1
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Yang Y, Zhou Y, Li X, He Y, Bai Y, Wang B, Chen S, Liu C. Transcriptome profiling reveals transcriptional regulation of Protegrin-1 on immune defense and development in porcine granulosa cells. Gene 2024; 890:147819. [PMID: 37741593 DOI: 10.1016/j.gene.2023.147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Protegrin-1 (PG1) is an antimicrobial peptide (AMP) that has garnered increasing attention due to its potent immune defense activity. Our previous studies demonstrated the ability of PG1 to enhance proliferation and inhibit apoptosis of porcine granulosa cells (GCs) under oxidative stress. GCs play a crucial role in ovary follicular development. However, the specific function and underlying mechanisms of AMP in follicular development still need further elucidation. The present study aimed to comprehensively explore the biological effects of PG1 on porcine GCs using transcriptome profiling by RNA sequencing technology. Isolated GCs were incubated with or without PG1 for 24 h and transcriptome-wide analysis was exerted to identify differentially expressed genes (DEGs). The results of expression analysis revealed 1,235 DEGs, including 242 up-regulated genes and 993 down-regulated genes (|log2 (FoldChange)| > 1; adjusted P-value < 0.05). The expression levels of 7 selected DEGs were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis, which was consistent with the RNA-sequencing data. Among the significant DEGs, several genes associated with GC function and ovarian follicle development were identified, such as estrogen receptor 2 (ESR2), growth and differentiation factor 6 (GDF6), cell division cycle 20 homolog (CDC20), Notch3, ephrin and Eph receptor system, Egl nine homolog 3 (EGLN3), and BCL2 like 14 (BCL2L14). Gene Ontology (GO) analysis revealed that the top three significant GO terms were inflammatory response, defense response, and granulocyte migration. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis presented that DEGs were mainly enriched in the immune system, infectious disease, signaling molecules and interaction, and immune disease. Furthermore, Ingenuity Pathway Analysis (IPA) predicted that the top activated pathway was Liver X Receptor (LXR)/ Retinoid X Receptor (RXR) Activation which is known to be associated with female reproduction. Predicted protein-protein interactions (PPIs) analysis identified complement C3 (C3) as the top node with the highest degree of network connection and revealed that DEGs in the sub-networks were involved in cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, chemokine signaling pathway, and metabolic process. In conclusion, this study expanded the understanding of the effects of PG1 on porcine GCs at the transcriptomic level and provided a theoretical basis for further investigation into the role of PG1 in immune defense and mammalian ovarian follicular development.
Collapse
Affiliation(s)
- Yiqing Yang
- Department of Life Science and Engineering, Foshan University, China
| | - Yuanyuan Zhou
- Department of Life Science and Engineering, Foshan University, China
| | - Xuan Li
- Department of Life Science and Engineering, Foshan University, China
| | - Yinlin He
- Department of Life Science and Engineering, Foshan University, China
| | - Yinshan Bai
- Department of Life Science and Engineering, Foshan University, China
| | - Bingyun Wang
- Department of Life Science and Engineering, Foshan University, China
| | - Shengfeng Chen
- Department of Life Science and Engineering, Foshan University, China
| | - Canying Liu
- Department of Life Science and Engineering, Foshan University, China.
