1
|
Phuangphong S, Yoshikawa H, Kojima Y, Wada H, Morino Y. Characterization of shell field populations in gastropods and their autonomous specification mechanism independent of inter-quartet interactions. Development 2025; 152:dev204538. [PMID: 40105679 DOI: 10.1242/dev.204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The embryonic shell field of mollusks appears during gastrulation on the dorsal ectoderm and later develops into the adult shell-secreting mantle. Although several lines of evidence have revealed that the shell field is exclusively derived from the second quartet (2q) of 16-cell embryos, it is generally believed that its fate is established only after receiving inductive signals from cells derived from other quartets, such as the invaginated endoderm. However, the induction hypothesis remains questionable due to limited experimental evidence and contradictory results. Here, we re-investigated the induction hypothesis for shell field specification in the limpet. We identified three cell populations within the developing shell field using two-color in situ hybridization and single-cell transcriptome analysis, each characterized by distinct effector and transcription factor genes. The specification of each population was examined in 2q blastomeres isolated from 16-cell embryos. Even without inter-quartet interactions, marker gene expression for each shell field population was detected in the 2q-derived partial embryos. We conclude that the early specification of shell field in 2q-derived cells occurs largely independently of interactions with other quartets.
Collapse
Affiliation(s)
- Supanat Phuangphong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroki Yoshikawa
- Graduate School of Science and Life Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yune Kojima
- Graduate School of Science and Life Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Wada
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Morino
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Dao TK, Ferger K, Lambert JD. A chitin-binding domain-containing gene is essential for shell development in the mollusc Tritia. Dev Biol 2025; 520:1-12. [PMID: 39725261 DOI: 10.1016/j.ydbio.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Mollusc shells are diverse in shape and size. They are created by a shell epithelium which secretes a chitinous periostracum membrane at the growing edge of the shell, and then coordinates biomineral deposition on the underside of this membrane. Although mollusc shells are important for studying the evolution of morphology, the molecular basis of the shell development is poorly understood. In this paper, we investigate genes involved in the shell development of the gastropod mollusc Tritia (previously known as Ilyanassa). We characterize the contributions of the 2d micromere to the shell and other non-shell structures. We identify eight shell-specific genes and five non-shell specific genes by comparing the transcriptomes of wild-type and 2d ablated embryos. Morpholino knockdown of one of the shell-specific genes, ToChitin-binding domain-containing (ToChitin BD), results in shell defects. The chitinous periostracal membranes in ToChitin BD morpholino knockdown embryos lose their well-defined edge and peroxidase gradient.
Collapse
Affiliation(s)
- T Kim Dao
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - Kailey Ferger
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA
| | - J David Lambert
- University of Rochester, Hutchison Hall, River Campus, Rochester, NY, 14627, USA.
| |
Collapse
|
3
|
Liu X, Huan P, Liu B. The small GTPase Cdc42 regulates shell field morphogenesis in a gastropod mollusk. Dev Biol 2024; 515:7-17. [PMID: 38942110 DOI: 10.1016/j.ydbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Peng M, Cardoso JCR, Pearson G, Vm Canário A, Power DM. Core genes of biomineralization and cis-regulatory long non-coding RNA regulate shell growth in bivalves. J Adv Res 2024; 64:117-129. [PMID: 37995944 PMCID: PMC11464482 DOI: 10.1016/j.jare.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Bivalve molluscs are abundant in marine and freshwater systems and contribute essential ecosystem services. They are characterized by an exuberant diversity of biomineralized shells and typically have two symmetric valves (a.k.a shells), but oysters (Ostreidae), some clams (Anomiidae and Chamidae) and scallops (Pectinida) have two asymmetrical valves. Predicting and modelling the likely consequences of ocean acidification on bivalve survival, biodiversity and aquaculture makes understanding shell biomineralization and its regulation a priority. OBJECTIVES This study aimed to a) exploit the atypical asymmetric shell growth of some bivalves and through comparative analysis of the genome and transcriptome pinpoint candidate biomineralization-related genes and regulatory long non-coding RNAs (LncRNAs) and b) demonstrate their roles in regulating shell biomineralization/growth. METHODS Meta-analysis of genomes, de novo generated mantle transcriptomes or transcriptomes and proteomes from public databases for six asymmetric to symmetric bivalve species was used to identify biomineralization-related genes. Bioinformatics filtering uncovered genes and regulatory modules characteristic of bivalves with asymmetric shells and identified candidate biomineralization-related genes and lncRNAs with a biased expression in asymmetric valves. A shell regrowth model in oyster and gene silencing experiments, were used to characterize candidate gene function. RESULTS Shell matrix genes with asymmetric expression in the mantle of the two valves were identified and unique cis-regulatory lncRNA modules characterized in Ostreidae. LncRNAs that regulate the expression of the tissue inhibitor of metalloproteinases gene family (TIMPDR) and of the shell matrix protein domain family (SMPDR) were identified. In vitro and in vivo silencing experiments revealed the candidate genes and lncRNA were associated with divergent shell growth rates and modified the microstructure of calcium carbonate (CaCO3) crystals. CONCLUSION LncRNAs are putative regulatory factors of the bivalve biomineralization toolbox. In the Ostreidae family of bivalves biomineralization-related genes are cis-regulated by lncRNA and modify the planar growth rate and spatial orientation of crystals in the shell.
