1
|
Tóth E, Györffy D, Posta M, Hupuczi P, Balogh A, Szalai G, Orosz G, Orosz L, Szilágyi A, Oravecz O, Veress L, Nagy S, Török O, Murthi P, Erez O, Papp Z, Ács N, Than NG. Decreased Expression of Placental Proteins in Recurrent Pregnancy Loss: Functional Relevance and Diagnostic Value. Int J Mol Sci 2024; 25:1865. [PMID: 38339143 PMCID: PMC10855863 DOI: 10.3390/ijms25031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Miscarriages affect 50-70% of all conceptions and 15-20% of clinically recognized pregnancies. Recurrent pregnancy loss (RPL, ≥2 miscarriages) affects 1-5% of recognized pregnancies. Nevertheless, our knowledge about the etiologies and pathophysiology of RPL is incomplete, and thus, reliable diagnostic/preventive tools are not yet available. Here, we aimed to define the diagnostic value of three placental proteins for RPL: human chorionic gonadotropin free beta-subunit (free-β-hCG), pregnancy-associated plasma protein-A (PAPP-A), and placental growth factor (PlGF). Blood samples were collected from women with RPL (n = 14) and controls undergoing elective termination of pregnancy (n = 30) at the time of surgery. Maternal serum protein concentrations were measured by BRAHMS KRYPTOR Analyzer. Daily multiple of median (dMoM) values were calculated for gestational age-specific normalization. To obtain classifiers, logistic regression analysis was performed, and ROC curves were calculated. There were differences in changes of maternal serum protein concentrations with advancing healthy gestation. Between 6 and 13 weeks, women with RPL had lower concentrations and dMoMs of free β-hCG, PAPP-A, and PlGF than controls. PAPP-A dMoM had the best discriminative properties (AUC = 0.880). Between 9 and 13 weeks, discriminative properties of all protein dMoMs were excellent (free β-hCG: AUC = 0.975; PAPP-A: AUC = 0.998; PlGF: AUC = 0.924). In conclusion, free-β-hCG and PAPP-A are valuable biomarkers for RPL, especially between 9 and 13 weeks. Their decreased concentrations indicate the deterioration of placental functions, while lower PlGF levels indicate problems with placental angiogenesis after 9 weeks.
Collapse
Affiliation(s)
- Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Doctoral School, Semmelweis University, H-1085 Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Gábor Szalai
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Department of Surgery, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Orosz
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Lajos Veress
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Nagy
- Faculty of Health and Sport Sciences, Széchenyi István University, H-9026 Győr, Hungary
| | - Olga Török
- Department of Obstetrics and Gynecology, Medical School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville 3052, Australia
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Be’er Sheva 8410501, Israel
- Department of Obstetrics and Gynecology, Medical School, Wayne State University, Detroit, MI 48201, USA
| | - Zoltán Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary
- Department of Obstetrics and Gynecology, Medical School, Semmelweis University, 27 Baross Street, H-1088 Budapest, Hungary
| |
Collapse
|
2
|
Deng Q, He L, Xu F, Deng Q, Xu T, Jiang J, Hu Z, Yang J. Characterization of beta subunit variants of recombinant human chorionic gonadotrophin. Anal Biochem 2023; 668:115089. [PMID: 36858250 DOI: 10.1016/j.ab.2023.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Human chorionic gonadotropin (hCG), an endogenous glycoprotein hormone, has been widely used for the treatment of infertility and corpus luteum defect in women. The biological specificity of hCG is essentially determined by its beta (β-) subunit, whereas the alpha (α-) subunit is a common subunit shared among the gonadotropin family. In development of a therapeutic recombinant hCG, the purity analysis showed that the beta (β-) subunit has two variants, β1 and β2. Structural characterization using a combination of analytical techniques has demonstrated that β1-subunit is derived from non-glycosylation at Asn 13, whereas β2-subunit is a normal species with complete N-glycosylation at both Asn 13 and Asn 30. In vivo Bioactivity evaluation of the r-hCG fractions with various ratios of β1-and β2-subunits showed that incomplete glycosylation at Asn 13 potentially reduced the biological activity of r-hCG to promote uterus growth. Although hCG has a long history of medicinal use, this is the first report to identify the structural difference of hCG β-subunit variants, as well as to preliminary establish the structure-activity relationship of this variation. The obtained results also suggest the importance of variant characterization and necessary quality control of product variants during the development of recombinant protein therapeutics.