| |
Collapse
|
3
|
Li A, Li F, Song W, Lei ZL, Zhou CY, Zhang X, Sun QY, Zhang Q, Zhang T. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115811. [PMID: 38086265 DOI: 10.1016/j.ecoenv.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our previous study reveals that maternal exposure to 4-vinylcyclohexene diepoxide (VCD) during pregnancy causes insufficient ovarian follicle reserve and decreased fertility in offspring. The present study aims to further explore the reasons for the significant decline of fecundity in mice caused by VCD, and to clarify the changes of gut microbiota and microbial metabolites in F1 mice. The ovarian metabolomics, gut microbiota and microbial metabolites were analyzed. The results of ovarian metabolomics analysis showed that maternal VCD exposure during pregnancy significantly reduced the concentration of carnitine in the ovaries of F1 mice, while supplementation with carnitine (isovalerylcarnitine and valerylcarnitine) significantly increased the number of ovulation. The results of 16 S rDNA-seq and microbial metabolites analysis showed that maternal VCD exposure during pregnancy caused disordered gut microbiota, increased abundance of Parabacteroides and Flexispira bacteria that are involved in secondary bile acid synthesis. The concentrations of NorDCA, LCA-3S, DCA and other secondary bile acids increased significantly. Our results indicate that maternal exposure to VCD during pregnancy leads to disorder in gut microbiota and bile acid metabolism in F1 mice, accompanying with decreased ovarian function, providing further evidence that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on offspring.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Wei Song
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zi-Li Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Traditional Chinese Medicine (TCM) Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang-Yin Zhou
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qin Zhang
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
4
|
Liu Y, Ni T, Zhao Q, Cui W, Lan X, Zhou T, Zhang Q, Yan J. Maternal hypercholesterolemia would increase the incidence of embryo aneuploidy in couples with recurrent implantation failure. Eur J Med Res 2023; 28:534. [PMID: 37990245 PMCID: PMC10662148 DOI: 10.1186/s40001-023-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND The association of dyslipidemia with embryo development and pregnancy outcomes is largely unknown, especially in unexplained recurrent implantation failure (uRIF) patients. Here, this study aimed to explore the impact of abnormal blood lipid levels on embryo genetic status and pregnancy outcomes after preimplantation genetic testing for aneuploidy (PGT-A) from a clinical perspective. METHODS This study retrospectively analyzed 502 patients diagnosed as uRIF. They were divided into four groups according to the levels of cholesterol and triglyceride: nonhyperlipidemia group (NonH group), simple hypercholesterolemia group (SHC group), simple hypertriglyceridemia group (SHC group) and mixed hyperlipidemia group (MixH group). At the same time, patients were divided into non-low HDL-C group and low HDL-C group according to their HDL-C level. The outcomes of embryos genetic testing and pregnancy outcomes after PGT-A was analyzed between groups. Binary logistic regression and/or generalized estimating equation (GEE) model were conducted to investigate the association of different types of dyslipidemia with embryonic aneuploidy rate and cumulative live-birth rate. RESULTS 474 women who met the inclusion criteria were divided into four groups: NonH group (N = 349), SHC group (N = 55), SHT group (N = 52) and MixH group (N = 18). Compared with the NonH group, SHC group had a significantly increased rate of embryo aneuploidy [48.3% vs. 36.7%, P = 0.006; adjusted OR (95% confidence interval) = 1.52(1.04-2.22), P = 0.029], as well as a reduced number of good-quality embryos on day 5 or 6 [3.00 ± 2.29 vs. 3.74 ± 2.77, P = 0.033]. The SHC group showed a tendency of a lower cumulative live birth rate (47.0% vs. 40.0%), a lower incidence of good birth outcome (37.2% vs. 34.5%) and a higher risk of clinical pregnancy loss (11.1% vs. 17.9%), but did not reach statistical significance (P > 0.05). The incidences of obstetric or neonatal complications and other adverse events were similar in the four groups. Whether patients have low HDL-C did not differ in pregnancy outcomes. CONCLUSIONS We found that uRIF women with hypercholesterolemia had an increased proportion of aneuploid embryos and a reduced proportion of high-quality embryos, while different types of hyperlipidemia had no correlation with cumulative live birth rate as well as pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Yang Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Qing Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Weiran Cui
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Tingting Zhou
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Wang YC, Ma YD, Liu H, Cui ZH, Zhao D, Zhang XQ, Zhang LX, Guo WJ, Long Y, Tu SS, Yuan DZ, Zhang JH, Wang BK, Xu LZ, Shen QY, Wang Y, Nie L, Yue LM. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci 2023; 313:121224. [PMID: 36435224 DOI: 10.1016/j.lfs.2022.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
