1
|
Fernando MB, Fan Y, Zhang Y, Tokolyi A, Murphy AN, Kammourh S, Deans PJM, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams SE, Flaherty EK, Prytkova IA, Cao L, Knowles DA, Fang G, Slesinger PA, Brennand KJ. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Nature 2025:10.1038/s41586-025-08864-9. [PMID: 40205044 DOI: 10.1038/s41586-025-08864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations-sometimes affecting the same gene-will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, which encodes a presynaptic cell-adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain and are differentially affected by unique (non-recurrent) deletions1. We contrast the cell-type-specific effect of patient-specific mutations in NRXN1 using human-induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Through distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, to achieve individualized restoration of NRXN1 isoform repertoires by increasing wild-type and/or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Aleta N Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P J Michael Deans
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sadaf Ghorbani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Medical Stem Cell Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah E Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin K Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya A Prytkova
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Knowles
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul A Slesinger
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Dowsell RS, Gold MG. A signal transduction blind spot: the function of adenylyl cyclase transmembrane domains. FEBS J 2025. [PMID: 39940106 DOI: 10.1111/febs.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Signal transduction of external primary signals into intracellular elevations of the second messenger cyclic AMP is an ancient and universal regulatory mechanism in biology. In mammals, 9 of the 10 adenylyl cyclases (ACs) share a common topology that includes a large transmembrane (TM) domain assembled from two clusters of six helices. This domain accounts for ~ 35% of the coding sequence but, remarkably, its function is still an open question. In this viewpoint, we consider how the first primary AC sequences spurred ideas for the purpose of AC TM domains, including voltage-sensing and transporter functions. In the original conceptions of second messenger signalling, ACs were put forward as potential receptors, and we discuss emerging evidence in support of this function. We also consider growing evidence that cyclase TM helical bundles help to organise multiprotein signalling complexes by engaging in interactions with other membrane-embedded proteins. Cyclase TM regions are more diverse between isoforms than the catalytic domain-we conclude by considering how this might be exploited in therapeutic strategies targeting specific cyclase isoforms.
Collapse
Affiliation(s)
- Ryan S Dowsell
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| |
Collapse
|
3
|
Wang J, Xie J, Mei J. Research Progress Regarding Psychrotrophic Pseudomonas in Aquatic Products: Psychrophilic Characteristics, Spoilage Mechanisms, Detection Methods, and Control Strategies. Foods 2025; 14:363. [PMID: 39941956 PMCID: PMC11817643 DOI: 10.3390/foods14030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Aquatic products are an important part of the human diet, but they are easily contaminated by Pseudomonas spp., which leads to food deterioration and economic loss. In this paper, the main characteristics of psychrotrophic Pseudomonas in aquatic products are reviewed, including its growth adaptation mechanism and biofilm formation ability at low temperatures, and the key role of psychrotrophic Pseudomonas in aquatic product spoilage is emphasized. Studies have shown that psychrotrophic Pseudomonas can produce a variety of volatile compounds by decomposing proteins and amino acids, affecting the sensory quality and safety of aquatic products. A variety of control strategies to extend the shelf life of aquatic products have been explored, including physical, chemical, and biological methods, particularly biofilm-specific inhibition techniques such as inhibition of quorum sensing and the application of natural antimicrobials. Future research should prioritize the development of novel anti-biofilm products to address the growing problem of psychrotrophic Pseudomonas contamination in the aquatic product industry to ensure food safety and public health.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
4
|
Northwick AB, Carlson EE. Challenges of Biological Complexity in the Study of Nanotoxicology. Chem Res Toxicol 2025; 38:7-14. [PMID: 39772437 DOI: 10.1021/acs.chemrestox.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The scale of nanoparticle use in consumer goods has grown exponentially over several decades owing to the unique properties of materials in this size range. At the same time, well-defined end of life cycle disposal strategies have not been developed for most materials, meaning that we are approaching the potential for a new ecological disaster with the release of millions of metric tons of nanoparticles into the waste stream. The field of nanotoxicology has grown to meet the challenge of investigating the potential hazards of these materials and has already identified toxicity mechanisms that affect multiple tropes of life. However, there are stipulations on how applicable many of these results are to real world applications. These limitations largely arise from the complex network of variables that must be considered during these investigations. Herein, we focus on the challenges posed by the transformations that nanoparticles undergo when they are introduced into a biological environment. For example, biomolecules, such as proteins, rapidly coat nanoparticles with a shell, called a corona, that can modulate the toxicity of the core materials and/or aid its internalization into cells. As such, unlike in the evaluation of small molecule toxicity, one cannot assume that they know the composition of the nanoparticle-biomolecule species at any given time. This additional layer of complication, as well as the noncovalent nature of the corona, have made it difficult to identify consistent toxicity trends. In this Perspective, we highlight current analysis strategies and the difficulties in studying nanotoxicity, recent advances to aid in these studies, and efforts to reduce nanotoxicity and outline remaining challenges.