Collapse
Affiliation(s)
- Qinpei Deng
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Lixiu He
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | - Fangyan Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | - Tongze Xu
- Livzon MabPharm Inc., Zhuhai, Guangdong, China
| | | | | | | |
Collapse
|
3
|
Rat P, Leproux P, Fouyet S, Olivier E. Forskolin Induces Endocrine Disturbance in Human JEG-3 Placental Cells. TOXICS 2022; 10:toxics10070355. [PMID: 35878261 PMCID: PMC9317975 DOI: 10.3390/toxics10070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Forskolin, used in folk medicine since ancient times, is now available as a dietary supplement, with an indication as a fat burner and appetite suppressant. However, the safety of forskolin is poorly documented especially for pregnant women. The question that we raised is what about the safety of forskolin in pregnant women? As the placenta, an endocrine organ, is the key organ of pregnancy, we evaluated the in vitro placental toxicity of forskolin. We focused first on the activation of a P2X7 degenerative receptor as a key biomarker for placental toxicity, and second on steroid and peptide hormonal secretion. We observed that forskolin activated P2X7 receptors and disturbed estradiol, progesterone, hPL and hyperglycosylated hCG secretion in human placental JEG-Tox cells. To the best of our knowledge, we highlighted, for the first time, that forskolin induced endocrine disturbance in placental cells. Forskolin does not appear to be a safe product for pregnant women and restrictions should be taken.
Collapse
Affiliation(s)
- Patrice Rat
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Pascale Leproux
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
| | - Sophie Fouyet
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Léa Nature, 17180 Périgny, France
| | - Elodie Olivier
- Faculty of Pharmaceutical Sciences and Biology, Université Paris Cité, CNRS, CiTCoM, 75006 Paris, France; (P.R.); (P.L.); (S.F.)
- Correspondence:
| |
Collapse
|
4
|
Günther V, Otte SV, Freytag D, Maass N, Alkatout I. Recurrent implantation failure - an overview of current research. Gynecol Endocrinol 2021; 37:584-590. [PMID: 33508998 DOI: 10.1080/09513590.2021.1878136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) can be defined as a failure to achieve a clinical pregnancy after transfer of at least four embryos of good quality in a minimum of three fresh or frozen cycles in women under the age of 40. RIF is often a complex problem with a wide variety of etiologies and mechanisms as well as treatment options. SUMMARY Anatomical conditions of the uterus, thrombophilia, genetic abnormalities, or immunological factors are only a few examples which could be responsible for RIF. The recommendations for women with RIF vary depending on the source of their problem. There is not just one treatment option, but many depending on the etiology and the severity of the problem. KEY MESSAGE However, it would help to establish a set of standardized examinations and tests to use, in order to do a preliminary evaluation on each patient, which would then hopefully direct the approach of treatment for each individual couple.