AIMS Polycystic ovary syndrome (PCOS) is a common endocrine disorder in the women of childbearing age. It is characterized by hyperandrogenism and abnormal follicular growth and ovulation. The polyol pathway is a glucose metabolism bypass pathway initiated by aldose reductase (ADR). Androgen induces the expression of ADR in the male reproductive tract, which has a general physiological significance for male reproductive function. Here we investigate whether hyperandrogenemia in PCOS leads to increased flux of the polyol pathway in ovarian tissue, which in turn affects follicular maturation and ovulation through oxidative stress. MAIN METHODS We used clinical epidemiological methods to collect serum and granulosa cells from clinical subjects for a clinical case-control study. At the same time, cell biology and molecular biology techniques were used to conduct animal and cell experiments to further explore the mechanism of hyperandrogen-induced ovarian polyol pathway hyperactivity and damage to ovarian function. KEY FINDINGS Here, we find that hyperandrogenism of PCOS can induce the expression of ovarian aldose reductase, which leads to the increase of the polyol pathway flux, and affects ovarian function through excessive oxidative stress. SIGNIFICANCE Our research has enriched the pathological mechanism of PCOS and may provide a new clue for the clinical treatment of PCOS.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Department of Reproductive Health and Infertility, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Yong-Dan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhi-Hui Cui
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xue-Qin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Xue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wen-Jing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sha-Sha Tu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dong-Zhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin-Hu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bing-Kun Wang
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang-Zhi Xu
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiong-Yan Shen
- Reproductive Medicine Center, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Wang
- Reproductive Medicine Center, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China; Reproductive Endocrinology and Regulation Joint Laboratory, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
7
|
Zhou J, Zhou J, Wu LJX, Li YY, Li MQ, Liao HQ. CircRNA circUSP36 impairs the stability of NEDD4L mRNA through recruiting PTBP1 to enhance ULK1-mediated autophagic granulosa cell death. J Reprod Immunol 2022; 153:103681. [DOI: 10.1016/j.jri.2022.103681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
8
|
Yang X, Zhao Z, Fan Q, Li H, Zhao L, Liu C, Liang X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod Biomed Online 2022; 44:185-192. [PMID: 34801402 DOI: 10.1016/j.rbmo.2021.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION Does cholesterol metabolism differ in patients with diminished ovarian reserve (DOR) compared to patients with normal ovarian reserve (NOR)? DESIGN The current research included 72 women with NOR and 86 women with DOR. Data on the cholesterol metabolism in granulosa cells of these women were analysed. RESULTS On the day of human chorionic gonadotrophin injection, serum oestradiol and progesterone in the DOR group were significantly lower than in the control group (P < 0.001). There were no significant differences in serum concentrations of total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein between the NOR and DOR groups. The cholesterol-regulated gene SCAP in granulosa cells from women with DOR was down-regulated (P = 0.024). Cholesterol synthesis and transport genes (e.g. IDI1, FDFT1, CYP51A1, SRB1 and STARD1) were also significantly decreased (P = 0.026, P = 0.044, P = 0.049, P = 0.004 and P < 0.001, respectively). In granulosa cells of patients with DOR, cholesterol-related substances such as coprostanone, 11A-acetoxyprogesterone and 17α-hydroxyprogesterone were significantly reduced (P = 0.0008, P = 0.0269, P = 0.0337, respectively). CYP19A1, a key steroidogenesis gene, was significantly reduced (P = 0.009). 17α-hydroxyprogesterone and oestradiol decreased (P = 0.004 and P = 0.039, respectively). CONCLUSION Decreased cholesterol metabolism affecting steroid hormone synthesis in granulosa cells might be a possible mechanism for DOR.
Collapse
Affiliation(s)
- Xiulan Yang
- Liangzhou Hospital of Traditional Chinese and Western Medicine, Liangzhou, China
| | - Zhongying Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China
| | - Lihui Zhao
- Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology, Lanzhou Gansu Province, China.
| |
Collapse
|
9
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
10
|
Quiroz A, Molina P, Santander N, Gallardo D, Rigotti A, Busso D. Ovarian cholesterol efflux: ATP-binding cassette transporters and follicular fluid HDL regulate cholesterol content in mouse oocytes†. Biol Reprod 2021; 102:348-361. [PMID: 31423535 DOI: 10.1093/biolre/ioz159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/30/2019] [Accepted: 08/10/2019] [Indexed: 11/13/2022] Open
Abstract
High density lipoproteins (HDL) take up cholesterol from peripheral tissues via ABC transporters and deliver it to the liver via scavenger receptor class B type I (SR-B1). HDL are the main lipoproteins present in follicular fluid (FF). They are thought to derive from plasma, but their origin is still controversial. SR-B1 knock-out (KO) mice have provided important evidence linking HDL metabolism and female fertility. These mice have cholesterol-rich circulating HDL and female infertility that can be restored by treating mice with the cholesterol-lowering drug probucol. Ovulated oocytes from SR-B1 KO females are dysfunctional and show excess cholesterol. The mechanisms explaining the contribution of FF HDL to oocyte cholesterol homeostasis are unknown. Here, using quantitation of filipin fluorescence we show that in SR-B1 KO ovaries, cholesterol excess is first observed in immature oocytes in antral follicles. By performing cross-transplant experiments between WT and apolipoprotein A-I deficient (ApoA-I KO) mice, which lack the main protein component of HDL, we provide evidence supporting the plasmatic origin of FF HDL. Also, we demonstrate that probucol treatment in SR-B1 KO females results in lowering of cholesterol content in their oocytes. Incubation of oocytes from SR-B1 KO mice with purified WT HDL reduces their cholesterol content, suggesting that HDL promote efflux of excess cholesterol from oocytes. In agreement with this hypothesis, we identified ABC transporters in oocytes and observed that ABCA1 KO oocytes have excess cholesterol and lower viability than WT oocytes.