Collapse
Affiliation(s)
- Andrew B Northwick
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St. SE, Minneapolis, Minnesota 55454, United States
- Department of Pharmacology, University of Minnesota, 321 Church St. SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
5
|
Rahmati S, Emili A. Proximity Labeling: Precise Proteomics Technology for Mapping Receptor Protein Neighborhoods at the Cancer Cell Surface. Cancers (Basel) 2025; 17:179. [PMID: 39857961 PMCID: PMC11763998 DOI: 10.3390/cancers17020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cell surface receptors are pivotal to cancer cell transformation, disease progression, metastasis, early detection, targeted therapy, drug responses, and clinical outcomes. Since they coordinate complex signaling communication networks in the tumor microenvironment, mapping the physical interaction partners of cell surface receptors in vivo is vital for understanding their roles, functional states, and suitability as therapeutic targets. Yet traditional methods like immunoprecipitation and affinity purification-mass spectrometry often fail to detect key but weak or transient receptor-protein interactions. Proximity labeling, a cutting-edge proteomics technology, addresses these technical challenges by enabling precise mapping of protein neighborhoods around a receptor target on the cell surface of cancer cells. This technique has been successfully applied in vitro and in vivo for proteomic mapping across various model systems. This review explores the fundamental principles, technologies, advantages, limitations, and applications of proximity labeling in cancer biology, focusing on mapping receptor microenvironments. By advancing mechanistic insights into cancer cell receptor signaling mechanisms, proximity labeling is poised to transform cancer research, improve targeted therapies, and illuminate avenues to overcome drug resistance.
Collapse
Affiliation(s)
| | - Andrew Emili
- Department of Biomedical Engineering, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA;
| |
Collapse
|
6
|
Fernando MB, Fan Y, Zhang Y, Tokolyi A, Murphy AN, Kammourh S, Michael Deans P, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams S, Flaherty EK, Prytkova IA, Cao L, Knowles DA, Fang G, Slesinger PA, Brennand KJ. Phenotypic complexities of rare heterozygous neurexin-1 deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.28.564543. [PMID: 37961635 PMCID: PMC10634884 DOI: 10.1101/2023.10.28.564543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Given the large number of genes significantly associated with risk for neuropsychiatric disorders, a critical unanswered question is the extent to which diverse mutations --sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1 +/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Reciprocal isogenic manipulations causally demonstrate that aberrant splicing drives these changes in synaptic activity. For NRXN1 deletions, and perhaps more broadly, precision medicine will require stratifying patients based on whether their gene mutations act through LOF or GOF mechanisms, in order to achieve individualized restoration of NRXN1 isoform repertoires by increasing wildtype, or ablating mutant isoforms. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disorders, our findings add nuance to future considerations of precision medicine.
Collapse
Affiliation(s)
- Michael B. Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| | - Yu Fan
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yanchun Zhang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Aleta N. Murphy
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Kammourh
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Sadaf Ghorbani
- Haukeland University Hospital, Bergen, Norway
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| | - Ryan Onatzevitch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adriana Pero
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher Padilla
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Williams
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erin K. Flaherty
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Iya A. Prytkova
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lei Cao
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - David A. Knowles
- New York Genome Center, New York, NY, 10013
- Departments of Computer Science, Systems Biology, and Data Science Institute, Columbia University, New York, NY, USA, 10027
| | - Gang Fang
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paul A. Slesinger
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Black Family Stem Cell Institute, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06520
| |
Collapse
|
7
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
8
|
Querol Cano L, Dunlock VME, Schwerdtfeger F, van Spriel AB. Membrane organization by tetraspanins and galectins shapes lymphocyte function. Nat Rev Immunol 2024; 24:193-212. [PMID: 37758850 DOI: 10.1038/s41577-023-00935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/29/2023]
Abstract
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
Collapse
Affiliation(s)
- Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera-Marie E Dunlock
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Schwerdtfeger
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Dieters-Castator DZ, Manzanillo P, Yang HY, Modak RV, Rardin MJ, Gibson BW. Magnetic Bead-Based Workflow for Sensitive and Streamlined Cell Surface Proteomics. J Proteome Res 2024; 23:618-632. [PMID: 38226771 DOI: 10.1021/acs.jproteome.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 μg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.