Collapse
Affiliation(s)
- Veronika Günther
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Kiel, Germany
- Ambulanzzentrum des UKSH gGmbH, University Fertility Center, Kiel, Germany
| | - Sören V Otte
- Ambulanzzentrum des UKSH gGmbH, University Fertility Center, Kiel, Germany
| | - Damaris Freytag
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Norton KA, Niri F, Weatherill CB, Williams CE, Duong K, McDermid HE. Implantation failure and embryo loss contribute to subfertility in female mice mutant for chromatin remodeler Cecr2†. Biol Reprod 2021; 104:835-849. [PMID: 33354716 DOI: 10.1093/biolre/ioaa231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 01/26/2023] Open
Abstract
Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Kacie A Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Farshad Niri
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsey B Weatherill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christine E Williams
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Duong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E McDermid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Ibeto L, Antonopoulos A, Grassi P, Pang PC, Panico M, Bobdiwala S, Al-Memar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seckl M, Clark G, Haslam SM, Dell A. Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One 2020; 15:e0228507. [PMID: 32045434 PMCID: PMC7012436 DOI: 10.1371/journal.pone.0228507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is a glycoprotein hormone that is essential for the maintenance of pregnancy. Glycosylation of hCG is known to be essential for its biological activity. "Hyperglycosylated" variants secreted during early pregnancy have been proposed to be involved in initial implantation of the embryo and as a potential diagnostic marker for gestational diseases. However, what constitutes "hyperglycosylation" is not yet fully understood. In this study, we perform comparative N-glycomic analysis of hCG expressed in the same individuals during early and late pregnancy to help provide new insights into hCG function, reveal new targets for diagnostics and clarify the identity of hyperglycosylated hCG. hCG was isolated in urine collected from women at 7 weeks and 20 weeks' gestation. hCG was also isolated in urine from women diagnosed with gestational trophoblastic disease (GTD). We used glycomics methodologies including matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and MS/MS methods to characterise the N-glycans associated with hCG purified from the individual samples. The structures identified on the early pregnancy (EP-hCG) and late pregnancy (LP-hCG) samples corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. A novel finding was the presence of substantial amounts of bisected type N-glycans in pregnancy hCG samples, which were present at much lower levels in GTD samples. A second novel observation was the presence of abundant LewisX antigens on the bisected N-glycans. GTD-hCG had fewer glycoforms which constituted a subset of those found in normal pregnancy. When compared to EP-hCG, GTD-hCG samples had decreased signals for tri- and tetra-antennary N-glycans. In terms of terminal epitopes, GTD-hCG had increased signals for sialylated structures, while LewisX antigens were of very minor abundance. hCG carries the same N-glycans throughout pregnancy but in different proportions. The N-glycan repertoire is more diverse than previously reported. Bisected and LewisX structures are potential targets for diagnostics. hCG isolated from pregnancy urine inhibits NK cell cytotoxicity in vitro at nanomolar levels and bisected type glycans have previously been implicated in the suppression of NK cell cytotoxicity, suggesting that hCG-related bisected type N-glycans may directly suppress NK cell cytotoxicity.
Collapse
Affiliation(s)
- Linda Ibeto
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Paola Grassi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Poh-Choo Pang
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maria Panico
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Shabnam Bobdiwala
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Maya Al-Memar
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Paul Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Mark Davis
- Mologic LTD, Bedford Technology Park, Bedfordshire, United Kingdom
| | - Julian Norman Taylor
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Paula Almeida
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Richard Harvey
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Tom Bourne
- Tommys' National Centre for Miscarriage Research, Queen Charlottes' & Chelsea Hospital, Imperial College, London, United Kingdom
| | - Michael Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, United States of America
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Koistinen H, Koel M, Peters M, Rinken A, Lundin K, Tuuri T, Tapanainen JS, Alfthan H, Salumets A, Stenman UH, Lavogina D. Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG. Mol Cell Endocrinol 2019; 479:103-109. [PMID: 30287399 DOI: 10.1016/j.mce.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 09/22/2018] [Indexed: 01/15/2023]
Abstract
While human chorionic gonadotropin (hCG) appears to have an essential role in early pregnancy, it is controversial whether the hyperglycosylated form of hCG (hCG-h), which is the major hCG isoform during the first 4-5 weeks of pregnancy, is able to activate LH/hCG receptor (LHCGR). To address this, we utilized different extensively characterized hCG and hCGβ reference reagents, cell culture- and urine-derived hCG-h preparations, and an in vitro reporter system for LHCGR activation. The WHO hCG reference reagent (99/688) was found to activate LHCGR with an EC50-value of 3.3 ± 0.6 pmol/L (n = 9). All three studied hCG-h preparations were also able to activate LHCGR, but with a lower potency (EC50-values between 7.1 ± 0.5 and 14 ± 3 pmol/L, n = 5-11, for all P < 0.05 as compared to the hCG reference). The activities of commercial urinary hCG (Pregnyl) and recombinant hCG (Ovitrelle) preparations were intermediate between those of the hCG reference and the hCG-h. These results strongly suggest that the hCG-h is functionally similar to hCG, although it has lower potency for LHCGR activation. Whether this explains the reduced proportion of hCG-h to hCG reported in patients developing early onset pre-eclampsia or those having early pregnancy loss remains to be determined.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, Oulu, Finland