Collapse
Affiliation(s)
- Alonso Quiroz
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paz Molina
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Gallardo
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dolores Busso
- Department of Nutrition, Diabetes and Metabolism, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Facial appearance and metabolic health biomarkers in women. Sci Rep 2020; 10:13067. [PMID: 32747662 PMCID: PMC7398920 DOI: 10.1038/s41598-020-70119-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Facial appearance has been suggested to provide an honest cue of an individual’s biological condition. However, there is little direct evidence that facial attractiveness reflects actual health. Here we tested if facial appearance is related with metabolic health biomarkers. Face photographs of 161 healthy, young women (Mage = 28.59, SDage = 2.34) were assessed in terms of perceived attractiveness and health. Metabolic health was evaluated based on levels of markers of lipid and glucose metabolism balance, liver functioning, and inflammation. BMI, testosterone (T), and estradiol (E2) levels were controlled. Facial attractiveness, but not health, was negatively related with lipid profile components detrimental to health (total cholesterol, LDL, triglycerides) but not with relatively protective for health HDL. When controlled for BMI, E2, and T, only the relationship between attractiveness and triglycerides remained significant. Facial appearance was unrelated with glucose metabolism, liver functioning, and inflammatory markers. The results suggest, that for healthy women of reproductive age, such measures as BMI and sex hormone levels may be better predictors of attractiveness, compared to measures of metabolic health. Markers of lipid, glucose homeostasis, liver functioning or low-grade inflammation may be rather indicators of future health, of lesser importance in mating context, thus only modestly reflected in facial appearance.
Collapse
|
12
|
Guo Y, Li Y, Zhang S, Wu X, Jiang L, Zhao Q, Xue W, Huo S. The effect of total flavonoids of Epimedium on granulosa cell development in laying hens. Poult Sci 2020; 99:4598-4606. [PMID: 32868004 PMCID: PMC7597984 DOI: 10.1016/j.psj.2020.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/02/2022] Open
Abstract
To investigate the impact of total flavonoids of Epimedium (TFE) on the development of follicles of laying hens, 3 types of follicles including primary, prehierarchical, and preovulatory follicles were selected to obtain the follicular granulosa cells cultured in vitro. First, extraction of TFE was conducted by alcohol-soluble and ultrasonic methods. The effects of TFE on activity and proliferation of follicular granulosa cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and measuring the expression of proliferating cell nuclear antigen mRNA through real-time quantitative polymerase chain reaction, and the expression of the follicle-stimulating hormone receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, and cytochrome P450 family 11 subfamily A member 1 mRNA was detected to study the functions of TFE affecting the differentiation and hormone secretion by granulosa cells. The results showed that TFE significantly improved the proliferation of 3 types of granulosa cells and promoted the differentiation of granulosa cells and accelerated the conversion of primary follicles to prehierarchical follicles. Total flavonoids of Epimedium played an important role in promoting progesterone secretion by prehierarchical and preovulatory granulosa cells. The results indicated that TFE could promote proliferation and differentiation of follicular granulosa cells and improve hormone secretion and follicle development, which provided reference data for TFE used as a feed additive or safe Chinese veterinary medicine to promote the laying rate.
Collapse
Affiliation(s)
- Yu Guo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Yurong Li
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuang Zhang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Xianjun Wu
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Luying Jiang
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Qianhui Zhao
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Wenhui Xue
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China
| | - Shuying Huo
- The College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, China.
