1
|
Choi H, Kwak MJ, Choi Y, Kang AN, Mun D, Eor JY, Park MR, Oh S, Kim Y. Extracellular vesicles of Limosilactobacillus fermentum SLAM216 ameliorate skin symptoms of atopic dermatitis by regulating gut microbiome on serotonin metabolism. Gut Microbes 2025; 17:2474256. [PMID: 40028723 PMCID: PMC11881872 DOI: 10.1080/19490976.2025.2474256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent chronic inflammatory skin disorder. Its pathogenesis remains incompletely understood, resulting in considerable therapeutic challenges. Recent studies have highlighted the significance of the interaction between AD and gut microbiome. In this study, we investigated the effects of probiotic-derived extracellular vesicles on AD. Initially, we isolated and characterized extracellular vesicles from Limosilactobacillus fermentum SLAM 216 (LF216EV) and characterized their composition through multi-omics analysis. Gene ontology (GO) and pathway analysis classified LF216EV proteins into biological processes, molecular functions, and cellular components. Importantly, specific abundance in linoleic, oleic, palmitic, sebacic, and stearic acids indicating upregulated fatty acid metabolism were observed by metabolomic analysis. Furthermore, featured lipid profiling including AcylGlcADG and ceramide were observed in LF216EV. Importantly, in an atopic dermatitis-like cell model induced by TNFα/IFNγ, LF216EV significantly modulated the expression of immune regulatory genes (TSLP, TNFα, IL-6, IL-1β, and MDC), indicating its potential functionality in atopic dermatitis. LF216EV alleviated AD-like phenotypes, such as redness, scaling/dryness, and excoriation, induced by DNCB. Histopathological analysis revealed that LF216EV decreased epidermal thickness and mast cell infiltration in the dermis. Furthermore, LF216EV administration reduced mouse scratching and depression-related behaviors, with a faster onset than the classical treatment with dexamethasone. In the quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we observed a significant increase in the expression levels of htrb2c, sert, and tph-1, genes associated with serotonin, in the skin and gut of the LF216EV-treated group, along with a significant increase in the total serum serotonin levels. Gut microbiome analysis of the LF216EV-treated group revealed an altered gut microbiota profile. Correlation analysis revealed that the genera Limosilactobacillus and Desulfovibrio were associated with differences in the intestinal metabolites, including serotonin. Our findings demonstrate that LF216EV mitigates AD-like symptoms by promoting serotonin synthesis through the modulation of gut microbiota and metabolome composition.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Mi Ri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Rahman R, Fouhse JM, Ju T, Fan Y, Bhardwaj T, Brook RK, Nosach R, Harding J, Willing BP. The impact of wild-boar-derived microbiota transplantation on piglet microbiota, metabolite profile, and gut proinflammatory cytokine production differs from sow-derived microbiota. Appl Environ Microbiol 2025; 91:e0226524. [PMID: 39902926 PMCID: PMC11921332 DOI: 10.1128/aem.02265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Colonization of co-evolved, species-specific microbes in early life plays a crucial role in gastrointestinal development and immune function. This study hypothesized that modern pig production practices have resulted in the loss of co-evolved species and critical symbiotic host-microbe interactions. To test this, we reintroduced microbes from wild boars (WB) into conventional piglets to explore their colonization dynamics and effects on gut microbial communities, metabolite profiles, and immune responses. At postnatal day (PND) 21, 48 piglets were assigned to four treatment groups: (i) WB-derived mixed microbial community (MMC), (ii) sow-derived MMC, (iii) a combination of WB and sow MMC (Mix), or (iv) Control (PBS). Post-transplantation analyses at PND 48 revealed distinct microbial communities in WB-inoculated piglets compared with Controls, with trends toward differentiation from Sow but not Mix groups. WB-derived microbes were more successful in colonizing piglets, particularly in the Mix group, where they competed with Sow-derived microbes. WB group cecal digesta enriched with Lactobacillus helveticus, Lactobacillus mucosae, and Lactobacillus pontis. Cecal metabolite analysis showed that WB piglets were enriched in histamine, acetyl-ornithine, ornithine, citrulline, and other metabolites, with higher histamine levels linked to Lactobacillus abundance. WB piglets exhibited lower cecal IL-1β and IL-6 levels compared with Control and Sow groups, whereas the Mix group showed reduced IFN-γ, IL-2, and IL-6 compared with the Sow group. No differences in weight gain, fecal scores, or plasma cytokines were observed, indicating no adverse effects. These findings support that missing WB microbes effectively colonize domestic piglets and may positively impact metabolite production and immune responses.IMPORTANCEThis study addresses the growing concern over losing co-evolved, species-specific microbes in modern agricultural practices, particularly in pig production. The implementation of strict biosecurity measures and widespread antibiotic use in conventional farming systems may disrupt crucial host-microbe interactions that are essential for gastrointestinal development and immune function. Our research demonstrates that by reintroducing wild boar-derived microbes into domestic piglets, these microbes can successfully colonize the gut, influence microbial community composition, and alter metabolite profiles and immune responses without causing adverse effects. These findings also suggest that these native microbes can fill an intestinal niche, positively impacting immune activation. This research lays the groundwork for future strategies to enhance livestock health and performance by restoring natural microbial populations that produce immune-modulating metabolites.
Collapse
Affiliation(s)
- Rajibur Rahman
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle M Fouhse
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tingting Ju
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yi Fan
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tulika Bhardwaj
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- University of Calgary, Calgary, Alberta, Canada
| | - Ryan K Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P Willing
- Department of Agricultural Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Kahraman Ilıkkan Ö. Lactobacillomics as a new notion in lactic acid bacteria research through omics integration. World J Microbiol Biotechnol 2025; 41:68. [PMID: 39930163 PMCID: PMC11811450 DOI: 10.1007/s11274-025-04285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Omics technologies are a set of disciplines that analyze large-scale molecular data to understand biological systems in a holistic way. These technologies aim to reveal the structure, functions and interactions of organisms by studying processes at many levels of biomolecules, from the genome to metabolism. Lactobacillomics is introduced as an interdisciplinary field that integrates multiple "omics" technologies-including genomics, transcriptomics, proteomics, metabolomics, and metagenomics- to provide a comprehensive insight into "lactic acid bacteria" species. Lactobacillomics aims to elucidate the genetic, metabolic, and functional characteristics of lactic acid bacteria (LAB) species, providing insights into the mechanisms underlying their probiotic effects and contributions to the host microbiome. By analyzing genomes and metabolic pathways, researchers can identify specific genes responsible for health-promoting functions and desirable fermentation characteristics, which can guide the development of targeted probiotic strains with optimized health benefits. The integration of these omics data allows facilitating the discovery of biomarkers for health and disease states, the development of new probiotics tailored to specific populations or health conditions, and the optimization of fermentation processes to enhance the safety, flavor, and nutritional profile of fermented foods. A comprehensive review and bibliometric analysis were conducted to provide an overview of this promising field between 2005 and 2025 by examining Web of Science Core Collection data. Research results reveal trending topics, future perspectives, and key areas of growth within lactic acid bacteria (LAB) studies, particularly as they intersect with omics technologies.
Collapse
Affiliation(s)
- Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Department of Food Processing, Başkent University, Ankara, Türkiye, Turkey.
| |
Collapse
|
5
|
Liang Y, Wan L, Wang G, Yan H, Zhang J, Liu X, Zhang Z, Zhu G, Yang G. Clinical Study of Limosilactobacillus reuteri for the Treatment of Children with Chronic Tic Disorders/Tourette Syndrome: A Mid-Term Efficacy Evaluation. Neurol Ther 2025; 14:279-290. [PMID: 39699746 PMCID: PMC11762037 DOI: 10.1007/s40120-024-00693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION Gut microbiota plays an important role in tic disorders (TDs); however, clinical research on probiotics for chronic TDs treatment is lacking. We aimed to investigate the effectiveness of probiotics, hypothesizing that their clinical efficacy is comparable to that of clonidine in treating chronic TDs. METHODS Patients were randomly assigned to receive either Limosilactobacillus reuteri or clonidine transdermal patch treatment for 8 weeks while maintaining their existing treatment. The Yale Global Tic Severity Scale (YGTSS); Swanson, Nolan, and Pelham-IV Scale (SNAP-IV); and Child Behavior Check List (CBCL) scores were assessed before and after treatment. RESULTS We matched the patients in both groups for age, sex, age at onset, and tic type. A significant improvement in YGTSS scores was observed in both groups (p = 0.024). The improvement in attention deficits on the SNAP-IV scale was similar between the two groups, with no significant difference (p = 0.465). For hyperactivity disorder, after matching patients in both groups for age, sex, age at onset, tic type, and Children's Yale-Brown Obsessive Compulsive Scale (CY-BOCS) scores, a significant difference in improvement was observed between the groups (p = 0.010), with the probiotics group showing greater improvement (0.3 ± 0.58 vs. 0.1 ± 0.50). At 9 weeks, social ability on the CBCL scale increased by 3.2 ± 6.26 from baseline in the probiotics group and by 0.6 ± 4.07 in the clonidine group, with a significant difference between the two (p = 0.049). Although there was no significant difference in behavioral problems between the two groups (p = 0.347), the trend of improvement was more pronounced in the probiotics group than in the clonidine group (12.7 ± 25.86 vs. 8.4 ± 13.15). CONCLUSION The mid-term efficacy evaluation demonstrated that L. reuteri, when added to the treatment of children with chronic TDs, was more effective in improving tic symptoms than clonidine transdermal patch treatment. Additionally, it provided moderate improvement in hyperactivity symptoms. TRIAL REGISTRATION chictr.org.cn (registration numbers ChiCTR2200056708, ChiCTR2200056578).
