1
|
Yang H, Wang Y, Liu S, Zhang S, Chen Y, Ding J, Chen S, Zhu F, Xia B, Luo P, Liu Y. Polysaccharide alleviates neurodegeneration and behavioral deficit by enhancing mitochondrial autophagy in chronic methamphetamine mice. Neurotoxicology 2025; 107:53-61. [PMID: 39954861 DOI: 10.1016/j.neuro.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Methamphetamine (METH) is a psychostimulant drug widely abused because of its addictive properties.Its impact on the central nervous system is a major area of interest due to its unique ability to cross the blood-brain barrier, facilitated by its dual water and lipid solubility. Studies have indicated that oxidative stress, neuroinflammation, neuronal apoptosis, and mitochondrial dysfunction are primary mechanisms of METH-induced neurotoxicity. Mitophagy, a process regulated by the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induced kinase 1 (PINK1)/Parkin signaling pathway, has emerged as a critical mechanism for preserving mitochondrial function. Polysaccharides derived from bamboo fungus have shown potential in mitigating neurotoxicity. However, the role of these polysaccharides in ameliorating methamphetamine-induced neurotoxicity remains unclear. This study aimed to investigate whether polysaccharides could alleviate neurodegeneration in a chronic METH mice model and elucidate the underlying mechanisms and elucidate the mechanisms underlying METH-induced neuronal damage.
Collapse
Affiliation(s)
- Han Yang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Shan Liu
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province 550008, China
| | - Shan Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Yuemeng Chen
- Guiyang City Public Security Bureau Drug Testing Center, Guiyang, Guizhou Province 550008, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Shunqin Chen
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Faze Zhu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China.
| | - Peng Luo
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou Province 550025, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou Province 550001, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
2
|
Farrokhi AM, Moshrefi F, Eskandari K, Azizbeigi R, Haghparast A. Hippocampal D1-like dopamine receptor as a novel target for the effect of cannabidiol on extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111025. [PMID: 38729234 DOI: 10.1016/j.pnpbp.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine (METH) is a major health problem without effective pharmacological treatment. Cannabidiol (CBD), a component of the Cannabis sativa plant, is believed to have the potential to inhibit drug-related behavior. However, the neurobiological mechanisms responsible for the effects of CBD remain unclear. Several studies have proposed that the suppressing effects of CBD on drug-seeking behaviors could be through the modulation of the dopamine system. The hippocampus (HIP) D1-like dopamine receptor (D1R) is essential for forming and retrieving drug-associated memory. Therefore, the present study aimed to investigate the role of D1R in the hippocampal CA1 region on the effects of CBD on the extinction and reinstatement of METH-conditioned place preference (CPP). For this purpose, different groups of rats over a 10-day extinction period were administered different doses of intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl, Saline) as a D1R antagonist before ICV injection of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals received intra-CA1 SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD injection (50 μg/5 μl) on the reinstatement day. The results revealed that the highest dose of SCH23390 (4 μg) significantly reduced the accelerating effects of CBD on the extinction of METH-CPP (P < 0.01). Furthermore, SCH23390 (1 and 4 μg) in the reinstatement phase notably reversed the preventive effects of CBD on the reinstatement of drug-seeking behavior (P < 0.05 and P < 0.001, respectively). In conclusion, the current study revealed that CBD made a shorter extinction period and suppressed METH reinstatement in part by interacting with D1-like dopamine receptors in the CA1 area of HIP.
