1
|
Al-Majdoub ZM, Cheong J, Mizuno K, Hogan J, De Bruyn T, Kanta A, Guo J, Hop CECA, Zientek M, Galetin A, Ogungbenro K, Rostami-Hodjegan A, Barber J. Transporter expressions as part of required scaling factor to support in vitro in vivo extrapolation for blood-brain barrier drug permeability. Eur J Pharm Sci 2025; 209:107022. [PMID: 39826620 DOI: 10.1016/j.ejps.2025.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Access of drugs to the central nervous system is limited by the blood-brain barrier, and this in turn affects drug efficacy/toxicity. To date, most drug discovery optimization paradigms have relied heavily on in vitro transporter assays and preclinical species pharmacokinetic evaluation to provide a qualitative assessment of human brain penetration. Because of the lack of human brain pharmacokinetic data, mechanistic models for preclinical species, combined with in vitro and in silico data, are useful for translation to human. These models require transporter expression data to be measured in both in vitro and in vivo systems. The purpose of this work was to quantify transporter expression and generate scaling factors (SFs) to enable in vitro in vivo extrapolation (IVIVE) of transporter-mediated processes and to support the development of PBPK model of the brain in rats. SF represents the ratio of abundance of the relevant transporter in the tissue relative to transporter expressing cells. Using quantitative proteomics with QconCAT technology, the expression of human and rat P-gp (ABCB1/Abcb1) and BCRP/Bcrp (ABCG2/Abcg2) was measured in rat brain microvessels, mock and transfected cell lines including, Madin-Darby Canine Kidney I (MDCK I), Madin-Darby Canine Kidney II (MDCK II) and Porcine Kidney epithelial cells (LLC-PK1). P-gp expression ranged from 32 to 71 pmol/mg in rat brain microvessels, exceeding literature values of 14.1-25.2 pmol/mg protein. Conversely, Bcrp expression ranged between 0.02-0.27 pmol/mg protein lower than the literature range (2-6.2 pmol/mg protein). P-gp expression in MDCK I and LLC-PK1 cells transfected with rat Mdr1a was similar (within 1.5-fold) as was human P-gp expression in MDR1 transfected LLC-PK1 and MDCK II cells. The generated SFs were 34.4 and 50.4 for brain P-gp (depending on the cell line used) and 0.53 for brain Bcrp. Endogenous P-gp transporter was detected in MDCK II cell lines when protein expression was measured using a surrogate peptide that was shared across species. The current work provides a framework for proteomics-informed translation of in vitro P-gp and BCRP-related kinetics of drugs and supports the development of PBPK models to predict drug disposition in the brain.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Kanta
- Takeda Pharmaceuticals Limited, San Diego, CA, USA
| | | | | | - Mike Zientek
- Takeda Pharmaceuticals Limited, San Diego, CA, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, University of Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, UK; Certara UK Limited, Simcyp Division, Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, UK
| |
Collapse
|
2
|
Al-Majdoub ZM, Freriksen JJM, Colbers A, van den Heuvel J, Koenderink J, Abduljalil K, Achour B, Barber J, Greupink R, Rostami-Hodjegan A. Absolute membrane protein abundance of P-glycoprotein, breast cancer resistance protein, and multidrug resistance proteins in term human placenta tissue and commonly used cell systems: Application in physiologically based pharmacokinetic modeling of placental drug disposition. Drug Metab Dispos 2025; 53:100007. [PMID: 39884812 DOI: 10.1124/dmd.124.001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
The placenta acts as a barrier, excluding noxious substances while actively transferring nutrients to the fetus, mediated by various transporters. This study quantified the expression of key placental transporters in term human placenta (n = 5) and BeWo, BeWo b30, and JEG-3 placenta cell lines. Combining these results with pregnancy physiologically based pharmacokinetic (PBPK) modeling, we demonstrate the utility of proteomic analysis for predicting placental drug disposition and fetal exposure. Using targeted proteomics with quantification concatemer standards, we found significant expression of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance protein (MRP) 2, MRP4, and MRP6 in the human placenta (0.05-0.25 pmol/mg membrane protein) with only regional differences observed for P-gp. Unexpectedly, both P-gp and BCRP were below the limit of quantification in the regularly used BeWo cells, indicating that this cell line may not be suitable for the study of placental P-gp and BCRP-mediated transport. In cellular and vesicular overexpression systems, P-gp and BCRP were detectable as expected. Vesicle batches showed consistent P-gp expression correlating with functional activity (N-methyl-quinidine transport). However, BCRP activity (estrone 3-sulfate transport) did not consistently align with expression levels. Incorporating in vitro transporter kinetic data, along with placental transporter abundance, into a PBPK model enabled the evaluation of fetal exposure. Simulation with a hypothetical drug indicated that estimating fetal exposure relies on the intrinsic clearances of relevant transporters. To minimize interlaboratory discrepancies, expression data was generated using consistent proteomic methodologies in the same lab. Integration of this data in pregnancy PBPK modeling offers a promising tool to investigate maternal, placental, and fetal drug exposure. SIGNIFICANCE STATEMENT: This study quantified the expression of key placental transporters in human placenta and various placental cell lines, revealing significant expression variations. By integrating these data with physiologically based pharmacokinetic modeling, the study highlights the importance of transporter abundance data in understanding and predicting placental drug disposition, essential for maternal and fetal health during pregnancy.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom.