Collapse
Affiliation(s)
| | - Paolo Manzanillo
- Inflammation, Amgen Research, South San Francisco, California 94080, United States
| | - Han-Yin Yang
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| | - Rucha V Modak
- Inflammation, Amgen Research, South San Francisco, California 94080, United States
| | - Matthew J Rardin
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| | - Bradford W Gibson
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Daskivich GJ, Brodsky JL. The generation of detergent-insoluble clipped fragments from an ERAD substrate in mammalian cells. Sci Rep 2023; 13:21508. [PMID: 38057493 PMCID: PMC10700608 DOI: 10.1038/s41598-023-48769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Proteostasis ensures the proper synthesis, folding, and trafficking of proteins and is required for cellular and organellar homeostasis. This network also oversees protein quality control within the cell and prevents accumulation of aberrant proteins, which can lead to cellular dysfunction and disease. For example, protein aggregates irreversibly disrupt proteostasis and can exert gain-of-function toxic effects. Although this process has been examined in detail for cytosolic proteins, how endoplasmic reticulum (ER)-tethered, aggregation-prone proteins are handled is ill-defined. To determine how a membrane protein with a cytoplasmic aggregation-prone domain is routed for ER-associated degradation (ERAD), we analyzed a new model substrate, TM-Ubc9ts. In yeast, we previously showed that TM-Ubc9ts ERAD requires Hsp104, which is absent in higher cells. In transient and stable HEK293 cells, we now report that TM-Ubc9ts degradation is largely proteasome-dependent, especially at elevated temperatures. In contrast to yeast, clipped TM-Ubc9ts polypeptides, which are stabilized upon proteasome inhibition, accumulate and are insoluble at elevated temperatures. TM-Ubc9ts cleavage is independent of the intramembrane protease RHBDL4, which clips other classes of ERAD substrates. These studies highlight an unappreciated mechanism underlying the degradation of aggregation-prone substrates in the ER and invite further work on other proteases that contribute to ERAD.
Collapse
Affiliation(s)
- Grant J Daskivich
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
11
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
12
|
El Zawily A, Vizeacoumar FS, Dahiya R, Banerjee SL, Bhanumathy KK, Elhasasna H, Hanover G, Sharpe JC, Sanchez MG, Greidanus P, Stacey RG, Moon KM, Alexandrov I, Himanen JP, Nikolov DB, Fonge H, White AP, Foster LJ, Wang B, Toosi BM, Bisson N, Mirzabekov TA, Vizeacoumar FJ, Freywald A. A Multipronged Unbiased Strategy Guides the Development of an Anti-EGFR/EPHA2-Bispecific Antibody for Combination Cancer Therapy. Clin Cancer Res 2023; 29:2686-2701. [PMID: 36976175 PMCID: PMC10345963 DOI: 10.1158/1078-0432.ccr-22-2535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/26/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.
Collapse
Affiliation(s)
- Amr El Zawily
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Sara L. Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, Canada
| | - Kalpana K. Bhanumathy
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Hussain Elhasasna
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Health Sciences, Saskatoon, Saskatchewan, Canada
| | - Jessica C. Sharpe
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Malkon G. Sanchez
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Health Sciences, Saskatoon, Saskatchewan, Canada
| | - Paul Greidanus
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Health Sciences, Saskatoon, Saskatchewan, Canada
| | - R. Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Juha P. Himanen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Aaron P. White
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Health Sciences, Saskatoon, Saskatchewan, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leonard J. Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bingcheng Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, and Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Behzad M. Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, Canada
| | | | - Franco J. Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:1-48. [PMID: 38220421 DOI: 10.1016/bs.apcsb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
Collapse
Affiliation(s)
- Benjamin T Veenstra
- Department of Math and Sciences, Cedarville University, Cedarville, OH, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH, United States.
| |
Collapse
|