Collapse
Affiliation(s)
- Yan Liang
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Lin Wan
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Guanglei Wang
- Medical School of Chinese People's Liberation Army, Beijing, China
- First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huimin Yan
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jing Zhang
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xinting Liu
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Ziyan Zhang
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Gang Zhu
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Guang Yang
- Senior Department of Pediatrics, Seventh Medical Center of PLA General Hospital, 28# Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Pediatrics, First Medical Centre, Chinese PLA General Hospital, Beijing, China.
- Medical School of Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
6
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [PMID: 39839986 PMCID: PMC11745983 DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Schizophrenia is a chronic psychiatric disorder characterized by a variety of symptoms broadly categorized into positive, negative, and cognitive domains. Its etiology is multifactorial, involving a complex interplay of genetic, neurobiological, and environmental factors, and its neurobiology is associated with abnormalities in different neurotransmitter systems. Due to this multifactorial etiology and neurobiology, leading to a wide heterogeneity of symptoms and clinical presentations, current antipsychotic treatments face challenges, underscoring the need for novel therapeutic approaches. Recent studies have revealed differences in the gut microbiome of individuals with schizophrenia compared to healthy controls, establishing an intricate link between this disorder and gastrointestinal health, and suggesting that microbiota-targeted interventions could help alleviate clinical symptoms. Therefore, this meta-analysis investigates whether gut microbiota manipulation can ameliorate psychotic outcomes in patients with schizophrenia receiving pharmacological treatment. Nine studies (n = 417 participants) were selected from 81 records, comprising seven randomized controlled trials and two open-label studies, all with a low risk of bias, included in this systematic review and meta-analysis. The overall combined effect size indicated significant symptom improvement following microbiota treatment (Hedges' g = 0.48, 95% CI = 0.09 to 0.88, p = 0.004, I2 = 62.35%). However, according to Hedges' g criteria, the effect size was small (approaching moderate), and study heterogeneity was moderate based on I2 criteria. This review also discusses clinical and preclinical studies to elucidate the neural, immune, and metabolic pathways by which microbiota manipulation, particularly with Lactobacillus and Bifidobacterium genera, may exert beneficial effects on schizophrenia symptoms via the gut-brain axis. Finally, we address the main confounding factors identified in our systematic review, highlight key limitations, and offer recommendations to guide future high-quality trials with larger participant cohorts to explore microbiome-based therapies as a primary or adjunctive treatment for schizophrenia.
Collapse
Affiliation(s)
- Lucas Hassib
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alexandre Kanashiro
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Bárbara Ferreira Vercesi
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sayuri Higa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Íris Arruda
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Yago Soares
- Oswaldo Cruz Foundation, Institute Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana de Jesus de Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alceu Afonso Jordão
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
7
|
Tiwari S, Paramanik V. Role of Probiotics in Depression: Connecting Dots of Gut-Brain-Axis Through Hypothalamic-Pituitary Adrenal Axis and Tryptophan/Kynurenic Pathway involving Indoleamine-2,3-dioxygenase. Mol Neurobiol 2025:10.1007/s12035-025-04708-9. [PMID: 39875781 DOI: 10.1007/s12035-025-04708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives. Furthermore, over the decades, researchers have focused on understanding communication between the human microbiome, especially gut microbiota, and mental health, called gut-brain-axis (GBA), particularly through Trp metabolism. Supplementation of probiotics in depression has gained attention from researchers and clinicians. However, there is limited information about probiotics supplementation on depression involving enzyme IDO and kynurenine pathway metabolites. This review discussed the potential role of probiotics in depression through the tryptophan/kynurenine pathway.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
| |
Collapse
|
8
|
Qiao Y, Yu J, Zhang Z, Hou Q, Guo Z, Wang Y. Regulatory effects of Lactobacillus zhachilii HBUAS52074 T on depression-like behavior induced by chronic social defeat stress in mice: modulation of the gut microbiota. Food Funct 2025; 16:691-706. [PMID: 39744979 DOI: 10.1039/d4fo04542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
The gut microbiome has emerged as a growing focus of research and public health interest, leading to the frequent exploration of probiotic dietary supplements as potential treatments for various disorders, such as anxiety and depression. In the present report, changes in inflammation and microbiome composition were assessed in model mice exhibiting depressive-like behaviors that were exposed to the probiotic Lactobacillus zhachilii HBUAS52074T. It was found that L. zhachilii HBUAS52074T alleviated the severity of depressive-like behaviors while increasing serum 5-HT concentrations. Moreover, L. zhachilii HBUAS52074T modulated the composition of the gut microbiota, resulting in a decrease in the abundance of Prevotella and an increase in the abundance of Lactobacillus. Additionally, supplementation with L. zhachilii HBUAS52074T enhanced intestinal barrier function and reduced inflammation in peripheral blood, as well as in the hippocampal and prefrontal cortical tissues. Correlational analyses indicated that the abundance of Lactobacillus was positively correlated with the social interaction ratio, time spent in the center, entries into the center, as well as serum 5-HT and serum IL-10 levels but negatively correlated with immobility time. Overall, chronic social defeat stress was found to be associated with inflammation and the exacerbation of depressive-like behaviors. The above findings suggested that L. zhachilii HBUAS52074T supplementation was sufficient to alter the parameters. Collectively, these data suggest that L. zhachilii HBUAS52074T, derived from naturally fermented foods, may possess therapeutic potential for the treatment of depression.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Public Health, Jining Medical University, Jining, Shandong, PR China
| | - Jie Yu
- Department of Public Health, Jining Medical University, Jining, Shandong, PR China
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| |
Collapse
|
9
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
10
|
Xie X, Li W, Xiong Z, Xu J, Liao T, Sun L, Xu H, Zhang M, Zhou J, Xiong W, Fu Z, Li Z, Han Q, Cui D, Anthony DC. Metformin reprograms tryptophan metabolism via gut microbiome-derived bile acid metabolites to ameliorate depression-Like behaviors in mice. Brain Behav Immun 2025; 123:442-455. [PMID: 39303815 DOI: 10.1016/j.bbi.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
As an adjunct therapy, metformin enhances the efficacy of conventional antidepressant medications. However, its mode of action remains unclear. Here, metformin was found to ameliorate depression-like behaviors in mice exposed to chronic restraint stress (CRS) by normalizing the dysbiotic gut microbiome. Fecal transplants from metformin-treated mice ameliorated depressive behaviors in stressed mice. Microbiome profiling revealed that Akkermansia muciniphila (A. muciniphila), in particular, was markedly increased in the gut by metformin and that oral administration of this species alone was sufficient to reverse CRS-induced depressive behaviors and normalize aberrant stress-induced 5-hydroxytryptamine (5-HT) metabolism in the brain and gut. Untargeted metabolomic profiling further identified the bile acid metabolites taurocholate and deoxycholic acid as direct A. muciniphila-derived molecules that are, individually, sufficient to rescue the CRS-induced impaired 5-HT metabolism and depression-like behaviors. Thus, we report metformin reprograms 5-HT metabolism via microbiome-brain interactions to mitigate depressive syndromes, providing novel insights into gut microbiota-derived bile acids as potential therapeutic candidates for depressive mood disorders from bench to bedside.
Collapse
Affiliation(s)
- Xiaoxian Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201109, PR China; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenwen Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ze Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, PR China
| | - Tailin Liao
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, PR China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haoshen Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenzheng Xiong
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zezhi Li
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, PR China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, PR China.
| | - Qi Han
- Center for Brain Science Shanghai Children s Medical Center, Department of Anatomy and Physiology, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 200031, PR China.
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201109, PR China.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK
| |
Collapse
|
11
|
Lee YB, Cho YJ, Kim JK. The unique role of fluoxetine in alleviating depression and anxiety by regulating gut microbiota and the expression of vagus nerve-mediated serotonin and melanocortin-4 receptors. Biomed Pharmacother 2025; 182:117748. [PMID: 39671722 DOI: 10.1016/j.biopha.2024.117748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024] Open
Abstract
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used for depression, but its potential effects on gut microbiota regulation and vagus nerve-mediated serotonin receptor expression have not been well studied. We investigated changes in the gut microbiome regulated by fluoxetine and vagus nerve-mediated expression of several serotonin (5-HT) receptor types associated with anxiety and depression. Oral administration of fluoxetine alleviated lipopolysaccharide (LPS)-induced depressive and anxiety behaviors, increased 5-HT1A, 2 C, and melanocortin 4 (MC4) receptor expression, and the composition of Lactobacillus in mice's gut microbiome. In contrast, in the vagotomized group, fluoxetine did not modulate behaviors and receptor expression. Increased Lactobacillus composition was found to correlate significantly with behavioral test results. The importance of Lactobacillus growth to the efficacy of fluoxetine was confirmed by the effectiveness of fluoxetine, which was reduced by co-administering antibiotics. To determine the additional impact of the gut microbiome, we isolated Limosilactobacillus reuteri and Ligilactobacillus murinus, which were increased in the fluoxetine-treated group and administrated. The results showed that administration of each strain improved anxious or depressive behavior, as did fluoxetine, and vagotomy eliminated these effects. These results suggest that fluoxetine administration increases the proportion of Lactobacillus in the gut, which modulates 5-HT1A, 2 C, and MC4 receptor expression through the enteric nervous system and improves depression.