| | - Jolien J M Freriksen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom; Certara Predictive Technologies, Sheffield, United Kingdom
| |
Collapse
|
3
|
Tor M, Fraile L, Vilaró F, Pena RN. Multiplex Assay to Determine Acute Phase Proteins in Modified Live PRRSV Vaccinated Pigs. J Proteome Res 2024; 23:3515-3523. [PMID: 39007742 DOI: 10.1021/acs.jproteome.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Acute phase protein (APP) response to vaccine challenges is an attractive alternative to natural infection for identifying pigs with increased disease resilience and monitoring the productive performance. Currently, the methods used for APP quantification are diverse and often based on techniques that use antibodies that are not necessarily pig specific. The objective of this work is the development of a method based on a UPLC-SRM/MS system for simultaneous determination of haptoglobin, apolipoprotein A1, C-reactive protein, pig-major acute protein, and serum amyloid A and its application in pigs to monitor the effect of a vaccine administered against porcine reproductive and respiratory syndrome virus (PRRSV). With the aim of tracing the complete analytical process for each proteotypic peptide, a synthetic QconCat polypeptide construct was designed. It was possible to develop an SRM method including haptoglobin, apolipoprotein A1, pig-MAP, and serum amyloid A1. The PRRSV vaccine only affected haptoglobin. The pigs with positive viremia tended to show higher values than negative pigs, reaching significant differences in the three haptoglobin SRM-detected peptides but not with the data acquired by immunoenzymatic and spectrophotometric assays. These results open the door to the use of SRM to accurately monitor APP changes in experimental pigs.
Collapse
Affiliation(s)
- Marc Tor
- Animal Science Department, University of Lleida - Agrotecnio-CERCA Center, Lleida 25198, Spain
| | - Lorenzo Fraile
- Animal Science Department, University of Lleida - Agrotecnio-CERCA Center, Lleida 25198, Spain
| | - Francisca Vilaró
- Scientific-Technical Services TCEM, Universitat de Lleida, Lleida 25198, Spain
| | - Ramona N Pena
- Animal Science Department, University of Lleida - Agrotecnio-CERCA Center, Lleida 25198, Spain
| |
Collapse
|
4
|
Goelen J, Farrell G, McGeehan J, Titman CM, J W Rattray N, Johnson TN, Horniblow RD, Batchelor HK. Quantification of drug metabolising enzymes and transporter proteins in the paediatric duodenum via LC-MS/MS proteomics using a QconCAT technique. Eur J Pharm Biopharm 2023; 191:68-77. [PMID: 37625656 DOI: 10.1016/j.ejpb.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Characterising the small intestine absorptive membrane is essential to enable prediction of the systemic exposure of oral formulations. In particular, the ontogeny of key intestinal Drug Metabolising Enzymes and Transporter (DMET) proteins involved in drug disposition needs to be elucidated to allow for accurate prediction of the PK profile of drugs in the paediatric cohort. Using pinch biopsies from the paediatric duodenum (n = 36; aged 11 months to 15 years), the abundance of 21 DMET proteins and two enterocyte markers were quantified via LC-MS/MS. An established LCMS nanoflow method was translated to enable analysis on a microflow LC system, and a new stable-isotope-labelled QconCAT standard developed to enable quantification of these proteins. Villin-1 was used to standardise abundancy values. The observed abundancies and ontogeny profiles, agreed with adult LC-MS/MS-based data, and historic paediatric data obtained via western blotting. A linear trend with age was observed for duodenal CYP3A4 and CES2 only. As this work quantified peptides on a pinch biopsy coupled with a microflow method, future studies using a wider population range are very feasible. Furthermore, this DMET ontogeny data can be used to inform paediatric PBPK modelling and to enhance the understanding of oral drug absorption and gut bioavailability in paediatric populations.