Collapse
Affiliation(s)
- Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Fatahi N, Jafari-Sabet M, Vahabzadeh G, Komaki A. Role of hippocampal and prefrontal cortical cholinergic transmission in combination therapy valproate and cannabidiol in memory consolidation in rats: involvement of CREB- BDNF signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5029-5047. [PMID: 38189934 DOI: 10.1007/s00210-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Cognitive disorders are associated with valproate and drugs used to treat neuropsychological diseases. Cannabidiol (CBD) has beneficial effects on cognitive function. This study examined the effects of co-administration of CBD and valproate on memory consolidation, cholinergic transmission, and cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway in the prefrontal cortex (PFC) and hippocampus (HPC). METHODS One-trial, step-through inhibitory test was used to evaluate memory consolidation in rats. The intra-CA1 injection of physostigmine and atropine was performed to assess the role of cholinergic transmission in this co-administration. Phosphorylated CREB (p-CREB)/CREB ratio and BDNF levels in the PFC and HPC were evaluated. RESULTS Post-training intraperitoneal (i.p.) valproate injection reduced memory consolidation; however, post-training co-administration of CBD with valproate ameliorated memory impairment induced by valproate. Post-training intra-CA1 injection of physostigmine at the ineffective doses in memory consolidation (0.5 and 1 µg/rat), plus injection of 10 mg/kg of CBD as an ineffective dose, improved memory loss induced by valproate, which was associated with BDNF and p-CREB level enhancement in the PFC and HPC. Conversely, post-training intra-CA1 injection of ineffective doses of atropine (1 and 2 µg/rat) reduced the positive effects of injection of CBD at a dose of 20 mg/kg on valproate-induced memory loss associated with BDNF and p-CREB level reduction in the PFC and HPC. CONCLUSION The results indicated a beneficial interplay between valproate and CBD in the process of memory consolidation, which probably creates this interaction through the BDNF-CREB signaling pathways in the cholinergic transmission of the PFC and HPC regions.
Collapse
Affiliation(s)
- Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Mirmohammadi M, Eskandari K, Koruji M, Shabani R, Ahadi R, Haghparast A. Intra-Accumbal D1- But not D2-Like Dopamine Receptor Antagonism Reverses the Inhibitory Effects of Cannabidiol on Extinction and Reinstatement of Methamphetamine Seeking Behavior in Rats. Cannabis Cannabinoid Res 2024; 9:89-110. [PMID: 36048545 DOI: 10.1089/can.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Methamphetamine (METH) is an addictive psychostimulant that facilitates dopamine transmission to the nucleus accumbens (NAc), resulting in alterations in the mesocorticolimbic brain regions. Cannabidiol (CBD) is considered the second most abundant component of cannabis and is believed to decrease the METH effects. Reversing psychostimulant-induced abnormalities in the mesolimbic dopamine system is the main mechanism for this effect. Various other mechanisms have been proposed: increasing endocannabinoid system activity and modulating gamma-aminobutyric acid (GABA) and glutamate neurons in NAc. However, the exact CBD action mechanisms in reducing drug addiction and relapse vulnerability remain unclear. Methods and Results: The present study aimed to investigate the effects of intracerebroventricular (ICV) administrating 5, 10, and 50 μg/5 μL CBD solutions on the extinction period and reinstatement phase of a METH-induced conditioned place preference. This research also aimed to examine the NAc D1-like dopamine receptor (D1R) and D2-like dopamine receptor (D2R) roles in the effects of CBD on these phases, as mentioned earlier, using SCH23390 and sulpiride microinjections as an antagonist of D1R and D2R. The obtained results showed that microinjection of CBD (10 and 50 μg/5 μL, ICV) suppressed the METH-induced reinstatement and significantly decreased mean extinction latency in treated groups compared to both vehicles and/or untreated control groups. In addition, the results demonstrated that administrating intra-accumbal SCH23390 (1 and 4 μg/0.5 μL saline) reversed the inhibitory effects of CBD on extinction and reinstatement phases while different doses of sulpiride (0.25, 1, and 4 μg/0.5 μL; dimethyl sulfoxide 12%) could not alter the CBD effects. Conclusions: In summary, this study showed that CBD made shorter extinction latencies and suppressed the METH reinstatement, in part, by interacting with D1R but not D2R in the NAc.
Collapse
Affiliation(s)
- Mahboobeh Mirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sexual satiety modifies methamphetamine-induced locomotor and rewarding effects and dopamine-related protein levels in the striatum of male rats. Psychopharmacology (Berl) 2023; 240:797-812. [PMID: 36745226 DOI: 10.1007/s00213-023-06322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
RATIONALE Drug and natural rewarding stimuli activate the mesolimbic dopaminergic system. Both methamphetamine (Meth) and copulation to satiety importantly increase dopamine (DA) release in the nucleus accumbens (NAc), but with differences in magnitude. This paper analyzes the interaction between Meth administration and the intense sexual activity associated with sexual satiety. OBJECTIVES To evaluate possible changes in Meth-induced behavioral effects and striatal DA-related protein expression due to sexual satiety. METHODS Meth-induced locomotor activity and conditioned place preference (CPP) were tested in sexually experienced male rats that copulated to satiety (S-S) or ejaculated once (1E) the day before or displayed no sexual activity (control group; C). DA receptors and DA transporter expression were determined by western blot in the striatum of animals of all sexual conditions treated with specific Meth doses. RESULTS Meth's locomotor and rewarding effects were exacerbated in S-S animals, while in 1E rats, only locomotor effects were enhanced. Sexual activity, by itself, modified DA-related protein expression in the NAc core and in the caudate-putamen (CPu), while Meth treatment alone changed their expression only in the NAc shell. Meth-induced changes in the NAc shell turned in the opposite direction when animals had sexual activity, and additional changes appeared in the NAc core and CPu of S-S rats. CONCLUSION Sexual satiety sensitizes rats to Meth's behavioral effects and the Meth-induced striatal DA-related protein adaptations are modified by sexual activity, evidencing cross-sensitization between both stimuli.