| |
Collapse
|
13
|
Jia C, Nagy RA, Homminga I, Hoek A, Tietge UJF. The anti-inflammatory function of follicular fluid HDL and outcome of modified natural cycle in vitro fertilization†. Biol Reprod 2020; 103:7-9. [PMID: 32333006 PMCID: PMC7313252 DOI: 10.1093/biolre/ioaa061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Congzhuo Jia
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ruxandra A Nagy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Homminga
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke Hoek
- Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Section Reproductive Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Cho MH, Kim SH, Lee DK, Lee M, Lee CK. Progesterone receptor membrane component 1 (PGRMC1)-mediated progesterone effect on preimplantation development of in vitro produced porcine embryos. Theriogenology 2020; 147:39-49. [PMID: 32086050 DOI: 10.1016/j.theriogenology.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 01/10/2023]
Abstract
Progesterone is a steroid hormone well known for its significant role in the reproduction process of mammals. Numerous studies have reported on the regulation of progesterone during implantation, pregnancy and parturition, but there are fewer studies on progesterone in relation to the early stages of embryo development. In the present study, we investigated the effects of progesterone during the development of in vitro produced porcine embryos. First, gene expression of various progesterone receptors in the in vitro produced porcine embryos were analyzed. PGRMC1 and PGRMC2 (progesterone receptor membrane component 1 and 2) showed distinct expression. Next, the embryos were treated with two concentrations of progesterone (10 nM and 100 nM) for two different durations (from day 0 and from day 4) to compare the developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts. The experimental groups in both durations showed similarly increased blastocyst cell numbers and decreased apoptosis rates when treated with 100 nM progesterone. Furthermore, the expression levels of PGRMC1, PGRMC2, PAIRBP1 (plasminogen activator inhibitor RNA-binding protein 1), and apoptosis-related genes were examined in blastocysts and showed significant increases in the 100 nM treatment group compared to the control group. Subsequently, the embryos were treated with the PGRMC1 inhibitor, AG-205, and developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts were compared. In addition, 100 nM progesterone was treated simultaneously with AG-205 to test if the inhibition effect is relieved by progesterone. Groups treated with 1 μM and 2 μM AG-205 showed decreased cell numbers and increased apoptosis rates in day 7 blastocysts compared to the control group. We also confirmed the recovery of inhibition by 100 nM progesterone. In conclusion, the present study indicated that progesterone positively affects the development of in vitro produced preimplantation porcine embryos by increasing cell proliferation and decreasing apoptosis via PGRMC1-involved actions. However, the detailed mechanisms of PGRMC1 need further elucidation.
Collapse
Affiliation(s)
- Man Ho Cho
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea; Designed Animal & Transplantation Research Institute, Institute of Green Bio Science and Technology, Seoul National University, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
15
|
Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep 2020; 10:2300. [PMID: 32042028 PMCID: PMC7010774 DOI: 10.1038/s41598-020-59186-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are known post-transcriptional regulators of various biological processes including ovarian follicle development. We have previously identified miRNAs from human pre-ovulatory ovarian granulosa cells that are expressed from the intronic regions of two key genes in normal follicular development: FSH receptor (FSHR) and CYP19A1, the latter encoding the aromatase enzyme. The present study aims to identify the target genes regulated by these miRNAs: hsa-miR-548ba and hsa-miR-7973, respectively. The miRNAs of interest were transfected into KGN cell line and the gene expression changes were analyzed by Affymetrix microarray. Potential miRNA-regulated genes were further filtered by bioinformatic target prediction algorithms and validated for direct miRNA:mRNA binding by luciferase reporter assay. LIFR, PTEN, NEO1 and SP110 were confirmed as targets for hsa-miR-548ba. Hsa-miR-7973 target genes ADAM19, PXDN and FMNL3 also passed all verification steps. Additionally, the expression pattern of the miRNAs was studied in human primary cumulus granulosa cell culture in relation to the expression of their host genes and FSH stimulation. Based on our findings we propose the involvement of hsa-miR-548ba in the regulation of follicle growth and activation via LIFR and PTEN. Hsa-miR-7973 may be implicated in the modulation of extracellular matrix and cell-cell interactions by regulating the expression of its identified targets.
Collapse
|
16
|
Alves GP, Cordeiro FB, Bruna de Lima C, Annes K, Cristina Dos Santos É, Ispada J, Fontes PK, Nogueira MFG, Nichi M, Milazzotto MP. Follicular environment as a predictive tool for embryo development and kinetics in cattle. Reprod Fertil Dev 2019; 31:451-461. [PMID: 30301510 DOI: 10.1071/rd18143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Follicular fluid composition and the transcription pattern of granulosa cells were analysed to better comprehend associations between embryo development and morphokinetics. Bovine follicles were punctured and their respective follicular fluid and granulosa cells were collected. Cumulus-oocyte complexes derived from these follicles were matured and fertilised invitro. Embryo morphology and kinetics were evaluated at 40h after insemination, when embryos were classified as fast (FCL, four or more cells), slow (SCL, 2-3 cells) or non-cleaved (NCL). Their development was followed until the blastocyst stage. Glucose, pyruvate, cholesterol and oestradiol were quantified in the follicular fluid and the transcription pattern of 96 target genes was evaluated in granulosa cells by large-scale quantitative reverse transcription polymerase chain reaction. Follicular fluid from the blastocyst group had increased levels of glucose, total cholesterol and pyruvate compared to the non-blastocyst group, whereas higher levels of oestradiol were observed in the follicular fluid of embryos and blastocysts with fast cleavage. The transcriptional pattern revealed altered metabolic pathways between groups, such as lipid metabolism, cellular stress and cell signalling. In conclusion, both follicular fluid and granulosa cells are associated with the possibility of identifying follicles that may generate embryos with high potential to properly develop to the blastocyst stage.
