1
|
Umar T, Feng H, Feng W, Zhou H, Chen N, Zhang J, Liu W, Wang X, Umer S, Umar Z, Asad M, Naeem M, Qiu C, Deng G. Comparative Transcriptional Analysis of Long Noncoding RNAs in Oxidative Stress and Inflammation Induced by Potassium Permanganate and Lipopolysaccharide in Rat Uterine Tissues. Antioxidants (Basel) 2025; 14:251. [PMID: 40227207 PMCID: PMC11939164 DOI: 10.3390/antiox14030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 04/15/2025] Open
Abstract
Potassium permanganate (KMnO4) is a commercially available antiseptic used in bovine intrauterine lavage to manage postpartum infections. Lipopolysaccharides (LPS) are well-studied for their ability to induce inflammation and oxidative stress. While KMnO4 is known to cause significant irritation, oxidative stress, and toxicity in uterine tissues, its transcriptional impact and potential for inducing similar molecular damage as LPS have not been fully explored. In this study, we induced oxidative stress in the uterine tissues of Sprague-Dawley (SD) rats using KMnO4 and compared the transcriptional profiles with those treated with LPS. We focused on the differential expression of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) related to oxidative stress, toxicity, and inflammation. RNA sequencing revealed 1125 differentially expressed mRNAs in the KMnO4-treated group and 989 in the LPS-treated group. Additionally, 1649 lncRNAs were differentially expressed in the KMnO4 group compared with 1383 in the LPS group. Gene ontology (GO) and KEGG enrichment analyses showed that 78 pathways were significantly enriched in the KMnO4 group, while 80 pathways were enriched in the LPS group, with 50 pathways shared between the two. This study offers critical insights into the transcriptional profiles associated with KMnO4 exposure and its similarities to LPS-induced damage.
Collapse
Affiliation(s)
- Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Huili Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Wen Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Han Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Nuoer Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Wenjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Xiao Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Zaima Umar
- Department of Anatomy, The University of Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Asad
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Naeem
- Department of Veterinary Medical Sciences, University of Parma, I-43100 Parma, Italy
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.U.); (C.Q.)
| |
Collapse
|
2
|
Zeng P, Zheng X, Zhang H, Zhou M, Chen Z, Song H, Xu W. Circular RNA KIAA0564 Serves as a Competitive Endogenous RNA for MicroRNA-424-5p, Mediating the Expression of Lysine Demethylase 4a, Thereby Facilitating Intervertebral Disc Degeneration. Appl Biochem Biotechnol 2024; 196:8134-8155. [PMID: 38691277 DOI: 10.1007/s12010-024-04962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
A growing body of research has confirmed the involvement of circular RNAs (circRNAs) in the regulation of intervertebral disc degeneration (IDD) progression. However, the underlying molecular networks remain largely elusive. This study aimed to explore whether a novel circRNA, named circKIAA0564, affects nucleus pulposus (NP) cell injury and to elucidate its molecular mechanism. Both in vivo and in vitro IDD models were established, and the expression patterns of circKIAA0564/miR-424-5p/lysine demethylase 4a (KDM4A) were evaluated through quantitative reverse transcription PCR and Western blot analysis. Actinomycin D, RNase R, and Northern blotting were utilized to assess the circular structure of circKIAA0564. The Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, commercial assay kits, Western blotting, and reactive oxygen species (ROS) probes were employed to assess the inflammatory and oxidative stress status in NP cells and tissues. Hematoxylin and eosin and TUNEL staining were used to evaluate pathological damage in mouse NP tissues. RNA immunoprecipitation and dual-luciferase reporter assays were conducted to assess the direct targeting relationships among circKIAA0564, miR-424-5p, and KDM4A. CircKIAA0564 was found to be abnormally overexpressed in IDD, functioning as a novel circRNA. Knockdown of circKIAA0564 ameliorated interleukin-1 beta (IL-1β)-induced inflammation and oxidative stress in NP cells. The therapeutic effect of circKIAA0564 knockdown on NP cells was reversed by the silencing of miR-424-5p. Overexpression of circKIAA0564 exacerbated IL-1β-induced NP cell injury, a process that was reversed by knockdown of KDM4A. CircKIAA0564 activated the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) signaling pathway by regulating the miR-424-5p/KDM4A axis. CircKIAA0564 exacerbates IL-1β-induced inflammation and oxidative stress in NP cells by competitively binding miR-424-5p, thereby mediating KDM4A and activating the TLR4/NF-κB/NLRP3 signaling pathway. These findings provide robust data support for targeted therapy of IDD and the development of future pharmaceuticals.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - XianBo Zheng
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - Hui Zhang
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - MingHan Zhou
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - Zhen Chen
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - HanLin Song
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - WuJi Xu
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China.
