1
|
Adetunji AO, Price J, Owusu H, Adewale EF, Adesina PA, Saliu TP, Zhu Z, Xedzro C, Asiamah E, Islam S. Mechanisms by which phytogenic extracts enhance livestock reproductive health: current insights and future directions. Front Vet Sci 2025; 12:1568577. [PMID: 40308693 PMCID: PMC12042781 DOI: 10.3389/fvets.2025.1568577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Reproductive health is a critical determinant of livestock productivity and economic sustainability. However, it is often compromised by infectious diseases, environmental stressors, and nutritional deficits. Phytogenic extracts-bioactive compounds derived from medicinal plants-have emerged as sustainable alternatives to synthetic antibiotics and hormones, exhibiting antimicrobial, antioxidant, and immunomodulatory properties. These extracts influence key reproductive processes such as follicular development, oocyte maturation, and endometrial health while mitigating the detrimental effects of oxidative stress and pathogenic infections. Recent findings suggest that phytogenic extract can enhance reproductive performance, improve oocyte quality, and support pregnancy outcomes. Despite the growing body of evidence, optimal application strategies and the full breadth of their biological effects remain insufficiently explored. This review focuses on the molecular mechanisms modulated by phytogenic extracts, particularly in the context of hormone regulation, immune modulation, and oxidative stress mitigation. We also identify critical knowledge gaps and propose future research directions to optimize the use of phytogenic extracts as a sustainable approach to enhancing livestock reproductive health.
Collapse
Affiliation(s)
- Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Jacqueline Price
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Henrietta Owusu
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Esiosa F. Adewale
- Department of Biology, University of Louisville, Louisville, KY, United States
| | - Precious Adedayo Adesina
- National Center for Advancing Translational Sciences, Division for Pre-Clinical Innovation, National Institutes of Health, Bethesda, MD, United States
| | - Tolulope Peter Saliu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Hiroshima University, Higashihiroshima, Japan
| | - Emmanuel Asiamah
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Shahidul Islam
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| |
Collapse
|
2
|
Adetunji A, Casey T, Aryal UK, Ogundare T, Franco J, Fasina Y. Bacitracin Methylene Disalicylate (BMD) Treatment Affects Spleen Proteome in Broiler Chicks Infected with Salmonella enteritidis. Antibiotics (Basel) 2024; 13:414. [PMID: 38786142 PMCID: PMC11117299 DOI: 10.3390/antibiotics13050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Bacitracin Methylene Disalicylate (BMD), as a feed additive to poultry diets, enhances digestion, prevents Salmonella enteritidis (SE) colonization, and treats current infections. The objective of this study was to utilize a quantitative proteomic approach to determine the effect of BMD feed additive on broiler chickens challenged with SE in the spleen proteome. At 1 d of age, chicks were randomly allocated into four groups: control with and without SE challenge (CON, n = 60; CON-SE, n = 60), BMD with and without SE challenge (BMD, n = 60; BMD-SE, n = 60). Birds in the CON-SE and BMD-SE treatment were administered SE inoculum by oral gavage. On day three and day seven post-gavage, the spleen was collected aseptically from birds in each treatment group (CON, n = 4/day; CON-SE, n = 4/day; BMD, n = 4/day; BMD-SE, n = 4/day). Proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) showed an increased abundance of 115 proteins and decreased of 77 due to the BMD. Proteins that decreased in abundance were enriched for fibrinogen complex and extracellular space, whereas proteins that increased in abundance were enriched for proteasome-mediated ubiquitin-dependent protein catabolic process and mitochondrion. Analysis of the interaction between BMD and the Salmonella challenge found 230 differentially abundant proteins including proteins associated with RNA binding, spliceosome, protein transport, and cell adhesion among the upregulated proteins, and those associated with protein folding, carbon metabolism, biosynthesis of nucleotide sugars, response to oxidative stress, positive regulation of NIK/NF-kappaB signaling, and inflammatory response among the downregulated proteins. The impact of BMD treatment on spleen proteome indicates an anti-apoptotic effect. BMD also modified the response of the spleen to the SE challenge with a marked decrease in proteins that prompt cytokine synthesis and an increase in proteins involved in the selective removal of unfolded proteins.