Collapse
Affiliation(s)
- Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Ye-Jin Cho
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University Jeonju 54896, Republic of Korea.
| |
Collapse
|
12
|
Liu Q, Ding P, Zhu Y, Wang C, Yin L, Zhu J, Nie S, Wang S, Zheng C, Shen H, Mo F. Super Astragalus polysaccharide in specific gut microbiota metabolism alleviates chronic unpredictable mild stress-induced cognitive deficits mice. Int J Biol Macromol 2024; 283:137394. [PMID: 39521210 DOI: 10.1016/j.ijbiomac.2024.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Chronic stress affects intestinal microbiota. Astragaloside IV (AS), called super Astragalus polysaccharide, is a monomer component of traditional herbs Astragalus membranaceus which belongs to medicinal food homology (MFH), exerts a neuroprotection effect, but the underlying mechanism has not yet been elucidated. Intestinal flora is also involved in the biotransformation of the active ingredients of MFH species, thus affecting their physiological and pharmacological properties. In this study, we found that AS improved CUMS-induced cognitive impairment, inhibited neuroinflammation, and restored intestinal barrier damage, but the improvement was suppressed by the elimination of gut microbiota, suggesting a key regulatory role for the microbiota. The results of 16S rDNA sequencing showed that AS treatment significantly increased the relative abundance of Lactobacillus reuteri (L. reuteri) and Bacteroides acidifaciens. Furthermore, supplementation of L. reuteri rather than Lactobacillus plantarum restored the effect of AS-supplied dysbiosis mice via inhibition of inflammatory repose and the maintenance of the intestinal epithelial barrier, indicating that dietary AS requires L. reuteri to ameliorate cognitive injury. These findings provide evidence for new therapeutic strategies to treat chronic stress and support the role of specific bacteria in the intestinal environment that metabolizes the AS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Peng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, PLA 983 Hospital, Tianjin 300143, China
| | - Ying Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenxu Wang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lifeng Yin
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shi Wang
- Department of Neurology, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Yang W, Gao X, Lin J, Liu L, Peng L, Sheng J, Xu K, Tian Y. Water-insoluble dietary fiber from walnut relieves constipation through Limosilactobacillus reuteri-mediated serotonergic synapse and neuroactive ligand-receptor pathways. Int J Biol Macromol 2024; 283:137931. [PMID: 39579820 DOI: 10.1016/j.ijbiomac.2024.137931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Dietary fiber can alleviate functional constipation (FC) by modulating the gut microbiota. To clarify the prebiotic properties of walnut insoluble dietary fiber (WIDF), we explored its structural characteristics and laxative mechanism. A galacturonic acid and glucose-rich WIDF was isolated from walnuts by using a complex enzymatic method. Animal experiments results showed that WIDF could effectively alleviate the symptoms of loperamide-induced FC in mice, including shortening the defecation time, increasing the wet weight and water content of feces, and promoting intestinal motility. WIDF might alleviate FC through activating serotonergic synapse and inhibiting the delta-opioid receptor/inducible nitric oxide synthase (Oprd/iNOS) pathways. Importantly, WIDF treatment altered the structure and composition of the gut microbiota. Correlation analysis revealed that Bacillus and its dominant ASV17, which is considered to be the key microbe for constipation alleviation, were strongly associated with constipation phenotypes. Based on pure culture and 16S rRNA gene phylogenetic analysis, Limosilactobacillus reuteri (L. reuteri), which is 100 % similar to ASV17, was isolated and identified from the feces of WIDF-treated mice. L. reuteri relieved FC by modulating serotonergic synapse and the Oprd/iNOS pathways. These results suggested that WIDF and L. reuteri treatment is a prospective strategy for the prevention of constipation.
Collapse
Affiliation(s)
- Weixing Yang
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jialong Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Li Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Kunlong Xu
- Yunnan Agricultural University, Kunming 650201, China.
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Pu 'er University, Pu 'er 665000, China.
| |
Collapse
|
14
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
15
|
Alatan H, Liang S, Shimodaira Y, Wu X, Hu X, Wang T, Luo J, Iijima K, Jin F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front Immunol 2024; 15:1407620. [PMID: 39346901 PMCID: PMC11428200 DOI: 10.3389/fimmu.2024.1407620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Major depressive disorder is a condition involving microbiota-gut-brain axis dysfunction. Increasing research aims to improve depression through gut microbiota regulation, including interventions such as probiotics, prebiotics, and fecal microbiota transplants. However, most research focuses on exogenous depression induced by chronic stress or drugs, with less attention given to endogenous depression. Additionally, research on gut mycobiota in depression is significantly less than that on gut bacteria. Methods In the present study, Wistar-Kyoto rats were used as an endogenous depression and treatment-resistant depression model, while Wistar rats served as controls. Differences between the two rat strains in behavior, gut bacteria, gut mycobiota, nervous system, endocrine system, immune system, and gut barrier were evaluated. Additionally, the effects of Lactobacillus helveticus NS8 supplementation were investigated. Results Wistar-Kyoto rats demonstrated increased depressive-like behaviors in the forced swimming test, reduced sucrose preference in the sucrose preference test, and decreased locomotor activity in the open field test. They also exhibited abnormal gut bacteria and mycobiota, characterized by higher bacterial α-diversity but lower fungal α-diversity, along with increased butyrate, L-tyrosine, and L-phenylalanine biosynthesis from bacteria. Furthermore, these rats showed dysfunction in the microbiota-gut-brain axis, evidenced by a hypo-serotonergic system, hyper-noradrenergic system, defective hypothalamic-pituitary-adrenal axis, compromised gut barrier integrity, heightened serum inflammation, and diminished gut immunity. A 1-month L. helveticus NS8 intervention increased the fecal abundance of L. helveticus; reduced the abundance of Bilophila and Debaryomycetaceae; decreased immobility time but increased climbing time in the forced swimming test; reduced hippocampal corticotropin-releasing hormone levels; decreased hypothalamic norepinephrine levels; increased hippocampal glucocorticoid receptor, brain-derived neurotrophic factor dopamine, and 5-hydroxyindoleacetic acid content; and improved the gut microbiota, serotonergic, and noradrenergic system. Conclusion The depressive phenotype of Wistar-Kyoto rats is not only attributed to their genetic context but also closely related to their gut microbiota. Abnormal gut microbiota and a dysfunctional microbiota-gut-brain axis play important roles in endogenous depression, just as they do in exogenous depression. Supplementing with probiotics such as L. helveticus NS8 is likely a promising approach to improve endogenous depression and treatment-resistant depression.
Collapse
Affiliation(s)
- Husile Alatan
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shan Liang
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yosuke Shimodaira
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jia Luo
- Psychology College, Sichuan Normal University, Chengdu, China
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Feng Jin
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Li X, Cheng X, Shi Y, Jian C, Zhu W, Bao H, Jiang M, Peng Z, Hu Y, Chen J, Shu X. Mixed probiotics reduce the severity of stress-induced depressive-like behaviors. J Affect Disord 2024; 355:450-458. [PMID: 38537751 DOI: 10.1016/j.jad.2024.03.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
In recent years, the gut microbiome has gained significant attention in the spheres of research and public health. As a result, studies have increasingly explored the potential of probiotic dietary supplements as treatment interventions for conditions such as anxiety and depression. The present study examined the effect of mixed probiotics (Lacticaseibacillus rhamnosus and Enterococcus faecium) on inflammation, microbiome composition, and depressive-like behaviors in a macaque monkey model. The mixed probiotics effectively reduced the severity of depressive-like behaviors in macaque monkeys. Further, treatment with mixed probiotics gradually increased the abundance of beneficial bacteria in the gut, improving the balance of the gut microbiota. Additionally, macaques treated with the mixed probiotics showed decreased serum levels of inflammatory factors (P < 0.05), an increased rate of L-tryptophan metabolism (P < 0.05), and the restoration of 5-HT and 5-HTP levels (P < 0.05). Correlation analysis confirmed that Lacticaseibacillus and other beneficial bacteria exhibited a negative correlation with inflammation in the body (P < 0.05), and a positive correlation with tryptophan metabolism (P < 0.05). In conclusion, the mixed probiotics effectively restored intestinal homeostasis in macaques and enhanced tryptophan metabolism, ultimately alleviating inflammation and depressive-like behaviors.