Collapse
|
6
|
Al-Sultany HHA, Altimimi ML, Hadi NR. PROTECTIVE EFFECT OF EPROSARTAN IN RENAL ISCHEMIA REPERFUSION INJURY BY REGULATING OXIDATIVE STRESS, INFLAMMATION, AND APOPTOTIC CASCADES IN A BILATERAL RAT MODEL. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1576-1585. [PMID: 37622500 DOI: 10.36740/wlek202307110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
OBJECTIVE The aim: To evaluate the potential protective effect of Eprosartan (ARB) in bilateral renal IRI in male rats. PATIENTS AND METHODS Materials and methods: 20 Sprague-Dawley rats divided into four groups. Sham group had surgery without IRI. Control group was subjected to 30 min ischemia and 2 hours of reperfusion. Vehicle group received 14 ml/kg (IP) injection of solvent mixture containing (10% DMSO, 40% PEG300, 5% Tween-80, and 45% normal saline) 30 minutes before clamping. Eprosartan-treated group with 30 mg/kg Eprosartan intraperitoneally 30 min before occlusion of renal pedicles followed by 30 minutes of ischemia and 2 hours of reperfusion. Serum BUN and Creatinine used to assess renal function. Renal tissue was used to measure the levels of TNF-α, IL-1β, IL-6, F2-isoprostane, and Caspase3 were measured by assessment of renal tissue. Histopathological examinations were conducted to detect parenchymal damage. RESULTS Results: Mean serum levels of BUN and Creatinine as well as mean renal tissue levels of TNF-α, IL-1β, IL-6, F2-isoprostane, and Caspase3 were significantly increased in control and vehicle groups together with increase in histological damage score compared to sham group, whereas treatment of rats with Eprosartan resulted in significant reduction in mean serum levels of BUN and Creatinine and mean renal tissue levels of TNF-α, IL-1β, IL-6, F2-isoprostane, and Caspase3 and obvious reduction in tissue injury. CONCLUSION Conclusions: This study demonstrates that Eprosartan pretreatment enhances kidney function by decreasing serum BUN and Creatinine, oxidative stress, cytokines, and apoptotic markers.
Collapse
Affiliation(s)
| | - Murooj L Altimimi
- PHARMACOLOGY AND THERAPEUTICS DEPARTMENT, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ
| | - Najah Rayish Hadi
- DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
7
|
Shen B, Zhang R, Yang G, Peng Y, Nie Q, Yu H, Dong W, Chen B, Song C, Tian Y, Qin L, Shu J, Hong S, Li L. Cannabidiol prevents methamphetamine-induced neurotoxicity by modulating dopamine receptor D1-mediated calcium-dependent phosphorylation of methyl-CpG-binding protein 2. Front Pharmacol 2022; 13:972828. [PMID: 36147353 PMCID: PMC9486307 DOI: 10.3389/fphar.2022.972828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, methamphetamine (METH) abuse has sharply increased in the United States, East Asia, and Southeast Asia. METH abuse not only leads to serious drug dependence, but also produces irreversible neurotoxicity. Currently, there are no approved pharmacotherapies for the treatment of METH use disorders. Cannabidiol (CBD), a major non-psychoactive (and non-addictive) cannabinoid from the cannabis plant, shows neuroprotective, antioxidative, and anti-inflammatory properties under METH exposure. At present, however, the mechanisms underlying these properties remain unclear, which continues to hinder research on its therapeutic potential. In the current study, computational simulations showed that CBD and METH may directly bind to the dopamine receptor D1 (DRD1) via two overlapping binding sites. Moreover, CBD may compete with METH for the PHE-313 binding site. We also found that METH robustly induced apoptosis with activation of the caspase-8/caspase-3 cascade in-vitro and in-vivo, while CBD pretreatment prevented these changes. Furthermore, METH increased the expression of DRD1, phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) at serine 421 (Ser421), and level of intracellular Ca2+in-vitro and in-vivo, but these effects were blocked by CBD pretreatment. The DRD1 antagonist SCH23390 significantly prevented METH-induced apoptosis, MeCP2 phosphorylation, and Ca2+ overload in-vitro. In contrast, the DRD1 agonist SKF81297 markedly increased apoptosis, MeCP2 phosphorylation, and Ca2+ overload, which were blocked by CBD pretreatment in-vitro. These results indicate that CBD prevents METH-induced neurotoxicity by modulating DRD1-mediated phosphorylation of MeCP2 and Ca2+ signaling. This study suggests that CBD pretreatment may resist the effects of METH on DRD1 by competitive binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lihua Li