| | - Henrik Alfthan
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia; Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
|
9
|
Bashiri A, Halper KI, Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol 2018; 16:121. [PMID: 30518389 PMCID: PMC6282265 DOI: 10.1186/s12958-018-0414-2] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Recurrent implantation failure (RIF) refers to cases in which women have had three failed in vitro fertilization (IVF) attempts with good quality embryos. The definition should also take advanced maternal age and embryo stage into consideration. The failure of embryo implantation can be a consequence of uterine, male, or embryo factors, or the specific type of IVF protocol. These cases should be investigated to determine the most likely etiologies of the condition, as this is a complex problem with several variables. There are multiple risk factors for recurrent implantation failure including advanced maternal age, smoking status of both parents, elevated body mass index, and stress levels. Immunological factors such as cytokine levels and presence of specific autoantibodies should be examined, as well as any infectious organisms in the uterus leading to chronic endometritis. Uterine pathologies such as polyps and myomas as well as congenital anatomical anomalies should be ruled out. Sperm analysis, pre-implantation genetic screening and endometrial receptivity should be considered and evaluated, and IVF protocols should be tailored to specific patients or patient populations. Treatment approaches should be directed toward individual patient cases. In addition, we suggest considering a new initial step in approach to patients with RIF, individualized planned activities to activate the brain's reward system in attempt to improve immunological balance in the body.
Collapse
Affiliation(s)
- Asher Bashiri
- Recurrent Pregnancy Loss Clinic, Maternal-Fetal Medicine, and Ultrasound, Soroka University Medical Center, P.O.B. 151, 84101 Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 151, 84101 Beer Sheva, Israel
| | - Katherine Ida Halper
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 151, 84101 Beer Sheva, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
|
11
|
Dosouto C, Haahr T, Humaidan P. Gonadotropin-releasing hormone agonist (GnRHa) trigger – State of the art. Reprod Biol 2017; 17:1-8. [DOI: 10.1016/j.repbio.2017.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
12
|
Abstract
How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in TheLancet is widely cited but has no practical quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig's data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data.
Collapse
Affiliation(s)
- Gavin E. Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
13
|
Abstract
It is generally accepted that natural human embryo mortality during pregnancy is high - losses of 70% and higher from fertilisation to birth are frequently claimed. The first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period. Establishing the fate of embryos before this is challenging, and hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are cited to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in TheLancet is widely cited but has no quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig's data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data suggests that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, it is clear that some published estimates of natural embryo mortality are exaggerated. Although available data do not provide a precise estimate, natural human embryo mortality is lower than is often claimed.
Collapse
Affiliation(s)
- Gavin E. Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
14
|
Andersen CY, Fischer R, Giorgione V, Kelsey TW. Micro-dose hCG as luteal phase support without exogenous progesterone administration: mathematical modelling of the hCG concentration in circulation and initial clinical experience. J Assist Reprod Genet 2016; 33:1311-1318. [PMID: 27448021 DOI: 10.1007/s10815-016-0764-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
For the last two decades, exogenous progesterone administration has been used as luteal phase support (LPS) in connection with controlled ovarian stimulation combined with use of the human chorionic gonadotropin (hCG) trigger for the final maturation of follicles. The introduction of the GnRHa trigger to induce ovulation showed that exogenous progesterone administration without hCG supplementation was insufficient to obtain satisfactory pregnancy rates. This has prompted development of alternative strategies for LPS. Augmenting the local endogenous production of progesterone by the multiple corpora lutea has been one focus with emphasis on one hand to avoid development of ovarian hyper-stimulation syndrome and, on the other hand, to provide adequate levels of progesterone to sustain implantation. The present study evaluates the use of micro-dose hCG for LPS support and examines the potential advances and disadvantages. Based on the pharmacokinetic characteristics of hCG, the mathematical modelling of the concentration profiles of hCG during the luteal phase has been evaluated in connection with several different approaches for hCG administration as LPS. It is suggested that the currently employed LPS provided in connection with the GnRHa trigger (i.e. 1.500 IU) is too strong, and that daily micro-dose hCG administration is likely to provide an optimised LPS with the current available drugs. Initial clinical results with the micro-dose hCG approach are presented.