Collapse
Affiliation(s)
- Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenxing Jian
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou 350004, Fujian, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Sarkawi M, Raja Ali RA, Abdul Wahab N, Abdul Rathi ND, Mokhtar NM. A randomized, double-blinded, placebo-controlled clinical trial on Lactobacillus-containing cultured milk drink as adjuvant therapy for depression in irritable bowel syndrome. Sci Rep 2024; 14:9478. [PMID: 38658619 PMCID: PMC11043363 DOI: 10.1038/s41598-024-60029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Irritable bowel syndrome (IBS) is frequently linked with coexisting mental illnesses. Our previous study discovered that 32.1% of IBS patients had subthreshold depression (SD), placing them at higher risk of developing major depression. Gut microbiota modulation through psychobiotics was found to influence depression via the gut-brain axis. However, the efficacy of lessening depression among IBS patients remains ambiguous. The study's aim was to investigate the roles of cultured milk drinks containing 109 cfu Lactobacillus acidophilus LA-5 and Lactobacillus paracasei L. CASEI-01 on depression and related variables among IBS participants with SD. A total of 110 IBS participants with normal mood (NM) and SD, were randomly assigned to one of four intervention groups: IBS-NM with placebo, IBS-NM with probiotic, IBS-SD with placebo, and IBS-SD with probiotic. Each participant was required to consume two bottles of cultured milk every day for a duration of 12 weeks. The following outcomes were assessed: depression risk, quality of life, the severity of IBS, and hormonal changes. The depression scores were significantly reduced in IBS-SD with probiotic and placebo from baseline (p < 0.001). Only IBS-SD with probiotic showed a significant rise in serotonin serum levels (p < 0.05). A significantly higher life quality measures were seen in IBS-SD with probiotic, IBS-SD with placebo, and IBS-NM with placebo (p < 0.05). All groups, both placebo and probiotic, reported significant improvement in IBS severity post-intervention with a higher prevalence of remission and mild IBS (p < 0.05). Dual strains lactobacillus-containing cultured milk drink via its regulation of relevant biomarkers, is a potential anti-depressive prophylactic agent for IBS patients at risk.
Collapse
Affiliation(s)
- Marlynna Sarkawi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
- Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Petaling Jaya, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norshafila Diana Abdul Rathi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Schwarcz R, Foo A, Sathyasaikumar KV, Notarangelo FM. The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine. Int J Mol Sci 2024; 25:3679. [PMID: 38612489 PMCID: PMC11011989 DOI: 10.3390/ijms25073679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (A.F.); (K.V.S.)
| | | | | | | |
Collapse
|
19
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Francois Coulombe-Rozon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Renaud Bernatchez
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Sam E.J. Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Roseline Olory Agomma
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - José L. Solano
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Raphael Gaumond
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Katarzyna A. Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Alain Doyen
- Department of Food Science, Institute of Nutrition and Functional Foods, Université Laval, Québec City, Québec, Canada
| | - Audrey Durand
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Marie-Claude Audet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
20
|
Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release 2023; 364:46-60. [PMID: 37866404 DOI: 10.1016/j.jconrel.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The prevalence of central nervous system (CNS) diseases is on the rise as the population ages. The presence of various obstacles, particularly the blood-brain barrier (BBB), poses a challenge for drug delivery to the CNS. An expanding body of study suggests that gut microbiota (GM) plays an important role in CNS diseases. The communication between GM and CNS diseases has received increasing attention. Accumulating evidence indicates that the GM can modulate host signaling pathways to regulate distant organ functions by delivering bioactive substances to host cells via bacterial extracellular vesicles (BEVs). BEVs have emerged as a promising platform for the treatment of CNS diseases due to their nanostructure, ability to penetrate the BBB, as well as their low toxicity, high biocompatibility, ease of modification and large-scale culture. Here, we discuss the biogenesis, internalization mechanism and engineering modification methods of BEVs. We then focus on the use and potential role of BEVs in the treatment of CNS diseases. Finally, we outline the main challenges and future prospects for the application of BEVs in CNS diseases. We hope that the comprehensive understanding of the BEVs-based gut-brain axis will provide new insights into the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510630, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
21
|
Chen X, Zhao H, Meng F, Zhou L, Lu Z, Lu Y. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Kwon H, Lee EH, Choi J, Park JY, Kim YK, Han PL. Extracellular Vesicles Released by Lactobacillus paracasei Mitigate Stress-induced Transcriptional Changes and Depression-like Behavior in Mice. Exp Neurobiol 2023; 32:328-342. [PMID: 37927131 PMCID: PMC10628865 DOI: 10.5607/en23024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Various probiotic strains have been reported to affect emotional behavior. However, the underlying mechanisms by which specific probiotic strains change brain function are not clearly understood. Here, we report that extracellular vesicles derived from Lactobacillus paracasei (Lpc-EV) have an ability to produce genome-wide changes against glucocorticoid (GC)-induced transcriptional responses in HT22 hippocampal neuronal cells. Genome-wide analysis using microarray assay followed by Rank-Rank Hypergeometric Overlap (RRHO) method leads to identify the top 20%-ranked 1,754 genes up- or down-regulated following GC treatment and their altered expressions are reversed by Lpc-EV in HT22 cells. Serial k-means clustering combined with Gene Ontology enrichment analyses indicate that the identified genes can be grouped into multiple functional clusters that contain functional modules of "responses to stress or steroid hormones", "histone modification", and "regulating MAPK signaling pathways". While all the selected genes respond to GC and Lpc-EV at certain levels, the present study focuses on the clusters that contain Mkp-1, Fkbp5, and Mecp2, the genes characterized to respond to GC and Lpc-EV in opposite directions in HT22 cells. A translational study indicates that the expression levels of Mkp-1, Fkbp5, and Mecp2 are changed in the hippocampus of mice exposed to chronic stress in the same directions as those following GC treatment in HT22 cells, whereas Lpc-EV treatment restored stress-induced changes of those factors, and alleviated stress-induced depressive-like behavior. These results suggest that Lpc-EV cargo contains bioactive components that directly induce genome-wide transcriptional responses against GC-induced transcriptional and behavioral changes.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Lee J, Kim EJ, Park GS, Kim J, Kim TE, Lee YJ, Park J, Kang J, Koo JW, Choi TY. Lactobacillus reuteri ATG-F4 Alleviates Chronic Stress-induced Anhedonia by Modulating the Prefrontal Serotonergic System. Exp Neurobiol 2023; 32:313-327. [PMID: 37927130 PMCID: PMC10628864 DOI: 10.5607/en23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Mental health is influenced by the gut-brain axis; for example, gut dysbiosis has been observed in patients with major depressive disorder (MDD). Gut microbial changes by fecal microbiota transplantation or probiotics treatment reportedly modulates depressive symptoms. However, it remains unclear how gut dysbiosis contributes to mental dysfunction, and how correction of the gut microbiota alleviates neuropsychiatric disorders. Our previous study showed that chronic consumption of Lactobacillus reuteri ATG-F4 (F4) induced neurometabolic alterations in healthy mice. Here, we investigated whether F4 exerted therapeutic effects on depressive-like behavior by influencing the central nervous system. Using chronic unpredictable stress (CUS) to induce anhedonia, a key symptom of MDD, we found that chronic F4 consumption alleviated CUS-induced anhedonic behaviors, accompanied by biochemical changes in the gut, serum, and brain. Serum and brain metabolite concentrations involved in tryptophan metabolism were regulated by CUS and F4. F4 consumption reduced the elevated levels of serotonin (5-HT) in the brain observed in the CUS group. Additionally, the increased expression of Htr1a, a subtype of the 5-HT receptor, in the medial prefrontal cortex (mPFC) of stressed mice was restored to levels observed in stress-naïve mice following F4 supplementation. We further demonstrated the role of Htr1a using AAV-shRNA to downregulate Htr1a in the mPFC of CUS mice, effectively reversing CUS-induced anhedonic behavior. Together, our findings suggest F4 as a potential therapeutic approach for relieving some depressive symptoms and highlight the involvement of the tryptophan metabolism in mitigating CUS-induced depressive-like behaviors through the action of this bacterium.
Collapse
Affiliation(s)
- Jiyun Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Eum-Ji Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | | | - Jeongseop Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Eun Kim
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoo Jin Lee
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Juyi Park
- AtoGen Co., Ltd., Daejeon 34015, Korea
| | | | - Ja Wook Koo
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Tae-Yong Choi
- Emotion, Cognition, and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
24
|
Ross K. Psychobiotics: Are they the future intervention for managing depression and anxiety? A literature review. Explore (NY) 2023; 19:669-680. [PMID: 36868988 PMCID: PMC9940471 DOI: 10.1016/j.explore.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Mental health is a public health concern among professional organizations, clinicians, and consumers alike, especially in light of the COVID-19 pandemic. Indeed, the World Health Organization has identified mental health as an epidemic of the 21st century contributing to the global health burden, which highlights the urgency to develop economical, accessible, minimally invasive interventions to effectively manage depression, anxiety, and stress. Nutritional approaches, including the use of probiotics and psychobiotics to manage depression and anxiety, have elicited interest in recent years. This review aimed to summarize evidence from studies including animal models, cell cultures, and human subjects. Overall, the current evidence suggests that 1) Specific strains of probiotics can reduce depressive symptoms and anxiety; 2) Symptoms may be reduced through one or more possible mechanisms of action, including impact on the synthesis of neurotransmitters such as serotonin and GABA, modulation of inflammatory cytokines, or enhancing stress responses through effects on stress hormones and the HPA axis; and 3) While psychobiotics may offer therapeutic benefits to manage depression and anxiety, further research, particularly human studies, is needed to better characterize their mode of action and understand optimal dosing in the context of nutritional interventions.