| |
Collapse
|
3
|
Wang ZY, Gao ST, Gou XJ, Qiu FR, Feng Q. IL-1 receptor-associated kinase family proteins: An overview of their role in liver disease. Eur J Pharmacol 2024; 978:176773. [PMID: 38936453 DOI: 10.1016/j.ejphar.2024.176773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The interleukin-1 receptor-associated kinase (IRAK) family is a group of serine-threonine kinases that regulates various cellular processes via toll-like receptor (TLR)/interleukin-1 receptor (IL1R)-mediated signaling. The IRAK family comprises four members, including IRAK1, IRAK2, IRAK3, and IRAK4, which play an important role in the expression of various inflammatory genes, thereby contributing to the inflammatory response. IRAKs are key proteins in chronic and acute liver diseases, and recent evidence has implicated IRAK family proteins (IRAK1, IRAK3, and IRAK4) in the progression of liver-related disorders, including alcoholic liver disease, non-alcoholic steatohepatitis, hepatitis virus infection, acute liver failure, liver ischemia-reperfusion injury, and hepatocellular carcinoma. In this article, we provide a comprehensive review of the role of IRAK family proteins and their associated inflammatory signaling pathways in the pathogenesis of liver diseases. The purpose of this study is to explore whether IRAK family proteins can serve as the main target for the treatment of liver related diseases.
Collapse
Affiliation(s)
- Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Fu-Rong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
4
|
Shaukat A, Rajput SA, Ali M, Shukat R, Hanif S, Hassan M, Fouad D, Ataya FS, Shaukat I, Yousaf A, Shaukat S, Su RW. Therapeutic administration of Luteolin protects against Escherichia coli-derived Lipopolysaccharide-triggered inflammatory response and oxidative injury. Acta Trop 2024; 255:107236. [PMID: 38692450 DOI: 10.1016/j.actatropica.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Endometritis reduces reproductive effectiveness and leads to significant financial losses in the dairy sector. Luteolin is a natural phyto-flavonoid compound with many biological activities. However, the therapeutic effect of Luteolin against lipopolysaccharides (LPS)-induced endometritis has not yet been explored. A total of eighty female Kunming mice were randomly assigned into four treatment groups (n = 20). Following a successful initiation of the endometritis model by LPS, Luteolin was intraperitoneally administered three times, at six-hour intervals between each injection in the Luteolin groups. The histopathological findings revealed that Luteolin significantly alleviated uterine injury induced by LPS. Moreover, Luteolin suppressed the synthesis of pro-inflammatory mediators [interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α] while promoting the synthesis of an anti-inflammatory mediator (IL-10) altered by LPS. Furthermore, Luteolin significantly mitigated the LPS-induced oxidative stress by scavenging malondialdehyde (MDA) and reactive oxygen species (ROS), accumulation and boosting the capacity of antioxidant enzyme activities such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (Gpx1) in the uterine tissue of mice. Additionally, injection of Luteolin markedly increased the expression of Toll-like receptors (TLR) 4 both at mRNA and protein levels under LPS stimulation. Western blotting and ELISA findings demonstrated that Luteolin suppressed the activation of the NF-κB pathway in response to LPS exposure in the uterine tissue of mice. Notably, Luteolin enhanced the anti-oxidant defense system by activating the Nrf2 signaling pathway under LPS exposure in the uterine tissue of mice. Conclusively, our findings demonstrated that Luteolin effectively alleviated LPS-induced endometritis via modulation of TLR4-associated Nrf2 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Department of Animal and Dairy Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Mehboob Ali
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sana Hanif
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, China
| | - Mubashar Hassan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh 11495, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan Shaukat
- Department of Biochemistry, University of Narowal, Narowal, Pakistan
| | - Arfan Yousaf
- Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University Rawalpindi, Pakistan
| | - Shadab Shaukat
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Shaukat A, Hanif S, Shaukat I, Rajput SA, Shukat R, Huang SC, H Almutairi M, Shaukat S, Ali M, Hassan M, Kiani FA, Su RW. Up-regulation of inflammatory, oxidative stress, and apoptotic mediators via inflammatory, oxidative stress, and apoptosis-associated pathways in bovine endometritis. Microb Pathog 2024; 191:106660. [PMID: 38657710 DOI: 10.1016/j.micpath.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sana Hanif
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, China
| | - Irfan Shaukat
- Department of Biochemistry, University of Narowal, Narowal, Pakistan
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Shadab Shaukat
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Mehboob Ali
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mubashar Hassan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Dong J, Ji B, Jiang Y, Liu K, Guo L, Cui L, Wang H, Li B, Li J. Autophagy activation alleviates the LPS-induced inflammatory response in endometrial epithelial cells in dairy cows. Am J Reprod Immunol 2024; 91:e13820. [PMID: 38332507 DOI: 10.1111/aji.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
PROBLEM Endometritis is a common disease that affects dairy cow reproduction. Autophagy plays a vital role in cellular homeostasis and modulates inflammation by regulating interactions with innate immune signaling pathways. However, little is known about the regulatory relationship between autophagy and inflammation in bovine endometrial epithelial cells (BEECs). Thus, we aimed to determine the role of autophagy in the inflammatory response in BEECs. METHODS OF STUDY In the present study, the expression levels of proinflammatory cytokines were measured by quantitative real-time polymerase chain reaction. Changes in the nuclear factor-κB (NF-κB) pathway and autophagy were determined using immunoblotting and immunocytochemistry. The induction of autophagosome formation was visualized by transmission electron microscopy. RESULTS Our results demonstrated that autophagy activation was inhibited in LPS-treated BEECs, while activation of the NF-κB pathway and the mRNA expression of IL-6, IL-8, and TNF-α were increased. Furthermore, blocking autophagy with the inhibitor chloroquine increased NF-κB signaling pathway activation and proinflammatory factor expression in LPS-treated BEECs. Conversely, activation of autophagy with the agonist rapamycin inhibited the NF-κB signaling pathway and downregulated proinflammatory factors. CONCLUSIONS These data indicated that LPS-induced inflammation was related to the inhibition of autophagy in BEECs. Thus, the activation of autophagy may represent a novel therapeutic strategy for eliminating inflammation in BEECs.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bowen Ji
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | | | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Zheng Z, Wang X, Zheng Y, Wu H. Enhanced expression of miR-204 attenuates LPS stimulated inflammatory injury through inhibiting the Wnt/β-catenin pathway via targeting CCND2. Int Immunopharmacol 2024; 126:111334. [PMID: 38061119 DOI: 10.1016/j.intimp.2023.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
One of the most common bacterial diseases of the reproductive system in dairy cows is endometritis, which will cause huge economic loss. Here, we investigate the mechanisms of miR-204 on LPS-stimulated endometritis in vitro and in vivo. Experiments displayed that the expression of miR-204 was lower in bovine uterine tissue samples or bovine endometrial epithelial cell line (BEND) that stimulated by LPS. Compared with the negative group, miR-204 treatment significantly suppressed the production of proinflammatory factors and the Wnt/β-catenin pathway activation. Additionally, the result of the dual luciferase assay showed that miR-204 targeted cyclin D2. More importantly, up-regulation of miR-204 alleviated LPS induced uterine injury was confirmed in vivo studies. Molecular experiments indicated that the expression level of tight junctional proteins Claudin3 and cadherin1 were both enchanced by miR-204 treatment. Accordingly, miR-204 may serve as a new measure to prevent and treat endometritis caused by LPS.