Collapse
Affiliation(s)
- C Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Blegdamsvej 9, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - R Fischer
- MVZ Fertility Center Hamburg GmbH, Hamburg, Germany
| | - V Giorgione
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas W Kelsey
- School of Computer Science, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
15
|
Osman A, Pundir J, Elsherbini M, Dave S, El-Toukhy T, Khalaf Y. The effect of intrauterine HCG injection on IVF outcome: a systematic review and meta-analysis. Reprod Biomed Online 2016; 33:350-9. [PMID: 27317131 DOI: 10.1016/j.rbmo.2016.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
Abstract
In this systematic review and meta-analysis, the effect of intrauterine HCG infusion before embryo transfer on IVF outcomes (live birth rate, clinical pregnancy rate and spontaneous aboretion rate) was investigated. Searches were conducted on MEDLINE, EMBASE and The Cochrane Library. Randomized studies in women undergoing IVF and intracytoplasmic sperm injection comparing intrauterine HCG administration at embryo transfer compared with no intrauterine HCG were eligible for inclusion. Eight randomized controlled trials were eligible for inclusion in the meta-analysis. A total of 3087 women undergoing IVF and intracytoplasmic sperm injection cycles were enrolled (intrauterine HCG group: n = 1614; control group: n = 1473). No significant difference was found in the live birth rate (RR 1.13; 95% CI 0.84 to 1.53) and spontaneous abortion rate (RR 1.00, 95% CI 0.74 to 1.34) between women who received intrauterine HCG and those who did not receive HCG. Although this review was extensive and included randomized controlled trials, no significant heterogeneity was found, and the overall included numbers are relatively small. In conclusion the current evidence does not support the use of intrauterine HCG administration before embryo transfer. Well-designed multicentre trials are needed to provide robust evidence.
Collapse
Affiliation(s)
- A Osman
- Assisted Conception Unit, Guys Hospital, Great Maze Pond SE1 9RT, UK; Faculty of Medicine, Cairo University, Al-Saray Street, El Manial Cairo 11956, Egypt.
| | - J Pundir
- Centre of reproductive medicine, St Bartholomew's Hospital, Bart's Health, London EC1A 7BE, UK
| | - M Elsherbini
- Faculty of Medicine, Cairo University, Al-Saray Street, El Manial Cairo 11956, Egypt
| | - S Dave
- Centre of reproductive medicine, St Bartholomew's Hospital, Bart's Health, London EC1A 7BE, UK
| | - T El-Toukhy
- Assisted Conception Unit, Guys Hospital, Great Maze Pond SE1 9RT, UK
| | - Y Khalaf
- Assisted Conception Unit, Guys Hospital, Great Maze Pond SE1 9RT, UK
| |
Collapse
|
16
|
Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production. ANNALES D'ENDOCRINOLOGIE 2016; 77:75-81. [PMID: 27177499 DOI: 10.1016/j.ando.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening and hCG-H might represent a serum marker of implantation and early trophoblast invasion. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- Thierry Fournier
- Inserm, U1139, PremUp Foundation, université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, DHU "Risk & pregnancy", 75006 Paris, France.