Collapse
Affiliation(s)
- Kim Ross
- Sonoran University of Health Sciences, 2140 E. Broadway Rd. Tempe, AZ 85282, United States.
| |
Collapse
|
25
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
26
|
Xu L, Zeng X, Liu Y, Wu Z, Zheng X, Zhang X. Effect of Dendrobium officinale polysaccharides on central nervous system disease: Based on gut microbiota. Int J Biol Macromol 2023; 240:124440. [PMID: 37062382 DOI: 10.1016/j.ijbiomac.2023.124440] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Dendrobium officinale has anti-inflammatory effects and is one of the well-known functional foods. Dendrobium officinale polysaccharide (DOP) can reduce intestinal barrier disruption and excessive inflammatory response by regulating intestinal bacterial homeostasis as well as short-chain fatty acid levels. It can also inhibit the activation of astrocytes and microglia, further realizing the protective effect on neuronal apoptosis and apoptosis, thus exerting a significant alleviating effect on neurological diseases. There is now evidence that bidirectional communication between the central nervous system and the gastrointestinal tract may influence human neurology, cognition and behavior via the gut-brain axis. In this review, we review the structural characterization, bioactivity and possible bioactive mechanisms of DOP, so as to elucidate the advantages of DOP's action on CNS diseases, with the aim of providing new perspectives for its drug and functional food development as well as clinical applications.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
27
|
Zou L, Tian Y, Wang Y, Chen D, Lu X, Zeng Z, Chen Z, Lin C, Liang Y. High-cholesterol diet promotes depression- and anxiety-like behaviors in mice by impact gut microbe and neuroinflammation. J Affect Disord 2023; 327:425-438. [PMID: 36738999 DOI: 10.1016/j.jad.2023.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric disorders, including anxiety and depression, are one of the most common mental illnesses worldwide. A growing body of evidence shows that there is a complex relationship between dietary patterns and mental health. In our study, C57BL/6J mice were divided into three groups: control diet group (CON, 10 % kcal fat), high-cholesterol diet model group (HCD, 42.0 % kcal fat + 1.25 % kcal Cholesterol), and chronic restraint stress group (CRS, 10 % kcal fat) which as a positive control group for the depression model. Six weeks later, depressive- and anxiety-like behavior were evaluated for using the OFT, SPT and TST. Glucose intolerance and liver fat were detected by IGTT and liver lipid kit. The expression of peripheral and central inflammation was detected by LEGEND plex kits. 5-HT (also named 5-hydroxytryptamine, 5-HT) and related receptors expression were monitored by ELISA, RT-PCR and Western blot. Meantime, gut microbe of stool samples was performed by 16S rRNA gene sequencing. Similar to CRS model, short-term HCD intervention induced anxiety and depression-like behavior behavioral abnormalities in mice. HCD consumption resulted in significantly increased body weight, liver fat (LDL-C, TC, TG), peripheral inflammation (IL-1β, MCP-1, IL-17A) and neuroinflammation (MCP-1). The concentration of 5-HT increased in the hippocampus, meanwhile, the expression of 5-HT receptor HTR2A was distinct in different regions of the brain tissue. More importantly, we found that compared with the CON diet, HCD induced the decrease of intestinal flora diversity, especially the decrease the relative abundance of Akkermansia_muciniphila, which was statistically significant. Further, Pearson correlation analysis showed that Akkermansia_muciniphila was significantly negatively correlated with the concentration of MCP-1, IL-17A in serum and 5-HT in hippocampus. Therefore, we speculated that the disorder of neuroinflammation induced by HCD consumption promotes depression- and anxiety-like behaviors in mice through the gut microbe.
Collapse
Affiliation(s)
- Lili Zou
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yaling Tian
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Dongliang Chen
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Ze Zeng
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Zumin Chen
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Chenli Lin
- School of Medicine, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China; Health Science Center, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China.
| | - Yinji Liang
- School of Nursing, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China; Health Science Center, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
28
|
Zhu X, Sakamoto S, Ishii C, Smith MD, Ito K, Obayashi M, Unger L, Hasegawa Y, Kurokawa S, Kishimoto T, Li H, Hatano S, Wang TH, Yoshikai Y, Kano SI, Fukuda S, Sanada K, Calabresi PA, Kamiya A. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol 2023; 24:625-636. [PMID: 36941398 DOI: 10.1038/s41590-023-01447-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2023] [Indexed: 03/23/2023]
Abstract
The intestinal immune system interacts with commensal microbiota to maintain gut homeostasis. Furthermore, stress alters the microbiome composition, leading to impaired brain function; yet how the intestinal immune system mediates these effects remains elusive. Here we report that colonic γδ T cells modulate behavioral vulnerability to chronic social stress via dectin-1 signaling. We show that reduction in specific Lactobacillus species, which are involved in T cell differentiation to protect the host immune system, contributes to stress-induced social-avoidance behavior, consistent with our observations in patients with depression. Stress-susceptible behaviors derive from increased differentiation in colonic interleukin (IL)-17-producing γδ T cells (γδ17 T cells) and their meningeal accumulation. These stress-susceptible cellular and behavioral phenotypes are causally mediated by dectin-1, an innate immune receptor expressed in γδ T cells. Our results highlight the previously unrecognized role of intestinal γδ17 T cells in the modulation of psychological stress responses and the importance of dectin-1 as a potential therapeutic target for the treatment of stress-induced behaviors.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Unger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Hui Li
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
| | - Shinya Hatano
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tza-Huei Wang
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yasunobu Yoshikai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- Laboratory for Regenerative Microbiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Li C, Su Z, Chen Z, Cao J, Liu X, Xu F. Lactobacillus reuteri strain 8008 attenuated the aggravation of depressive-like behavior induced by CUMS in high-fat diet-fed mice through regulating the gut microbiota. Front Pharmacol 2023; 14:1149185. [PMID: 37050901 PMCID: PMC10083334 DOI: 10.3389/fphar.2023.1149185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Objective: Gut microbiota play a key role in the pathogenesis of obesity and depression. Probiotics are a preventive strategy for obesity and a novel treatment for depression symptoms. However, the ameliorative or therapeutic effect of potential probiotic candidate Lactobacillus reuteri (L. reuteri) on obesity and depression comorbidity still remains unclear. We investigated the effects of chronic unpredictable mild stress (CUMS) in high-fat diet-fed mice and the effects of Lactobacillus reuteri strain 8008 on various disease indicators of obesity and depression comorbidity disease. Methods: Forty male C57BL/6 mice were randomized into 2 groups: the normal control (NC) group (n = 10) and the high-fat diet (HFD) group (n = 30), being fed with normal diet (ND) or high-fat diet (HFD) for 8 weeks, respectively. Then the obese mice fed with HFD were randomly allocated into 3 sub-groups: the HFD group (n = 10); the HFD + CUMS group (n = 10); the HFD + CUMS + L.r group (n = 10). The latter 2 subgroups underwent CUMS for 4 weeks to build the obesity and depression comorbidity mice model. During the duration of treatment, mice were gavaged with 0.5 mL PBS solution or L. reuteri (2 × 109 CFU/mL) once a day, respectively. The body weight, food intake, organ weight, behavioral indicators, histology, blood lipids, levels of inflammatory cytokines and tight junction proteins and abundance of colonic contents bacteria were measured. Results: The obesity and depression comorbidity mice model was successfully established after HFD feeding and chronic stress. The comorbid mice demonstrated inflammatory responses increase in liver and adipose tissues, worsened damage to the intestinal barrier as well as gut microbiota disorder. Gavaged with L. reuteri attenuated depressive-like behavior, improved blood lipids and insulin resistance, reduced inflammation in liver and adipose tissues, improved intestinal tight junctions as well as the microbiome dysbiosis in obesity and depression comorbidity mice. Conclusion: Lactobacillus reuteri strain 8008 could alleviate depressive-like behaviors and related indicators of obesity disorders by regulating the gut microbiota in obesity and depression comorbid mice.
Collapse
Affiliation(s)
- Canye Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zuanjun Su
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Xiufeng Liu
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats. J Affect Disord 2023; 325:141-150. [PMID: 36610597 DOI: 10.1016/j.jad.2022.12.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The anti-depressant effect of berberine (BBR) has been widely reported. However, the underlying mechanism remains unclear. The microbiota-gut-brain (MGB) axis plays a key role in the pathogenesis of depression. Therefore, we aimed to explore the anti-depressant mechanisms of BBR involving the association of the gut microbiota, neurotransmitters, BDNF, and SCFAs in chronic unpredictable mild stress (CUMS)-induced depressive rats. METHODS The antidepressant effects of BBR were detected by open-field test, 1 % sucrose preference test and body weight test in CUMS-induced depressive rats. 16S rDNA sequencing was performed to identify the change of gut microbiota. The concentrations of fecal SCFAs were analyzed by GC-MS targeted metabolomics. At the same time, neurotransmitters and BDNF expression were measured by enzyme linked immunosorbent assay (ELISA). RESULTS BBR improved depression-like behaviors in CUMS rats by increasing the expression of serotonin (5-HT), norepinephrine (NE), dopamine (DA), and BDNF in the hippocampus. BBR regulates Firmicutes, Bacteroidetes, and Lachnospiraceae in depressive rats, resulting in the alteration of the synthesis and metabolism of SCFAs, including acetic, propanoic, and isovaleric acids. LIMITATIONS Direct evidence that BBR improves depressive behaviors via gut microbiota-SCFAs-brain axis is lacking, and only male rats were investigated in the present study. CONCLUSION The anti-depressant mechanism of BBR is related to the regulation of the MGB axis via modulating the gut microbiota-SCFAs-monoamine neurotransmitters/BDNF.