- *Correspondence: Shijun Hong, ; Lihua Li,
| |
Collapse
|
8
|
Sharifi A, Karimi-Haghighi S, Shabani R, Asgari HR, Ahadi R, Haghparast A. Cannabidiol impairs the rewarding effects of methamphetamine: Involvement of dopaminergic receptors in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110458. [PMID: 34662693 DOI: 10.1016/j.pnpbp.2021.110458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
Cannabidiol, as component of cannabis, can potentially hinder the rewarding impact of drug abuse; however, its mechanism is ambiguous. Moreover, the nucleus accumbens (NAc), as a key area in the reward circuit, extensively receives dopaminergic projections from the ventral tegmentum area. To elucidate the role of accumbal D1 and D2 dopamine receptor families in Cannabidiol's inhibitory impact on the acquisition and expression phases of methamphetamine (MET), the conditioned place preference (CPP) procedure as a common method to assay reward characteristics of drugs was carried out. Six groups of rats were treated by various doses of SCH23390 or Sulpiride (0.25, 1, and 4 μg/0.5 μL) in the NAc as D1 or D2 dopamine receptor family antagonists, respectively, prior to infusion of Cannabidiol (10 μg/5 μL) in the lateral ventricle (LV) over conditioning phase in the acquisition experiments. In the second step of the study, animals received SCH23390 or Sulpiride in the NAc before Cannabidiol (50 μg/5 μL) infusion into the LV in the expression phase of MET to illuminate the influence of SCH23390 or Sulpiride on the inhibitory impact of Cannabidiol on the expression of MET-induced CPP. Intra-NAc administration of either SCH23390 or Sulpiride impaired Cannabidiol's suppressive impact on the expression phase, while just Sulpiride could suppress the Cannabidiol's impact on the acquisition phase of the MET-induced CPP. Also, the inhibitory impact of Sulpiride was stranger in both phases of MET reward. It seems that Cannabidiol prevents the expression and acquisition phases of MET-induced CPP partly through the dopaminergic system in the NAc.
Collapse
Affiliation(s)
- Asrin Sharifi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Karimi-Haghighi S, Razavi Y, Iezzi D, Scheyer AF, Manzoni O, Haghparast A. Cannabidiol and substance use disorder: Dream or reality. Neuropharmacology 2022; 207:108948. [PMID: 35032495 PMCID: PMC9157244 DOI: 10.1016/j.neuropharm.2022.108948] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the major constituents of Cannabis sativa L. that lacks psychotomimetic and rewarding properties and inhibits the rewarding and reinforcing effects of addictive drugs such as cocaine, methamphetamine (METH), and morphine. Additionally, CBD's safety profile and therapeutic potential are currently evaluated in several medical conditions, including pain, depression, movement disorders, epilepsy, multiple sclerosis, Alzheimer's disease, ischemia, and substance use disorder. There is no effective treatment for substance use disorders such as addiction, and this review aims to describe preclinical and clinical investigations into the effects of CBD in various models of opioid, psychostimulant, cannabis, alcohol, and nicotine abuse. Furthermore, the possible mechanisms underlying the therapeutic potential of CBD on drug abuse disorders are reviewed. METHODS The current review considers and summarizes the preclinical and clinical investigations into CBD's effects in various models of drug abuse include opioids, psychostimulants, cannabis, alcohol, and nicotine. RESULTS Several preclinical and clinical studies have proposed that CBD may be a reliable agent to inhibit the reinforcing and rewarding impact of drugs. CONCLUSIONS While the currently available evidence converges to suggest that CBD could effectively reduce the rewarding and reinforcing effects of addictive drugs, more preclinical and clinical studies are needed before CBD can be added to the therapeutic arsenal for treating addiction.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Iezzi
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Andrew F Scheyer