Collapse
Affiliation(s)
- Jan Goelen
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Gillian Farrell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | | | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | | | - Richard D Horniblow
- School of Biomedical Science, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
5
|
Gomez-Zepeda D, Perrière N, Glacial F, Taghi M, Chhuon C, Scherrmann JM, Sergent P, Moreau A, Denizot C, Parmentier Y, Cisternino S, Decleves X, Menet MC. Functional and targeted proteomics characterization of a human primary endothelial cell model of the blood-brain barrier (BBB) for drug permeability studies. Toxicol Appl Pharmacol 2023; 465:116456. [PMID: 36918128 DOI: 10.1016/j.taap.2023.116456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
The blood-brain barrier (BBB) protects the brain from toxins but hinders the penetration of neurotherapeutic drugs. Therefore, the blood-to-brain permeability of chemotherapeutics must be carefully evaluated. Here, we aimed to establish a workflow to generate primary cultures of human brain microvascular endothelial cells (BMVECs) to study drug brain permeability and bioavailability. Furthermore, we characterized and validated this BBB model in terms of quantitative expression of junction and drug-transport proteins, and drug permeability. We isolated brain microvessels (MVs) and cultured BMVECs from glioma patient biopsies. Then, we employed targeted LC-MS proteomics for absolute protein quantification and immunostaining to characterize protein localization and radiolabeled drugs to predict drug behavior at the Human BBB. The abundance levels of ABC transporters, junction proteins, and cell markers in the cultured BMVECs were similar to the MVs and correctly localized to the cell membrane. Permeability values (entrance and exit) and efflux ratios tested in vitro using the primary BMVECs were within the expected in vivo values. They correctly reflected the transport mechanism for 20 drugs (carbamazepine, diazepam, imipramine, ketoprofen, paracetamol, propranolol, sulfasalazine, terbutaline, warfarin, cimetidine, ciprofloxacin, digoxin, indinavir, methotrexate, ofloxacin, azidothymidine (AZT), indomethacin, verapamil, quinidine, and prazosin). We established a human primary in vitro model suitable for studying blood-to-brain drug permeability with a characterized quantitative abundance of transport and junction proteins, and drug permeability profiles, mimicking the human BBB. Our results indicate that this approach could be employed to generate patient-specific BMVEC cultures to evaluate BBB drug permeability and develop personalized therapeutic strategies.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; German Cancer Research Center (DKFZ), Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Immunoproteomics unit (D191), Mainz, Germany.
| | - Nicolas Perrière
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Fabienne Glacial
- BrainPlotting SAS, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Meryam Taghi
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Cérina Chhuon
- Université de Paris, Structure Fédérative de Recherche Necker, Proteomics Platform Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Jean-Michel Scherrmann
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Philippe Sergent
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Amélie Moreau
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Claire Denizot
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Yannick Parmentier
- Technologie Servier, Département de recherche biopharmaceutique, Orléans, France
| | - Salvatore Cisternino
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker-Enfants Malades, Service Pharmacie, Paris, France
| | - Xavier Decleves
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin, UF Biologie du médicament et toxicologie, Paris, France
| | - Marie-Claude Menet
- Université Paris Cité, UMR-S 1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France; Institut de Chimie Physique, CNRS 8000, Université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
6
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Peters SA, Rostami-Hodjegan A, Barber J. Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis. Front Oncol 2023; 13:1010563. [PMID: 36890818 PMCID: PMC9986493 DOI: 10.3389/fonc.2023.1010563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Alterations in expression and activity of human receptor tyrosine kinases (RTKs) are associated with cancer progression and in response to therapeutic intervention. Methods Thus, protein abundance of 21 RTKs was assessed in 15 healthy and 18 cancerous liver samples [2 primary and 16 colorectal cancer liver metastasis (CRLM)] matched with non-tumorous (histologically normal) tissue, by a validated QconCAT-based targeted proteomic approach. Results It was demonstrated, for the first time, that the abundance of EGFR, INSR, VGFR3 and AXL, is lower in tumours relative to livers from healthy individuals whilst the opposite is true for IGF1R. EPHA2 was upregulated in tumour compared with histologically normal tissue surrounding it. PGFRB levels were higher in tumours relative to both histologically normal tissue surrounding tumour and tissues taken from healthy individuals. The abundances of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, ERBB2, NTRK2, TIE2, RET, and MET were, however, comparable in all samples. Statistically significant, but moderate correlations were observed (Rs > 0.50, p < 0.05) for EGFR with INSR and KIT. FGFR2 correlated with PGFRA and VGFR1 with NTRK2 in healthy livers. In non-tumorous (histologically normal) tissues from cancer patients, there were correlations between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA (p < 0.05). EGFR correlated with INSR, ERBB2, KIT and EGFR, and KIT with AXL and FGFR2. In tumours, CSF1R correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. Sex, liver lobe and body mass index of donors had no impact on the abundance of RTKs, although donor age showed some correlations. RET was the most abundant of these kinases in non-tumorous tissues (~35%), while PGFRB was the most abundant RTK in tumours (~47%). Several correlations were also observed between the abundance of RTKs and proteins relevant to drug pharmacokinetics (enzymes and transporters). Discussion DiscussionThis study quantified perturbation to the abundance of several RTKs in cancer and the value generated in this study can be used as input to systems biology models defining liver cancer metastases and biomarkers of its progression.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany.,Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co., KG, Ingelheim am Rhein, Germany
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Simcyp Division, Certara Inc., Sheffield, United Kingdom
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Vasilogianni AM, El-Khateeb E, Al-Majdoub ZM, Alrubia S, Rostami-Hodjegan A, Barber J, Achour B. Proteomic quantification of perturbation to pharmacokinetic target proteins in liver disease. J Proteomics 2022; 263:104601. [DOI: 10.1016/j.jprot.2022.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|