Collapse
|
31
|
Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J Neuroinflammation 2023; 20:23. [PMID: 36737776 PMCID: PMC9896737 DOI: 10.1186/s12974-023-02693-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.
Collapse
Affiliation(s)
- Junxing Ma
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Ran Wang
- grid.22935.3f0000 0004 0530 8290Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Yaoxing Chen
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zixu Wang
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yulan Dong
- grid.22935.3f0000 0004 0530 8290National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Kim IB, Park SC, Kim YK. Microbiota-Gut-Brain Axis in Major Depression: A New Therapeutic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:209-224. [PMID: 36949312 DOI: 10.1007/978-981-19-7376-5_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Major depression is impacted by the disruption of gut microbiota. Defects in gut microbiota can lead to microbiota-gut-brain axis dysfunction and increased vulnerability to major depression. While traditional chemotherapeutic approaches, such as antidepressant use, produce an overall partial therapeutic effect on depression, the gut microbiome has emerged as an effective target for better therapeutic outcomes. Recent representative studies on the microbiota hypothesis to explore the association between gut pathophysiology and major depression have indicated that restoring gut microbiota and microbiota-gut-brain axis could alleviate depression. We reviewed studies that supported the gut microbiota hypothesis to better understand the pathophysiology of depression; we also explored reports suggesting that gut microbiota restoration is an effective approach for improving depression. These findings indicate that gut microbiota and microbiota-gut-brain axis are appropriate new therapeutic targets for major depression.
Collapse
Affiliation(s)
- Il Bin Kim
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seon-Cheol Park
- Department of Psychiatry, Hanyang University Guri Hospital, Guri, Republic of Korea.
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, Republic of Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
33
|
Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 2022; 24:ijms24010142. [PMID: 36613586 PMCID: PMC9820606 DOI: 10.3390/ijms24010142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This review article is built on the beneficial effects of Lactobacillus against different diseases, and a special focus has been made on its effects against neurological disorders, such as depression, multiple sclerosis, Alzheimer's, and Parkinson's disease. Probiotics are live microbes, which are found in fermented foods, beverages, and cultured milk and, when administered in an adequate dose, confer health benefits to the host. They are known as "health-friendly bacteria", normally residing in the human gut and involved in maintaining homeostatic conditions. Imbalance in gut microbiota results in the pathophysiology of several diseases entailing the GIT tract, skin, immune system, inflammation, and gut-brain axis. Recently, the use of probiotics has gained tremendous interest, because of their profound effects on the management of these disease conditions. Recent findings suggest that probiotics enrichment in different human and mouse disease models showed promising beneficial effects and results in the amelioration of disease symptoms. Thus, this review focuses on the current probiotics-based products, different disease models, variable markers measured during trials, and evidence obtained from past studies on the use of probiotics in the prevention and treatment of different diseases, covering the skin to the central nervous system diseases.
Collapse
|
34
|
Wu T, Liu R, Zhang L, Rifky M, Sui W, Zhu Q, Zhang J, Yin J, Zhang M. Dietary intervention in depression - a review. Food Funct 2022; 13:12475-12486. [PMID: 36408608 DOI: 10.1039/d2fo02795j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a mental illness that affects the normal lives of over 300 million people. Unfortunately, about 30% to 40% of patients do not adequately respond to pharmacotherapy and other therapies. This review focuses on exploring the relationship between dietary nutrition and depression, aiming to find safer and efficient ingredients to alleviate depression. Diet can affect depression in numerous ways. These pathways include the regulation of tryptophan metabolism, inflammation, hypothalamic-pituitary-adrenal (HPA) axis, microbe-gut-brain axis, brain-derived neurotrophic factor (BDNF) and epigenetics. Furthermore, probiotics, micronutrients, and other active substances exhibit significant antidepressant effects by regulating the above pathways. These provide insights for developing antidepressant foods.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ling Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Mohamed Rifky
- Eastern University of Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60100, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China. .,Tianjin Agricultural University, and China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
35
|
Gao K, Chen CL, Ke XQ, Yu YX, Chen S, Liu GC, Wang HF, Li YJ. Ingestion of Lactobacillus helveticus WHH1889 improves depressive and anxiety symptoms induced by chronic unpredictable mild stress in mice. Benef Microbes 2022; 13:473-488. [PMID: 36377577 DOI: 10.3920/bm2022.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging evidence indicates that the alterations in the gut microbiota-brain axis (GBA), which is the bilateral connection between the gut microbial communities and brain function, are involved in several mental illnesses, including depression. Certain probiotic strains have been revealed to improve depressive behaviours and the dysregulation of 5-hydroxytryptamine (5-HT) metabolism in depression. Here we evaluated the potential antidepressant effects of Lactobacillus helveticus strains using an in vitro enterochromaffin cell model (RIN14B). The L. helveticus strain WHH1889 was shown to significantly promote the level of 5-hydroxytryptamine (5-HTP, 5-HT precursor) and the gene expression of tryptophan hydroxylase 1 (Tph1), which is the key synthetase in the 5-HT biosynthesis in RIN14B cells. Ingestion of 0.2 ml WHH1889 (1´109 cfu/ml) in a chronic unpredictable mild stress (CUMS) mouse model of depression for five weeks normalised depressive and anxiety-like behaviours in the forced swim test, tail suspension test, sucrose preference test, and open field test. Meanwhile, the CUMS-induced elevated level of serum corticosterone and declined levels of hippocampal 5-HT and 5-HTP were reversed by WHH1889. Furthermore, the disturbances of the gut microbiome composition with reduced microbial diversity were also improved by WHH1889, accompanied by the increased colonic 5-HTP level and Tph1 gene expression. In summary, these findings indicate that WHH1889 exerts antidepressant-like effects on CUMS mice, which is associated with the modulations of the 5-HT/5-HTP metabolism and gut microbiome composition. Therefore, ingestion of the L. helveticus strain WHH1889 with antidepressant potentials may become an encouraging therapeutic option in the treatment of depression.
Collapse
Affiliation(s)
- K Gao
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R.,College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China P.R
| | - C-L Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - X-Q Ke
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - Y-X Yu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - S Chen
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - G-C Liu
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R
| | - H-F Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China P.R
| | - Y-J Li
- Key Laboratory of Food And Biological Engineering of Zhejiang Province, Hangzhou 310018, China P.R.,Research and Development Department, Hangzhou Wahaha Group Co., Ltd, Hangzhou 310018, China P.R.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China P.R
| |
Collapse
|
36
|
Abstract
Antibiotics are recognised as, on occasion, producing psychiatric side effects, most notably depression and anxiety. Apart from antimicrobial activity, antibiotics have multiple off-target effects. The brain-gut-microbiota axis has multiple sites for off-target activity, which may produce either positive or negative antibiotic effects. Here we review how antibiotics impact mental health by acting through the brain-gut-microbiota axis. Microbes in the gut influence brain function by acting through the vagus nerve or by altering the production of short-chain fatty acids or the amino acid tryptophan, the building block of serotonin. Not all antimicrobial actions of antibiotics have a negative impact. The first antidepressant discovered was actually an antibiotic: isoniazid is an antibacterial drug developed for treating tuberculosis. Minocycline, which enters the brain and mediates its effects through microglia, shows antidepressant activity. Some antibiotics bring about a significant decrease in gut microbial diversity, and this is viewed as a risk factor for depression. Other risk factors induced by antibiotics include altered gut barrier function, activation of the hypothalamic-pituitary-adrenal axis, reducing levels of brain-derived neurotrophic factor or oxytocin and alteration of vagal tone. Although most patients taking antibiotics do not suffer from an iatrogenic psychiatric disorder, some do. As clinicians, we need to keep this in mind. The development of new antibiotics is primarily focused on antibiotic resistance, but efforts should be made to reduce off-target brain-gut-microbiota effects resulting in mental health problems.