Collapse
Affiliation(s)
- Adedeji Adetunji
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.A.)
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Tunde Ogundare
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.A.)
| | - Jackeline Franco
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Yewande Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (A.A.)
| |
Collapse
|
3
|
El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol 2023; 160:453-475. [PMID: 37495867 PMCID: PMC10624724 DOI: 10.1007/s00418-023-02222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Lipopolysaccharide (LPS) is an endotoxin derived from the cell wall of Gram-negative bacteria. LPS exposure during early gestation is associated with adverse effects on the placenta as well as on developmental outcomes, including embryonic resorption, fetal death, congenital teratogenesis, and fetal growth retardation. This work aimed to explore the adverse effects of LPS injected at an early stage of gestation on the gonads of pregnant rats and the ovaries of their pups and the role of zinc nanoparticles (Zn-NPs) against these adverse effects. Twenty-four pregnant rats were used in this study. They were divided at gestation day 4 into four groups (n = 6): control, Zn-NPs (20 mg/kg orally from gestation day E14 till the end of weaning), LPS (50 µg/kg at gestation days E7 and E9), and LPS + Zn-NPs group. The body weight and placenta weight were recorded at gestational day 16. At postnatal day 21 (weaning), the mothers rats and their offspring were sacrificed and immediately dissected to remove the ovaries and uteri from the mothers and the ovaries from their offspring for subsequent biochemical, histological, and immunohistochemical investigations. The obtained results revealed that LPS exposure during early gestation caused severe histopathological alterations in the placenta, uterus, and ovaries of mothers, as well as in the ovaries of their pups. Also, the uterine and ovarian sections displayed a positive reaction for caspase-3 antibody and a negative reaction for Bcl-2 antibody, which reflects the apoptotic effect of LPS. Additionally, remarkable reductions in the levels of antioxidants (superoxide dismutase and catalase) and significant increases in malondialdehyde (MDA) levels were recorded in the serum of LPS-treated mothers and in the ovarian tissues of their offspring. Further biochemical analysis of the ovarian tissues from LPS-maternally treated offspring showed a significant increase in the levels of caspase-3, TNF-α, and TGF-β1, but a significant decrease in the level of IGF-1. On the other hand, treatment of mothers with Zn-NPs from day 14 of gestation until the weaning day (21st day postnatal) successfully ameliorated most of the deleterious histopathological, immunohistochemical, and biochemical changes induced by LPS.
Collapse
Affiliation(s)
| | - Samaa M Bakr
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S G Mekhaimer
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Noura F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany Attaallah
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Chen J, Wang R, Liu C, Xiong B, Miao Y, Rao C, Sun H, Gao Q, Xu B. Velvet antler water extract protects porcine oocytes from lipopolysaccharide-induced meiotic defects. Cell Prolif 2023:e13392. [PMID: 36596647 DOI: 10.1111/cpr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Previous studies have demonstrated that lipopolysaccharide (LPS), as a central toxic factor of gram-negative bacteria, can induce oxidative stress and cellular inflammation to result in the impairment of female fertility in different organisms. Particularly, it has harmful effects on the oocyte quality and subsequent embryonic development. However, the approach concerning how to prevent oocytes from LPS-induced deterioration still remains largely unexplored. We assessed the effective influences of velvet antler water extract (VAWE) by immunostaining and fluorescence intensity quantification on the meiotic maturation, mitochondrial function and sperm binding ability of oocytes under oxidative stress. Here, we report that VAWE treatment restores the quality of porcine oocytes exposed to LPS. Specifically, LPS exposure contributed to the failed oocyte maturation, reduced sperm binding ability and fertilization capability by disturbing the dynamics and arrangement of meiotic apparatuses and organelles, including spindle assembly, chromosome alignment, actin polymerization, mitochondrial dynamics and cortical granule distribution, the indicators of oocyte nuclear and cytoplasmic maturation. Notably, VAWE treatment recovered these meiotic defects by removing the LPS-induced excessive ROS and thus inhibiting the apoptosis. Collectively, our study illustrates that VAWE treatment is a feasible strategy to improve the oocyte quality deteriorated by the LPS-induced oxidative stress.