| |
Collapse
|
17
|
Casarini L, Riccetti L, De Pascali F, Nicoli A, Tagliavini S, Trenti T, La Sala GB, Simoni M. Follicle-stimulating hormone potentiates the steroidogenic activity of chorionic gonadotropin and the anti-apoptotic activity of luteinizing hormone in human granulosa-lutein cells in vitro. Mol Cell Endocrinol 2016; 422:103-114. [PMID: 26690776 DOI: 10.1016/j.mce.2015.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 01/15/2023]
Abstract
Luteinizing hormone (LH) and choriogonadotropin (hCG) are glycoprotein hormones regulating ovarian function and pregnancy, respectively. Since these molecules act on the same receptor (LHCGR), they were traditionally assumed as equivalent in assisted reproduction techniques (ART), although differences between LH and hCG were demonstrated at molecular and physiological level. In this study, we demonstrated for the first time that co-treatment with a follicle-stimulating hormone (FSH) dose in the ART therapeutic range potentiates different LH- and hCG-dependent responses in vitro, measured in terms of cAMP, phospho-CREB, -ERK1/2 and -AKT activation, gene expression, progesterone and estradiol production in human granulosa-lutein cells (hGLC). We show that in the presence of FSH, hCG biopotency is about 5-fold increased, in the presence of FSH, in terms of cAMP activation. Accordingly, CREB phosphorylation and steroid production is increased under hCG and FSH co-treatment. LH effects, evaluated as steroidogenic cAMP/PKA pathway activation, do not change in the presence of FSH, which, however, increases LH-dependent ERK1/2 and AKT, but not CREB phosphorylation, resulting in anti-apoptotic effects. The different modulatory activity of FSH on LH and hCG action in vitro corresponds to their different physiological functions, reflecting proliferative effects exerted by LH during the follicular phase and before trophoblast development, and the high steroidogenic potential of hCG requested to sustain pregnancy from the luteal phase onwards.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Laura Riccetti
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco De Pascali
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Nicoli
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | | | | | - Giovanni Battista La Sala
- Unit of Obstetrics and Gynecology, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy; Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for the Genomic Research, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda USL, Modena, Italy
| |
Collapse
|
18
|
Clark DA. Mouse is the new woman? Translational research in reproductive immunology. Semin Immunopathol 2016; 38:651-668. [DOI: 10.1007/s00281-015-0553-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
|
19
|
Evans J. Hyperglycosylated hCG: a Unique Human Implantation and Invasion Factor. Am J Reprod Immunol 2015; 75:333-40. [DOI: 10.1111/aji.12459] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jemma Evans
- The Hudson Institute of Medical Research; Clayton Vic. Australia
- Department of Physiology; Monash University; Clayton Vic. Australia
| |
Collapse
|
20
|
Proportion hyperglycosylated hCG: a new test for discriminating gestational trophoblastic diseases. Int J Gynecol Cancer 2015; 24:1709-14. [PMID: 25275660 DOI: 10.1097/igc.0000000000000280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Hyperglycosylated human chorionic gonadotropin (hCG) is a variant of hCG with large oligosaccharide side chains. Although hCG is produced by syncytiotrophoblast cells, hyperglycosylated hCG marks cytotrophoblast cell. Hyperglycosylated hCG signals placental implantation. METHODS Total hCG in serum and urine is measured by the Siemens Immulite hCG pregnancy test; the result is in milli-international unit per milliliter. Hyperglycosylated hCG is determined by the B152 microtiter plate assay; the result is in nanogram per milliliter. Hyperglycosylated hCG results can be converted to milli-international unit per milliliter equivalents by multiplying by 11. The test measures proportion hyperglycosylated hCG, hyperglycosylated hCG / total hCG. RESULTS Proportion hyperglycosylated hCG marks cases intent on developing persistent hydatidiform mole (68% detection at 17% false detection). Proportion hyperglycosylated hCG also marks persistent hydatidiform mole (100% detection at 5.1% false detection). Proportion hyperglycosylated hCG distinguishes choriocarcinoma and gestational trophoblastic neoplasm cases, absolutely discriminating aggressive cases and minimally aggressive cases. Proportion hyperglycosylated hCG identifies quiescent gestational trophoblastic disease cases. It recognizes quiescent cases that become persistent disease (100% detection at 0% false positive). DISCUSSION Proportion hyperglycosylated hCG is an invaluable test for discriminating gestational trophoblastic diseases.