Collapse
Affiliation(s)
- Gláucia Pereira Alves
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| | - Fernanda Bertuccez Cordeiro
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Camila Bruna de Lima
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| | - Kelly Annes
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| | - Érika Cristina Dos Santos
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| | - Jéssica Ispada
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| | - Patrícia Kubo Fontes
- Institute of Biosciences, Universidade Estadual Paulista (UNESP), Campus Botucatu, São Paulo, Brazil
| | - Marcelo Fabio Gouveia Nogueira
- Department of Biological Sciences, School of Sciences and Languages, Universidade Estadual Paulista (UNESP), Campus Assis, Assis, São Paulo, Brazil
| | - Marcílio Nichi
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Marcella Pecora Milazzotto
- Laboratory of Cellular and Molecular Biology, Centre of Natural Sciences and Humanities, Federal University of ABC, Av dos Estados, 5005, CEP 09210190, Santo André, SP, Brazil
| |
Collapse
|
17
|
Nagy RA, Hollema H, Andrei D, Jurdzinski A, Kuipers F, Hoek A, Tietge UJ. The Origin of Follicular Bile Acids in the Human Ovary. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2036-2045. [DOI: 10.1016/j.ajpath.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/31/2023]
|
18
|
Basic fibroblast growth factor promotes prehierarchical follicle growth and yolk deposition in the chicken. Theriogenology 2019; 139:90-97. [PMID: 31400551 DOI: 10.1016/j.theriogenology.2019.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/05/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Basic fibroblast growth factor (bFGF) plays a pivotal role in prompting ovarian follicular development and angiogenesis as well as inhibiting atresia. In the chicken, high laying performance depends largely on efficient healthy development of ovarian follicles. Moreover, rapid growth of oocytes resulted from abundant yolk deposition via blood circulation and intra-ovarian interactions among somatic and germ cells. The major components of yolk mass consist of very low density lipoprotein (VLDL) and vitellogenin that are taken up by maturing oocytes via VLDL receptor (VLDLR)-mediated endocytosis from blood capillaries in the theca layer and gaps between granulosa cells. Here we used immunofluorescence, BrdU, TUNEL, Western bolt and RT-qPCR methods to investigate effects of bFGF on growth and yolk deposition of chicken prehierarchical follicles. Results showed that VLDLR was mainly expressed in the granulosa cells of the prehierarchical and preovulatory follicles, and its expression declined with follicle growth. Moreover, bFGF caused a dose-dependent promoting effect on growth of small white follicles and this effect was inhibited by SU5402 (an FGFR1 antagonist). Proliferation of follicular theca externa cells was accelerated by bFGF via FGFR1-AKT signaling, coupled with augmented angiogenesis and up-regulated p-ERK expression in granulosa cells. After combined inhibition of FGFR1 and PPARγ, we found that PPARγ could also suppress VLDLR expression in granulosa cells. These results indicate that bFGF facilitated growth and yolk deposition in chicken prehierarchical follicles through promoting proliferation and angiogenesis in theca layers, and also through down-regulating VLDLR expression in granulosa cells.
Collapse
|
19
|
Shehadeh A, Bruck-Haimson R, Saidemberg D, Zacharia A, Herzberg S, Ben-Meir A, Moussaieff A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J 2019; 33:10291-10299. [PMID: 31219705 DOI: 10.1096/fj.201900318rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Follicular fluid (FF) is a liquid that surrounds the ovum. Its metabolite and, specifically, its lipid content have been associated with oocyte development. To characterize possible association between the lipid composition of FF and the outcome of pregnancy, we carried out a lipidomics study and compared the abundance of lipids from FF of patients with positive and negative outcomes. We found a differential lipid network wiring in positive-outcome FF, with a significant decrease (∼2 fold; P < 0.001) in triacylglycerol levels and higher accumulation (10-50%; P < 0.001) of membrane lipids groups (phospholipids and sphingolipids). In addition to this major metabolic alteration, other lipid groups such as cholesteryl esters showed lower levels in positive-outcome patients, whereas derivatives of vitamin D were highly accumulated in positive-outcome FF, supporting previous studies that associate vitamin D levels in FF to pregnancy outcome. Our data also point to specific lipid species with a differential accumulation pattern in positive-outcome FF that predicted pregnancy in a receiver operating characteristic analysis. Altogether, our results suggest that FF lipid network is associated with the oocyte development, with possible implications in diagnostics and treatment.-Shehadeh, A., Bruck-Haimson, R., Saidemberg, D., Zacharia. A., Herzberg, S., Ben-Meir, A., Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome.
