMID: 36830724 PMCID: PMC9953674 DOI: 10.3390/biom13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
All proteins have a carboxyl terminus, and we previously summarized eight mutations in binding and trafficking sequence determinants in the C-terminus that, when disrupted, cause human diseases. These sequence elements for binding and trafficking sites, as well as post-translational modifications (PTMs), are called minimotifs or short linear motifs. We wanted to determine how frequently mutations in minimotifs in the C-terminus cause disease. We searched specifically for PTMs because mutation of a modified amino acid almost always changes the chemistry of the side chain and can be interpreted as loss-of-function. We analyzed data from ClinVar for disease variants, Minimotif Miner and the C-terminome for PTMs, and RefSeq for protein sequences, yielding 20 such potential disease-causing variants. After additional screening, they include six with a previously reported PTM disruption mechanism and nine with new hypotheses for mutated minimotifs in C-termini that may cause disease. These mutations were generally for different genes, with four different PTM types and several different diseases. Our study helps to identify new molecular mechanisms for nine separate variants that cause disease, and this type of analysis could be extended as databases grow and to binding and trafficking motifs. We conclude that mutated motifs in C-termini are an infrequent cause of disease.
Collapse
Affiliation(s)
- Zachary T. FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
- Correspondence: ; Tel.: +1-702-895-5546; Fax: +1-702-895-5728
| |
Collapse
|
6
|
Giammanco A, Spina R, Cefalù AB, Averna M. APOC-III: a Gatekeeper in Controlling Triglyceride Metabolism. Curr Atheroscler Rep 2023; 25:67-76. [PMID: 36689070 PMCID: PMC9947064 DOI: 10.1007/s11883-023-01080-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Apolipoprotein C-III (ApoC-III) is a widely known player in triglyceride metabolism, and it has been recently recognized as a polyhedric factor which may regulate several pathways beyond lipid metabolism by influencing cardiovascular, metabolic, and neurological disease risk. This review summarizes the different functions of ApoC-III and underlines the recent findings related to its multifaceted pathophysiological role. RECENT FINDINGS The role of ApoC-III has been implicated in HDL metabolism and in the development of atherosclerosis, inflammation, and ER stress in endothelial cells. ApoC-III has been recently considered an important player in insulin resistance mechanisms, lipodystrophy, diabetic dyslipidemia, and postprandial hypertriglyceridemia (PPT). The emerging evidence of the involvement of ApoC-III in the in the pathogenesis of Alzheimer's disease open the way to further study if modification of ApoC-III level slows disease progression. Furthermore, ApoC-III is clearly linked to cardiovascular disease (CVD) risk, and progression of coronary artery disease (CAD) as well as the calcification of aortic valve and recent clinical trials has pointed out the inhibition of ApoC-III as a promising approach to manage hypertriglyceridemia and prevent CVD. Several evidences highlight the role of ApoC-III not only in triglyceride metabolism but also in several cardio-metabolic pathways. Results from recent clinical trials underline that the inhibition of ApoC-III is a promising therapeutical strategy for the management of severe hypertriglyceridemia and in CVD prevention.
Collapse
Affiliation(s)
- Antonina Giammanco
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Rossella Spina
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Angelo B. Cefalù
- grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro" (PROMISE), University of Palermo, Palermo, Italy. .,Institute of Biophysics (IBF), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
7
|
Maverakis E, Liakos W, Park D, Patel F, Siddiqui F, Kailemia MJ, Ruhaak LR, Marusina AI, Luxardi G, Gudjonsson JE, Le ST, Armstrong AW, Liao W, Merleev AA, Lebrilla CB. The Psoriasis Glycome: Differential Expression of Cholesterol Particle Glycans and IgA Glycans Linked to Disease Severity. J Invest Dermatol 2022; 142:2817-2820.e7. [PMID: 35469905 DOI: 10.1016/j.jid.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.
| | - William Liakos
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Dayoung Park
- Department of Chemistry, University of California Davis, Davis, California, USA; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Forum Patel
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Fariha Siddiqui
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Muchena J Kailemia
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | | | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - April W Armstrong
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
9
|
Ward NC, Chan DC, Watts GF. A Tale of Two New Targets for Hypertriglyceridaemia: Which Choice of Therapy? BioDrugs 2022; 36:121-135. [PMID: 35286660 PMCID: PMC8986672 DOI: 10.1007/s40259-022-00520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are novel metabolic targets for correcting hypertriglyceridaemia (HTG). As a background to their potential clinical use, we review the metabolic aetiology of HTG, particular abnormalities in triglyceride-rich lipoproteins (TRLs) and their role in atherosclerotic cardiovascular disease (ASCVD) and acute pancreatitis. Molecular and cardiometabolic aspects of ANGPTL3 and apoC-III, as well as inhibition of these targets with monoclonal antibody and nucleic acid therapies, are summarized as background information to descriptions and analyses of recent clinical trials. These studies suggest that ANGPTL3 and apoC-III inhibitors are equally potent in lowering elevated plasma triglycerides and TRLs across a wide range of concentrations, with possibly greater efficacy with inhibition of apoC-III. ANGPTL3 inhibition may, however, have the advantage of greater lowering of plasma LDL cholesterol and could specifically address elevated LDL cholesterol in familial hypercholesterolaemia refractory to standard drug therapies. Large clinical outcome trials in relevant populations are still required to confirm the long-term efficacy, safety and cost effectiveness of these potent agents for mitigating the complications of HTG. Beyond targeting severe chylomicronaemia in the prevention of acute pancreatitis, both agents could be useful in addressing residual risk of ASCVD due to TRLs in patients receiving best standard of care, including behavioural modifications, statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 inhibitors.
Collapse
Affiliation(s)
- Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia.,Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, GPO Box X2213, Perth, WA, 6847, Australia. .,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, WA, Australia.
| |
Collapse
|