Collapse
|
21
|
Walsh G. Hormones and Growth Factors Used Therapeutically. Proteins 2015. [DOI: 10.1002/9781119117599.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Fournier T, Guibourdenche J, Evain-Brion D. Review: hCGs: different sources of production, different glycoforms and functions. Placenta 2015; 36 Suppl 1:S60-5. [PMID: 25707740 DOI: 10.1016/j.placenta.2015.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 01/26/2023]
Abstract
Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like an agonist of LH stimulating progesterone secretion by the corpus luteum. hCG has also a role in quiescence of the myometrium and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast the β-subunits are distinct in each of the hormones and confer receptor and biological specificity. The hCG β-subunit contains two sites of N-glycosylation and four sites of O-glycosylation and is encoded by a cluster of genes (CGB). In this review, we will stress the importance of hCG glycosylation state, which varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted by the syncytiotrophoblast into maternal blood where it peaks around 8-10 weeks of gestation (WG). The invasive extravillous trophoblast also secretes hCG, and in particular like choriocarcinoma cells, hyperglycosylated forms of hCG (hCG-H). In maternal blood hCG-H is high during early first trimester. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the syncytiotrophoblast and angiogenesis through LHCG receptor. In contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFβ receptor 2. hCG is largely used in antenatal screening and hCG-H represents a serum marker of early trophoblast invasion. Other abnormally glycosylated hCG are described in aneuploidies. In conclusion, hCG is the major pregnancy glycoprotein hormone, whose maternal concentration and glycan structure change all along pregnancy. Depending on its source of production, glycoforms of hCG display different biological activities and functions that are essential for pregnancy outcome.
Collapse
Affiliation(s)
- T Fournier
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France.
| | - J Guibourdenche
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France; Biologie Hormonale, Cochin, Paris, F-75006, France
| | - D Evain-Brion
- INSERM, U1139, Paris, F-75006, France; Université Paris Descartes, UMR-S1139, Sorbonne Paris Cité, Paris, F-75006, France; PremUP Foundation, Paris, F-75006, France
| |
Collapse
|
23
|
Abstract
Determination of human chorionic gonadotropin (hCG) is used for diagnosis and monitoring of pregnancy, pregnancy related disorders, for trophoblastic and some nontrophoblastic tumors. In addition, hCG is determined for doping control in males. Assay of hCG is complicated by the occurrence of different molecular forms, which are detected to various degrees by different assays. The main form of hCG in circulation and in patients with trophoblastic tumors is intact heterodimeric hCG. The free β subunit (hCGβ) is a minor form in plasma in both conditions, but it may be the major form aggressive trophoblastic cancer. Therefore, assays measuring hCG and hCGβ together are mainly used for diagnosis of pregnancy and trophoblastic diseases. When excreted into urine, most of hCG (and hCGβ) is broken down to the core fragment of hCGβ (hCGβcf), which is the main immunoreactive form of hCG in urine during pregnancy. Specific determination of hCGβ is of value in screening for Down's syndrome and diagnosis of nontrophoblastic cancer. hCGbcf is of limited utility but it is important because it may disturb assay of hCG in pregnancy.