Collapse
Affiliation(s)
- Zhijie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, PR China
| | - Yonghui Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
8
|
Umar T, Yin B, He L, Feng W, Yuan Y, Umer S, Feng H, Huang Z, Umar Z, Liu W, Ganzhen D. 6-Gingerol via overexpression of miR-322-5p impede lipopolysaccharide-caused inflammatory response in RAW264.7 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3797-3807. [PMID: 37347266 DOI: 10.1007/s00210-023-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Acute lung injury (ALI) and sepsis are complicated syndromes that are often left untreated in critically ill patients. 6-Gingerol is a phenolic phytochemical compound that is found in fresh ginger, has pharmacological effects against inflammation. This study explored the roles of 6-gingerol in a mouse model of acute lung injury caused by lipopolysaccharide (LPS) and RAW-264.7 cells inflammation. The LPS-induced animal model underwent histopathological examinations, and RAW-264.7 cells viability was determined by Cell counting Kit-8 (CCk-8) assay. Additionally, qRT-PCR, Immunofluorescence, Western blot, and ELISA were used in vivo and in vitro to identify inflammatory factors and proteins associated with NF-κB and MAPK signaling pathways. In a histological examination 6-gingerol exhibited protective effects. Moreover, 6-gingerol elevated cell viability and downregulated inflammatory factors Interlukin-1β (IL-1β), Interlukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α) in LPS-treated RAW-264.7 cells. Furthermore, 6-gingerol decreased phosphorylation of P65, P38 and the level of JNK in NF-κB and MAPK pathways. Importantly, 6-gingerol increased transcript abundance of miR-322-5p which suppressed by LPS and miR-322-5p downregulation negated the protective functions of 6-gingerol. The protective activity of 6-gingerol was mediated by miR-322-5p up-regulation.
Collapse
Affiliation(s)
- Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lixin He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wen Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yongjie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Saqib Umer
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Huili Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhi Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zaima Umar
- Department of Anatomy, The University of Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Wenjing Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deng Ganzhen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Zhang C, Zhao Z. CircSLCO3A1 depletion ameliorates lipopolysaccharide-induced inflammation and apoptosis of human pulmonary alveolar epithelial cells through the miR-424-5p/HMGB3 pathway. Mol Cell Toxicol 2023:1-12. [PMID: 37359246 PMCID: PMC10211294 DOI: 10.1007/s13273-023-00341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 06/28/2023]
Abstract
Background Recent studies have shown the pathogenesis of acute lung injury (ALI) involves circular RNA (circRNA). However, there are no data on the role of circSLCO3A1 in ALI and the underlying mechanism. Objective ALI-like cell injury was induced by stimulating human pulmonary alveolar epithelial cells (HPAEpiCs) using lipopolysaccharide (LPS). The expression of circSLCO3A1, miR-424-5p and high mobility group box 3 (HMGB3) was detected by quantitative real-time polymerase chain reaction. Cell viability and cell apoptosis were assessed by cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. Enzyme-linked immunosorbent assay was performed to determine the production of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein 1 (MCP-1). Caspase-3 activity was detected by caspase-3 activity assay. Protein expression of inducible NOS (iNOS), cyclooxygenase-2 (COX2), p-p65 and p65 was analyzed by Western blot. The interactions among circSLCO3A1, miR-424-5p and HMGB3 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Results CircSLCO3A1 and HMGB3 expression were significantly increased, while miR-424-5p was decreased in LPS-treated HPAEpiCs and the serum of septic ALI patients in comparison with controls. CircSLCO3A1 knockdown assuaged LPS-induced HPAEpiC inflammation and apoptosis. Besides, circSLCO3A1 targeted miR-424-5p and regulated LPS-triggered HPAEpiC inflammation and apoptosis by binding to miR-424-5p. Under the treatment of LPS, miR-424-5p mediated HPAEpiC disorders by targeting HMGB3. Importantly, circSLCO3A1 modulated HMGB3 production by interacting with miR-424-5p. Conclusion CircSLCO3A1 absence assuaged LPS-induced HPAEpiC inflammation and apoptosis through the miR-424-5p/HMGB3 axis. Highlights CircSLCO3A1 expression was upregulated in LPS-induced HPAEpiCs and sepsis-induced ALI patients.CircSLCO3A1 depletion protected against LPS-induced HPAEpiC disorders.CircSLCO3A1 bound to miR-424-5p in HPAEpiCs.MiR-424-5p targeted HMGB3 in HPAEpiCs.CircSLCO3A1 regulated HMGB3 expression through miR-424-5p. Supplementary Information The online version contains supplementary material available at 10.1007/s13273-023-00341-6.
Collapse
Affiliation(s)
- Yan Li
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin China
| | - Chunmei Zhang
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin China
| | - Zhongyan Zhao
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033 Jilin China
| |
Collapse
|