Collapse
Affiliation(s)
| | - Timothy Dinan
- Department of Psychiatry and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Ma C, Yuan D, Renaud SJ, Zhou T, Yang F, Liou Y, Qiu X, Zhou L, Guo Y. Chaihu-shugan-san alleviates depression-like behavior in mice exposed to chronic unpredictable stress by altering the gut microbiota and levels of the bile acids hyocholic acid and 7-ketoDCA. Front Pharmacol 2022; 13:1040591. [PMID: 36339629 PMCID: PMC9627339 DOI: 10.3389/fphar.2022.1040591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Chaihu-Shugan-San (CSS) is a traditional botanical drug formula often prescribed to treat depression in oriental countries, but its pharmacotherapeutic mechanism remains unknown. It was recently reported that CSS alters the composition of intestinal microflora and related metabolites such as bile acids (BAs). Since the intestinal microflora affects physiological functions of the brain through the gut-microbiota-brain axis, herein we investigated whether CSS altered BA levels, gut microflora, and depression-like symptoms in chronic unpredictable mild stress (CUMS) mice, a well-established mouse model of depression. Furthermore, we determined whether BA manipulation and fecal microbiota transplantation altered CSS antidepressant actions. We found that the BA chelator cholestyramine impaired the antidepressant effects of CSS, which was partially rescued by dietary cholic acid. CSS increased the relative abundance of Parabacteroides distasonis in the colon of CUMS mice, and increased serum levels of various BAs including hyocholic acid (HCA) and 7-ketodeoxycholic acid (7-ketoDCA). Furthermore, gut bacteria transplantation from CSS-treated mice into untreated or cholestyramine-treated CUMS mice restored serum levels of HCA and 7-ketoDCA, alleviating depression-like symptoms. In the hippocampus, CSS-treated mice had decreased expression of genes associated with BA transport (Bsep and Fxr) and increased expression of brain-derived neurotrophic factor and its receptor, TrkB. Overall, CSS increases intestinal P. distasonis abundance, leading to elevated levels of secondary BAs in the circulation and altered expression of hippocampal genes implicated in BA transport and neurotrophic signaling. Our data strongly suggest that the gut microbiota-brain axis contributes to the potent antidepressant action of CSS by modulating BA metabolism.
Collapse
Affiliation(s)
- Chong Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Ting Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuligh Liou
- China Xiangya Medical Laboratory, Central South University, Changsha, China
| | - Xinjian Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Chelliah R, Park SJ, Oh S, Lee E, Daliri EBM, Elahi F, Park CR, Sultan G, Madar IH, Oh DH. Unveiling the potentials of bioactive oligosaccharide1-kestose (GF2) from Musa paradisiaca Linn peel with an anxiolytic effect based on gut microbiota modulation in stressed mice model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Chelliah R, Park SJ, Oh S, Lee E, Daliri EBM, Elahi F, Park CR, Sultan G, Madar IH, Oh DH. Unveiling the potentials of bioactive oligosaccharide1-kestose (GF2) from Musa paradisiaca Linn peel with an anxiolytic effect based on gut microbiota modulation in stressed mice model. FOOD BIOSCI 2022; 49:101881. [DOI: https:/doi.10.1016/j.fbio.2022.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
40
|
Lukić I, Ivković S, Mitić M, Adžić M. Tryptophan metabolites in depression: Modulation by gut microbiota. Front Behav Neurosci 2022; 16:987697. [PMID: 36172468 PMCID: PMC9510596 DOI: 10.3389/fnbeh.2022.987697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical depression is a multifactorial disorder and one of the leading causes of disability worldwide. The alterations in tryptophan metabolism such as changes in the levels of serotonin, kynurenine, and kynurenine acid have been implicated in the etiology of depression for more than 50 years. In recent years, accumulated evidence has revealed that gut microbial communities, besides being essential players in various aspects of host physiology and brain functioning are also implicated in the etiology of depression, particularly through modulation of tryptophan metabolism. Therefore, the aim of this review is to summarize the evidence of the role of gut bacteria in disturbed tryptophan metabolism in depression. We summed up the effects of microbiota on serotonin, kynurenine, and indole pathway of tryptophan conversion relevant for understanding the pathogenesis of depressive behavior. Moreover, we reviewed data regarding the therapeutic effects of probiotics, particularly through the regulation of tryptophan metabolites. Taken together, these findings can open new possibilities for further improvement of treatments for depression based on the microbiota-mediated modulation of the tryptophan pathway.
Collapse
|
41
|
Pu Y, He Y, Zhao X, Zhang Q, Wen J, Hashimoto K, Liu Y. Depression-like behaviors in mouse model of Sjögren's syndrome: A role of gut-microbiota-brain axis. Pharmacol Biochem Behav 2022; 219:173448. [PMID: 35981685 DOI: 10.1016/j.pbb.2022.173448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Depression is a common psychiatric symptom in patients with Sjögren's syndrome (SS). Prevalence of depression in SS patients is significantly higher than that in the general population. Increasing evidence suggests a crucial role of gut-microbiota-brain axis in depression. In this study, we investigated whether non-obese diabetic (NOD) mice, a widely used animal model of SS, exhibit depression-like phenotypes and abnormal composition of gut microbiota. Eleven-week-old NOD mice spontaneously exhibited SS-related symptoms without pancreatic destruction. NOD mice displayed depression-like behaviors, decreased expression of synaptic proteins in the prefrontal cortex (PFC), and abnormal composition of gut microbiota. Interestingly, SS-related proinflammatory factors in the submandibular gland (SMG) and autoantibodies (anti-SSA and anti-SSB) in the plasma were correlated with the expression of synaptic proteins in the PFC or depression-like behaviors. In addition, there were correlations between the relative abundance of microbiota and SS-related symptoms (or depression-related phenotypes). These data suggest that SS-related symptoms and abnormal composition of gut microbiota may play a role in depression-like phenotypes in NOD mice through gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Yaoyu Pu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang He
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Xueting Zhao
- Department of Rheumatology and Immunology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
42
|
Kumar Palepu MS, Dandekar MP. Remodeling of microbiota gut-brain axis using psychobiotics in depression. Eur J Pharmacol 2022; 931:175171. [PMID: 35926568 DOI: 10.1016/j.ejphar.2022.175171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Depression is a multifaceted psychiatric disorder mainly orchestrated by dysfunction of neuroendocrine, neurochemical, immune, and metabolic systems. The interconnection of gut microbiota perturbation with the central nervous system disorders has been well documented in recent times. Indeed, alteration of commensal intestinal microflora is noted in several psychiatric disorders such as anxiety and depression, which are presumed to be routed through the enteric nervous system, autonomic nervous system, endocrine, and immune system. This review summarises the new mechanisms underlying the crosstalk between gut microbiota and brain involved in the management of depression. Depression-induced changes in the commensal intestinal microbiota are majorly linked with the disruption of gut integrity, hyperinflammation, and modulation of short-chain fatty acids, neurotransmitters, kynurenine metabolites, endocannabinoids, brain-derived neurotropic factors, hypothalamic-pituitary-adrenal axis, and gut peptides. The restoration of gut microbiota with prebiotics, probiotics, postbiotics, synbiotics, and fermented foods (psychobiotics) has gained a considerable attention for the management of depression. Recent evidence also propose the role of gut microbiota in the process of treatment-resistant depression. Thus, remodeling of the microbiota-gut-brain axis using psychobiotics appears to be a promising therapeutic approach for the reversal of psychiatric disorders, and it is imperative to decipher the underlying mechanisms for gut-brain crosstalk.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
43
|
Liu J, Liu C, Gao Z, Zhou L, Gao J, Luo Y, Liu T, Fan X. GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Front Cell Infect Microbiol 2022; 12:911259. [PMID: 35811667 PMCID: PMC9257030 DOI: 10.3389/fcimb.2022.911259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is considered a heterogeneous neurodevelopmental disorder characterized by significant social, communication, and behavioral impairments. The gut microbiota is increasingly considered a promising therapeutic target in ASD. Farnesoid X receptor (FXR) has recently been shown to modulate the gut microbiota. We hypothesized that FXR agonist GW4064 could ameliorate behavioral deficits in an animal model for autism: BTBR T+Itpr3tf/J (BTBR) mouse. As expected, administration of GW4064 rescued the sociability of BTBR mice in the three-chamber sociability test and male-female social reciprocal interaction test, while no effects were observed in C57BL/6J mice. We also found that GW4064 administration increased fecal microbial abundance and counteracted the common ASD phenotype of a high Firmicutes to Bacteroidetes ratio in BTBR mice. In addition, GW4064 administration reversed elevated Lactobacillus and decreased Allobaculum content in the fecal matter of BTBR animals. Our findings show that GW4064 administration alleviates social deficits in BTBR mice and modulates selective aspects of the composition of the gut microbiota, suggesting that GW4064 supplementation might prove a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
44
|
Tan J, Li X, Zhu Y, Sullivan MA, Deng B, Zhai X, Lu Y. Antidepressant Shugan Jieyu Capsule Alters Gut Microbiota and Intestinal Microbiome Function in Rats With Chronic Unpredictable Mild Stress -Induced Depression. Front Pharmacol 2022; 13:828595. [PMID: 35770090 PMCID: PMC9234866 DOI: 10.3389/fphar.2022.828595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Shugan Jieyu Capsule (SG) has been widely used in China to treat mild to moderate depression. Hypericum perforatum L. (St John’s Wort, SJW) is the main ingredient of SG and has been used as herbal medicine to treat depression in western countries. However, it is known that SJW has low bioavailability and does not easily get through the blood-brain barrier. Therefore, how SG plays an antidepressant effect in the central nervous system (CNS) remains an urgent problem to be solved. Mounting research has described the relationship between antidepressants and intestinal microbiota to illuminate antidepressive mechanisms in the CNS. We aimed to investigate the effects of therapy with SG on the function of gut microbiota and intestinal microbiota in rats with chronic unpredictable mild stress (CUMS)-induced depression. The psychophysiological state and the hypothalamic-pituitary-adrenal axis function of rats are evaluated through behavioral experiments, corticosterone levels, serotonin levels, and adrenal index measurements. 16S rDNA amplicon sequencing is used to test the changes in gut microbiota and make functional predictions of genes. With treatment of SG, the depression-like behaviors of CUMS-induced rats were reversed; the corticosterone levels and the adrenal index decreased significantly; the level of serotonin increased significantly; and the alpha and beta diversity analysis of microbiota showed an increase in the richness and uniformity of the flora were increased. SG regulated the relative abundance of Actinobacteria, Erysipelotrichaceae, Bifidobacteriaceae, Atopobiaceae, Dubosiella, and Bifidobacterium; Linear discriminant analysis effect size analysis demonstrated that Lactobacillaceae (family level), Lactobacillus (genus level), Lactobacillales (order level), Bacilli (class level), and Lactobacillus-reuteri (species level) were biomarkers in the SG group samples, and also likely to modulate metabolic pathways, such as those involved in carbohydrate metabolism, amino acid metabolism, and signal transduction. These data clearly illustrated the effect of SG on gut microbiome, thus laying the foundation for uncovering more insights on the therapeutic function of the traditional Chinese antidepressants. The potential of SG on mechanisms of antidepression to alter gut microbiota and intestinal microbiome function exposed to CUMS can be explored.