Collapse
Affiliation(s)
- Ulf-Håkan Stenman
- Department of Clinical Chemistry, Helsinki University, Biomedicum, PB 63, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
24
|
The hCG Group: the Key Molecules in Human Evolution, Human Life, and Human Death. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2013. [DOI: 10.1007/s13669-013-0066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Current Concepts and New Trends in the Diagnosis and Management of Recurrent Miscarriage. Obstet Gynecol Surv 2013; 68:445-66. [DOI: 10.1097/ogx.0b013e31828aca19] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
El Behery MM, Siam S, Seksaka MA, Mansour SM. Uterine artery Doppler and urinary hyperglycosylated HCG as predictors of threatened abortion outcome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2013. [DOI: 10.1016/j.mefs.2012.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
27
|
Butler SA, Luttoo J, Freire MOT, Abban TK, Borrelli PTA, Iles RK. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment. Reprod Sci 2013; 20:1038-45. [PMID: 23439616 DOI: 10.1177/1933719112472739] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human chorionic gonadotropin (hCG) is produced by trophoblast cells throughout pregnancy, and gene expression studies have indicated that hCG-beta subunit (hCGβ) expression is active at the 2 blastomere stage. Here, we investigated the qualitative hCG output of developing embryos in culture and hCG isoforms expressed in the secretome as a novel sensitive method for detecting hCG. Culture media was collected from the culture plates of 118 embryos in culture (including controls and embryos at different stages of culture) from 16 patients undergoing routine fertility treatment. The hCGβ was detectable in media from 2 pronuclear (2PN) stage embryos through to the blastocyst stage. The hCGβ was absent in 1PN and arrested embryos as well as all media controls. Prior to hatching, hyperglycosylated hCG (hCGh) was observed selectively in 3PN embryos, but after hatching, along with hCG, became the dominant hCG molecule observed. We have reported at the 2PN stage the earliest evidence of hCGβ expression in embryos. There is a suggestion this may be indicative of quality in early embryos, and hCGh seen at the pronuclear stage may suggest triploid abnormality. The dominance of hCG, and hCGh expression, seen after blastocyst hatching may be indicative of potential implantation success. Thus, hCG isoforms have potential roles as biomarkers of embryo viability for embryo/blastocyst transfer.
Collapse
Affiliation(s)
- Stephen A Butler
- Centre for Investigative and Diagnostic Oncology, Middlesex University, The Burroughs, Hendon, London, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Crochet JR, Shah AA, Schomberg DW, Price TM. Hyperglycosylated human chorionic gonadotropin does not increase progesterone production by luteinized granulosa cells. J Clin Endocrinol Metab 2012; 97:E1741-4. [PMID: 22745244 DOI: 10.1210/jc.2012-2027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Trophoblast-derived human chorionic gonadotropin (hCG) promotes corpus luteum progesterone (P4) production, and wide ranges of serum P4 levels are noted in various pregnancy outcomes, despite similar hCG concentrations. There are five unique biologically active hCG variants in human pregnancy urine, and previous studies of P4 production in response to hCG have used only preparations containing all isoforms. Understanding exactly which hCG variant is primarily responsible for stimulating corpus luteum steroidogenesis may have great clinical and diagnostic implications, including in the setting of ectopic pregnancy. OBJECTIVE Our objective was to delineate the role of the standard and hyperglycosylated (H)-hCG isoforms in stimulating P4 production by luteinized granulosa cells. DESIGN AND SETTING Cell culture, ELISA, and fluorometric-based protein assays were done at Duke University Medical Center. PATIENTS Patients were anonymous oocyte donors. INTERVENTION Cultured luteinized granulosa cells were treated with 0.25, 0.5, and 1.0 ng/ml total hCG, which contains all isoforms, purified standard hCG (37.1 kDa), and purified H-hCG (42.8 kDa). MAIN OUTCOME MEASURE P4 produced per total cellular protein (nanograms per microgram) was measured via ELISA and fluorometric protein determination kits. RESULTS Both total hCG (P = 0.0003) and purified standard hCG (P < 0.0001) stimulated a dose-dependent increase in P4 production. Purified H-hCG did not change the P4 produced per total cellular protein response (P value not significant). CONCLUSIONS Standard hCG stimulated P4 production by cultured granulosa cells and likely supports corpus luteum function via interactions with the LH/hCG receptor. In contrast, H-hCG did not increase P4 production, which indicates a nonsteroidogenic role for this protein during early gestation.
Collapse
Affiliation(s)
- John R Crochet
- Division of Reproductive Endocrinology and Fertility and Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina 27713, USA
| | | | | | | |
Collapse
|
29
|
Cole LA, Butler SA. The biological function of hyperglycosylated hCG. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60039-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|