Collapse
Affiliation(s)
- Jingyue Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunxiao Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cong Rao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huimin Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Baozeng Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
5
|
Chen LN, Jing T, Lin ZB, Song W, Du WH, Fan XY, Li C, Li S, Xie FY, Ou XH, Huang L, Ma JY. Metabolomic and transcriptomic responses of mouse testis to the dextran sulfate sodium induced colitis. Reprod Toxicol 2022; 108:35-42. [PMID: 35093514 DOI: 10.1016/j.reprotox.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are widespread in developed countries and gradually increasing in developing countries. Evidences showed that man with CD has a decrease of serum testosterone, but how IBD take effects on testicular testosterone synthesis is not well elucidated. To investigate the effects of IBD on testis, we analyzed testicular metabolome and transcriptome data of the dextran sulfate sodium (DSS) induced IBD mice. As a result, metabolomic data showed that DSS indeed induced androgen decrease in mouse testis. Correspondingly, androgen synthesis associated genes, especially Lhcgr, were down-regulated in DSS testis. From the metabolomic data, we found vitamin intake associated metabolites vitamin B2 and pyridoxamine were significantly decreased, whereas fatty acid metabolism associated molecules N-lauroylglycine and N-decanoylglycine were increased in DSS testis. In addition, we found 8-hydroxy-deoxyguanosine, a DNA oxidative damage marker, and 8-oxoguanine, a molecule responsible for DNA damage repair, were also changed in DSS testis. Simultaneously, our data also showed that DSS up-regulated the expression of meiosis initiation associated gene Stra8 and oxygen transport associated genes in testis. In summary, these results depicted the complex effects of colitis on testis. These metabolites and transcripts changed in DSS testis could be used as potential targets for IBD treatment or symptom relieve.
Collapse
Affiliation(s)
- Lei-Ning Chen
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Tao Jing
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Bin Lin
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Wei Song
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen-Hao Du
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Xiao-Yan Fan
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Chao Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sen Li
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Feng-Yun Xie
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Xiang-Hong Ou
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510320, China
| | - Lin Huang
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jun-Yu Ma
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China; Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
6
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
7
|
Han Y, Chen Y, Yang F, Sun X, Zeng S. Mechanism underlying the stimulation by IGF-1 of LHCGR expression in porcine granulosa cells. Theriogenology 2021; 169:56-64. [PMID: 33933758 DOI: 10.1016/j.theriogenology.2021.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
IGF-1 plays important roles in mammalian fertility by promoting cell growth and increasing steroid hormone secretion. Although IGF-1 significantly upregulated luteinizing hormone/choriogonadotropin receptor (LHCGR) gene expression in granulosa cells in a previous study, the mechanism was unclear. The present experiment was designed to primarily explore the regulation of LHCGR expression by IGF-1. First, based on a porcine LHCGR double-luciferase reporter experiment, c-Fos significantly inhibited the activity of the LHCGR promoter. Second, porcine granulosa cells were cultured in vitro with IGF-1, and we observed that the expression of LHCGR was significantly increased and the expression of c-Fos mRNA significantly reduced. After c-Fos overexpression in granulosa cells, IGF-1 attenuated the inhibitory effect of c-Fos on LHCGR. Furthermore, the level of LHCGR mRNA stimulated by IGF-1 in the presence of SB203580 was markedly lower than that of IGF-1 alone action. In conclusion, IGF-1 enhanced the expression of LHCGR by regulating c-Fos in granulosa cells, which may be mediated by the p38MAPK-signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yanhong Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Sun
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|