Collapse
Affiliation(s)
- Jingxuan Tan
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixuan Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute- University of Queensland, The Translational Research Institute, Brisbane, QLD, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
- *Correspondence: Xuejia Zhai, ; Yongning Lu,
| | - Yongning Lu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Centre of Precision Drug Use for Major Diseases, Wuhan, China
- *Correspondence: Xuejia Zhai, ; Yongning Lu,
| |
Collapse
|
45
|
Resilience and the Gut Microbiome: Insights from Chronically Socially Stressed Wild-Type Mice. Microorganisms 2022; 10:microorganisms10061077. [PMID: 35744594 PMCID: PMC9231072 DOI: 10.3390/microorganisms10061077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The microbiome is an important player within physiological homeostasis of the body but also in pathophysiological derailments. Chronic social stress is a challenge to the organism, which results in psychological illnesses such as depression in some individuals and can be counterbalanced by others, namely resilient individuals. In this study, we wanted to elucidate the potential contribution of the microbiome to promote resilience. Male mice were subjected to the classical chronic social defeat paradigm. Defeated or undefeated mice were either controls (receiving normal drinking water) or pre-treated with antibiotics or probiotics. Following social defeat, resilient behavior was assessed by means of the social interaction test. Neither depletion nor probiotic-shifted alteration of the microbiome influenced stress-associated behavioral outcomes. Nevertheless, clear changes in microbiota composition due to the defeat stress were observed such as elevated Bacteroides spp. This stress-induced increase in Bacteroides in male mice could be confirmed in a related social stress paradigm (instable social hierarchy) in females. This indicates that while manipulation of the microbiome via the antibiotics- and probiotics-treatment regime used here has no direct impact on modulating individual stress susceptibility in rodents, it clearly affects the microbiome in the second line and in a sex-independent manner regarding Bacteroides.
Collapse
|
46
|
Shimada K, Nohara M, Yasuoka A, Kamei A, Shinozaki F, Kondo K, Inoue R, Kondo T, Abe K. Mouse Model of Weak Depression Exhibiting Suppressed cAMP Signaling in the Amygdala, Lower Lipid Catabolism in Liver, and Correlated Gut Microbiota. Front Behav Neurosci 2022; 16:841450. [PMID: 35928791 PMCID: PMC9345170 DOI: 10.3389/fnbeh.2022.841450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
To establish a mouse model of weak depression, we raised 6-week-old C57BL/6N mice in single (SH) or group housing (GH) conditions for 2 weeks. The SH group showed less social interaction with stranger mice, learning disability in behavioral tests, and lower plasma corticosterone levels. The cecal microbiota of the SH group showed significant segregation from the GH group in the principal coordinate analysis (PCoA). Transcriptome analysis of the amygdala and liver detected multiple differentially expressed genes (DEGs). In the amygdala of SH mice, suppression of the cyclic adenine monophosphate (cAMP) signal was predicted and confirmed by the reduced immunoreactivity of phosphorylated cAMP-responsive element-binding protein. In the liver of SH mice, downregulation of beta-oxidation was predicted. Interestingly, the expression levels of over 100 DEGs showed a significant correlation with the occupancy of two bacterial genera, Lactobacillus (Lactobacillaceae) and Anaerostipes (Lachnospiraceae). These bacteria-correlated DEGs included JunB, the downstream component of cAMP signaling in the amygdala, and carnitine palmitoyltransferase 1A (Cpt1a), a key enzyme of beta-oxidation in the liver. This trans-omical analysis also suggested that nicotinamide adenine dinucleotide (NAD) synthesis in the liver may be linked to the occupancy of Lactobacillus through the regulation of nicotinamide phosphoribosyltransferase (NAMPT) and kynureninase (KYNU) genes. Our results suggested that SH condition along with the presence of correlated bacteria species causes weak depression phenotype in young mice and provides a suitable model to study food ingredient that is able to cure weak depression.
Collapse
Affiliation(s)
- Kousuke Shimada
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Masakatsu Nohara
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Akihito Yasuoka
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Akihito Yasuoka,
| | - Asuka Kamei
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Fumika Shinozaki
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Kaori Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Division of Disease Systems Biology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | - Takashi Kondo
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Division of Disease Systems Biology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Takashi Kondo,
| | - Keiko Abe
- Group for Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Pharmacological treatment of major depressive disorder according to severity in psychiatric inpatients: results from the AMSP pharmacovigilance program from 2001-2017. J Neural Transm (Vienna) 2022; 129:925-944. [PMID: 35524828 PMCID: PMC9217868 DOI: 10.1007/s00702-022-02504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022]
Abstract
The International Classification of Diseases (10th Version) categorizes major depressive disorder (MDD) according to severity. Guidelines provide recommendations for the treatment of MDD according to severity. Aim of this study was to assess real-life utilization of psychotropic drugs based on severity of MDD in psychiatric inpatients. Drug utilization data from the program “Drug Safety in Psychiatry” (German: Arzneimittelsicherheit in der Psychiatrie, AMSP) were analyzed according to the severity of MDD. From 2001 to 2017, 43,868 psychiatric inpatients with MDD were treated in participating hospitals. Most patients were treated with ≥ 1 antidepressant drug (ADD; 85.8% of patients with moderate MDD, 89.8% of patients with severe MDD, and 87.9% of patients with psychotic MDD). More severely depressed patients were more often treated with selective serotonin–norepinephrine reuptake inhibitors and mirtazapine and less often with selective serotonin reuptake inhibitors (p < 0.001 each). Use of antipsychotic drugs (APDs), especially second-generation APDs, increased significantly with severity (37.0%, 47.9%, 84.1%; p < 0.001 each). APD + ADD was the most used combination (32.8%, 43.6%, 74.4%), followed by two ADDs (26.3%, 29.3%, 24.9%). Use of lithium was minimal (3.3%, 6.1% ,7.1%). The number of psychotropic drugs increased with severity of MDD—patients with psychotic MDD had the highest utilization of psychotropic drugs (93.4%, 96.5%, 98.7%; p < 0.001). ADD monotherapy was observed to a lesser extent, even in patients with non-severe MDD (23.2%, 17.1%, 4.4%). Findings reveal substantial discrepancies between guideline recommendations and real-life drug utilization, indicating that guidelines may insufficiently consider clinical needs within the psychiatric inpatient setting.
Collapse
|
48
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
49
|
Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Res Rev 2022; 75:101556. [PMID: 34990844 DOI: 10.1016/j.arr.2021.101556] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for more than 50 million patients worldwide. Current evidence suggests the exact mechanism behind this devastating disease to be of multifactorial origin, which seriously complicates the quest for an effective disease-modifying therapy, as well as impedes the search for strategic preventative measures. Of interest, preclinical studies point to serotonergic alterations, either induced via selective serotonin reuptake inhibitors or serotonin receptor (ant)agonists, in mitigating AD brain neuropathology next to its clinical symptoms, the latter being supported by a handful of human intervention trials. Additionally, a substantial amount of preclinical trials highlight the potential of diet, fecal microbiota transplantations, as well as pre- and probiotics in modulating the brain's serotonergic neurotransmitter system, starting from the gut. Whether such interventions could truly prevent, reverse or slow down AD progression likewise, should be initially tested in preclinical studies with AD mouse models, including sufficient analytical measurements both in gut and brain. Thereafter, its potential therapeutic effect could be confirmed in rigorously randomized controlled trials in humans, preferentially across the Alzheimer's continuum, but especially from the prodromal up to the mild stages, where both high adherence to such therapies, as well as sufficient room for noticeable enhancement are feasible still. In the end, such studies might aid in the development of a comprehensive approach to tackle this complex multifactorial disease, since serotonin and its derivatives across the microbiota-gut-brain axis might serve as possible biomarkers of disease progression, next to forming a valuable target in AD drug development. In this narrative review, the available evidence concerning the orchestrating role of serotonin within the microbiota-gut-brain axis in the development of AD is summarized and discussed, and general considerations for future studies are highlighted.
Collapse
Affiliation(s)
- Emma Aaldijk
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands; Faculty of Medicine & Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
50
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|