Collapse
Affiliation(s)
- Alaa Shehadeh
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Herzberg
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Assaf Ben-Meir
- IVF Unit, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Wang M, Zhao D, Xu L, Guo W, Nie L, Lei Y, Long Y, Liu M, Wang Y, Zhang X, Zhang L, Li H, Zhang J, Yuan D, Yue L. Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism 2019; 94:47-58. [PMID: 30768966 DOI: 10.1016/j.metabol.2019.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/03/2019] [Accepted: 02/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in the cholesterol metabolism by negatively regulating the low-density lipoprotein receptor (LDLR). Lipid metabolic and ovarian disorders are the common clinical manifestation of polycystic ovary syndrome (PCOS). Here, we intended to elucidate the role of PCSK9 in the pathogenesis of PCOS conducted on a human population in case-control design and animal part in an interventional study. METHODS We firstly investigated the serum levels of PCSK9 in 46 PCOS patients compared with 49 healthy women as controls, and then developed a PCOS mouse model induced by dehydroepiandrosterone (DHEA) and a high-fat diet (HFD) to determine the role of PCSK9 in abnormal lipid metabolism and ovarian dysfunction of PCOS in four groups (n = 40 per group): control, PCOS mice, PCOS plus alirocumab group, and PCOS plus vehicle group. The expression of PCSK9 in their serum, hepatic and ovarian tissues, serum lipid profiles and hormones were measured. Additionally, mRNA and protein expression levels of LDLR in hepatic and ovarian tissues, ovarian morphology and function were determined. Finally, we used freshly isolated theca-interstitial cells (TICs) and granulosa cells (GCs) from prepubertal normal mice to explore the effect of PCSK9 on LDL uptake of the cells. RESULTS Serum PCSK9 concentrations were higher in PCOS patients than normal controls (P < 0.05). The PCOS model mice exhibited significantly increased serum levels of total cholesterol (TC), LDL-C and high-density lipoprotein-cholesterol (HDL-C; P < 0.001, P < 0.001, P = 0.0004, respectively). Moreover, the serum PCSK9 protein level was significantly increased in PCOS mice (P = 0.0002), which positively correlated with serum LDL-C (r = 0.5279, P = 0.0004) and TC (r = 0.4151, P = 0.035). In both liver and ovary of PCOS mice, PCSK9 mRNA and protein levels were significantly increased (P < 0.05), but LDLR levels were significantly decreased (P < 0.05). Furthermore, alirocumab inhibiting PCSK9 partly increased in LDLR expression in both liver and ovary in PCOS mice, also ameliorated the lipid metabolic disorders and pathological changes of ovarian morphology and function and serum reproductive hormones but not in the PCOS plus vehicle group. In vitro experiment, recombinant PCSK9 decreased LDL uptake in TICs and GCs (P < 0.001, P = 0.0011, respectively), which were partly reversed by alirocumab (P < 0.001, P = 0.012, respectively). CONCLUSION Abnormal high expression of PCSK9 in the blood, liver and ovary may be involved in the pathogenesis of PCOS by affecting lipid metabolism and ovarian function, and the inhibition of PCSK9 may partly reverse the pathological changes of PCOS. Our research suggests a possibility of PCSK9 as a new attractive target for diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Meijiao Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Dan Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Joint Laboratory, West China Second University Hospital, Sichuan University, Sichuan, Chengdu, China; Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan, Chengdu, China
| | - Wenjing Guo
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yi Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Min Liu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Yichen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Xueqin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Li Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Hanna Li
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Jinhu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China
| | - Dongzhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China.
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Sichuan, Chengdu, China.