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Olivier Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, Marseille, France
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Cannabidiol but not cannabidiolic acid reduces behavioural sensitisation to methamphetamine in rats, at pharmacologically effective doses. Psychopharmacology (Berl) 2022; 239:1593-1603. [PMID: 35435462 PMCID: PMC9110442 DOI: 10.1007/s00213-022-06119-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Cannabidiol (CBD) and cannabidiolic acid (CBDA) are non-psychoactive components of the cannabis plant. CBD has been well characterised to have anxiolytic and anticonvulsant activity, whereas the behavioural effects of CBDA are less clear. Preclinical and clinical data suggests that CBD has antipsychotic properties and reduces methamphetamine self-administration in rats. An animal model that is commonly used to mimic the neurochemical changes underlying psychosis and drug dependence is methamphetamine (METH) sensitisation, where repeated administration of the psychostimulant progressively increases the locomotor effects of METH. OBJECTIVE The aim of this study was to determine whether CBD or CBDA attenuate METH-induced sensitisation of locomotor hyperactivity in rats. METHODS Eighty-six male Sprague Dawley rats underwent METH sensitisation protocol where they were subjected to daily METH (1 mg/kg on days 2 and 8, 5 mg/kg on days 3-7; i.p.) injections for 7 days. After 21 days of withdrawal, rats were given a prior injection of CBD (0, 40 and 80 mg/kg; i.p.) or CBDA (0, 0.1, 10 and 1000 µg/kg; i.p.) and challenged with acute METH (1 mg/kg; i.p.). Locomotor activity was then measured for 60 min. RESULTS Rats displayed robust METH sensitisation as evidenced by increased locomotor activity to METH challenge in METH-pretreated versus SAL-pretreated rats. CBD (40 and 80 mg/kg) reduced METH-induced sensitisation. There was no effect of any CBDA doses on METH sensitisation or acute METH-induced hyperactivity. CONCLUSION These results demonstrate that CBD, but not CBDA, reduces METH sensitisation of locomotor activity in rats at pharmacologically effective doses, thus reinforcing evidence that CBD has anti-addiction and antipsychotic properties.
Collapse
|
11
|
Nouri K, Anooshe M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Involvement of Hippocampal D1-Like Dopamine Receptors in the Inhibitory Effect of Cannabidiol on Acquisition and Expression of Methamphetamine-Induced Conditioned Place Preference. Neurochem Res 2021; 46:2008-2018. [PMID: 33993443 DOI: 10.1007/s11064-021-03350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound with strong potential to decrease the psychostimulant's rewarding effect with unclear receptors. Furthermore, as a part of the reward circuit, the hippocampus plays a crucial role in regulating the reward properties of drugs as determined by conditioned place preference (CPP). In the current research, CPP was used to evaluate the role of intra-CA1 microinjection of D1-like dopamine receptor antagonists in CBD's inhibitory effect on the acquisition and expression phases of methamphetamine (METH). Animals were treated by METH (1 mg/kg; sc) in a five-day schedule to induce CPP. To find out the impact of D1-like dopamine receptor antagonist, SCH23390, in the CA1 on the inhibitory influence of CBD on the acquisition of METH, the rats received intra-CA1 administration of SCH23390 (0.25, 1, and 4 µg/0.5 µl) following ICV treatment of CBD (10 µg/5 µl) over conditioning phase of METH. Furthermore, animals were given SCH23390 in the CA1 ensuing ICV microinjection of CBD (50 µg/5 µl) in the expression phase of METH to rule out the influence of SCH23390 on the suppressive effect of CBD on the expression of METH CPP. Intra-CA1 microinjection of SCH23390 abolished CBD's suppressive impact on both METH-induced CPP phases without any side effect on the locomotion. The current research disclosed that CBD inhibited the rewarding characteristic of METH via D1-like dopamine receptors in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Kiana Nouri
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Anooshe
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, 19615-1178, Tehran, Iran.
| |
Collapse
|