| |
Collapse
|
21
|
Chen WW, Yi YH, Chien CH, Hsiung KC, Ma TH, Lin YC, Lo SJ, Chang TC. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging. Sci Rep 2016; 6:32021. [PMID: 27535493 PMCID: PMC4989181 DOI: 10.1038/srep32021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) exhibit critical functions in biological systems and their importance during animal oocyte maturation has been increasingly recognized. However, the detailed mechanism of lipid transportation for oocyte development remains largely unknown. In this study, the transportation of yolk lipoprotein (lipid carrier) and the rate of lipid delivery into oocytes in live C. elegans were examined for the first time by using coherent anti-Stokes Raman scattering (CARS) microscopy. The accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, an image analysis protocol was established to quantitatively measure the levels of secreted yolk lipoprotein aberrantly accumulated in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results revealed that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans. This work demonstrates the value of using CARS microscopy as a molecular-selective label-free imaging technique for the study of PUFA regulation and oocyte development in C. elegans.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yung-Hsiang Yi
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Cheng-Hao Chien
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Kuei-Ching Hsiung
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Tian-Hsiang Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yi-Chun Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Szecheng J Lo
- Center of Molecular Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
22
|
Laskowski D, Sjunnesson Y, Humblot P, Sirard MA, Andersson G, Gustafsson H, Båge R. Insulin exposure during in vitro bovine oocyte maturation changes blastocyst gene expression and developmental potential. Reprod Fertil Dev 2016; 29:RD15315. [PMID: 26922243 DOI: 10.1071/rd15315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/16/2015] [Indexed: 02/28/2024] Open
Abstract
Metabolic imbalance impairs fertility, because changes in concentrations of metabolites and hormones in the blood and follicular fluid create an unfavourable environment for early embryonic development. Insulin is a key metabolic hormone known for its effects on fertility: insulin concentrations are increased during energy balance disturbances in diabetes or metabolic syndrome. Still, insulin is frequently used at supraphysiological concentrations for embryo in vitro culture with unknown consequences for the developmental potential of the offspring. In the present study we investigated the effects of insulin exposure during in vitro bovine oocyte maturation on developmental rates, embryo quality and gene expression. Supplementation of the maturation media with insulin at 10 or 0.1 µg mL-1 decreased blastocyst rates compared with an insulin-free control (19.8 ± 1.3% and 20.4 ± 1.3% vs 23.8 ± 1.3%, respectively; P < 0.05) and led to increased cell numbers (nearly 10% more cells on Day 8 compared with control; P < 0.05). Transcriptome analysis revealed significant upregulation of genes involved in lipid metabolism, nuclear factor (erythroid-derived 2)-like 2 (NRF2) stress response and cell differentiation, validated by quantitative polymerase chain reaction. To conclude, the results of the present study demonstrate that insulin exposure during in vitro oocyte maturation has a lasting effect on the embryo until the blastocyst stage, with a potential negative effect in the form of specific gene expression perturbations.
Collapse
|
23
|
Kim K, Bloom MS, Fujimoto VY, Bell EM, Yucel RM, Browne RW. Variability in follicular fluid high density lipoprotein particle components measured in ipsilateral follicles. J Assist Reprod Genet 2016; 33:423-430. [PMID: 26758460 DOI: 10.1007/s10815-016-0648-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/03/2016] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the biological variability of follicular fluid (FF) high density lipoprotein (HDL) particle components measured in ipsilateral ovarian follicles. METHODS We collected FF from two ipsilateral follicles among six women undergoing in vitro fertilization (IVF). We measured concentrations of 19 FF HDL particle components, including HDL cholesterol, free cholesterol, four cholesteryl esters, phospholipids, triglycerides, paraoxonase and arylesterase activities, apolipoproteins A-1 and A-2 (ApoA-1 and ApoA-2), and seven lipophilic micronutrients, by automated analysis and with high-performance liquid chromatography. We assessed biological variability using two-stage nested analysis of variance and compared values with those previously published for contralateral follicles. RESULTS For most FF HDL analytes, there was little variability between follicles relative to the variability between women (i.e., %σ(2) F:%σ(2) B <0.5). Intraclass correlation coefficients were >0.80 for HDL cholesterol (0.82), phospholipids (0.89), paraoxonase (0.96), and arylesterase (0.91) activities, ApoA-1 (0.89), and ApoA-2 (0.90), and single specimen collections were required to estimate the subject-specific mean, demonstrating sufficient reliability for use as biomarkers of the follicular microenvironment in epidemiologic and clinical studies. CONCLUSIONS These preliminary results raise the possibility for tighter regulation of HDL in follicles within the same ovary vs. between ovaries. Thus, collection of a single FF specimen may be sufficient to estimate HDL particle components concentrations within a single ovary. However, our results should be interpreted with caution as the analysis was based on a small sample.
Collapse
Affiliation(s)
- Keewan Kim
- Department of Environmental Health Sciences, University at Albany, State University of New York, School of Public Health Rm. #157, One University Place, Rensselaer, 12144, NY, USA
| | - Michael S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, School of Public Health Rm. #157, One University Place, Rensselaer, 12144, NY, USA. .,Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Victor Y Fujimoto
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, State University of New York, School of Public Health Rm. #157, One University Place, Rensselaer, 12144, NY, USA
| | - Recai M Yucel
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|