Collapse
Affiliation(s)
- Maoxiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Gareth Pearson
- Biogeographical Ecology and Evolution, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Adelino Vm Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
5
|
Sleight VA. Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation. Brief Funct Genomics 2023; 22:509-516. [PMID: 37592885 PMCID: PMC10658180 DOI: 10.1093/bfgp/elad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
Collapse
Affiliation(s)
- Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
6
|
Xia Y, Huan P, Liu B. Shell field morphogenesis in the polyplacophoran mollusk Acanthochitona rubrolineata. EvoDevo 2023; 14:5. [PMID: 37024993 PMCID: PMC10080879 DOI: 10.1186/s13227-023-00209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The polyplacophoran mollusks (chitons) possess serially arranged shell plates. This feature is unique among mollusks and believed to be essential to explore the evolution of mollusks as well as their shells. Previous studies revealed several cell populations in the dorsal epithelium (shell field) of polyplacophoran larvae and their roles in the formation of shell plates. Nevertheless, they provide limited molecular information, and shell field morphogenesis remains largely uninvestigated. RESULTS In the present study, we investigated shell field development in the chiton Acanthochitona rubrolineata based on morphological characteristics and molecular patterns. A total of four types of tissue could be recognized from the shell field of A. rubrolineata. The shell field comprised not only the centrally located, alternatively arranged plate fields and ridges, but also the tissues surrounding them, which were the precursors of the girdle and we termed as the girdle field. The girdle field exhibited a concentric organization composed of two circularly arranged tissues, and spicules were only developed in the outer circle. Dynamic engrailed expression and F-actin (filamentous actin) distributions revealed relatively complicated morphogenesis of the shell field. The repeated units (plate fields and ridges) were gradually established in the shell field, seemingly different from the manners used in the segmentation of Drosophila or vertebrates. The seven repeated ridges also experienced different modes of ontogenesis from each other. In the girdle field, the presumptive spicule-formation cells exhibited different patterns of F-actin aggregations as they differentiate. CONCLUSIONS These results reveal the details concerning the structure of polyplacophoran shell field as well as its morphogenesis. They would contribute to exploring the mechanisms of polyplacophoran shell development and molluscan shell evolution.
Collapse
Affiliation(s)
- Yuxiu Xia
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
7
|
Min Y, Li Q, Yu H. Characterization of larval shell formation and CgPOU2F1, CgSox5, and CgPax6 gene expression during shell morphogenesis in Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110783. [PMID: 35926704 DOI: 10.1016/j.cbpb.2022.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Shell formation is a dynamic process involving organic matrix secretion and calcification. In this study, we characterized shell morphogenesis during larval development in Crassostrea gigas. Using scanning electron microscopy (SEM) and fluorescence staining, we demonstrated that shell field, the first morphologically distinguishable shell-forming tissue, became visible soon after enlargement of the blastopore at the anterior end of the trochophore. Shell organic matrix namely protein polysaccharides and calcified structure appeared as a slit at the dorsal side of the embryo. The early shell field began to extend along the dorsal side of the trochophore larvae, and became a saddle shaped shell field that gave rise to the prodissoconch I embryonic shell in the early D-shaped larvae. Subsequently, prodissoconch II shell was formed in the late D-shaped larvae with a characteristic appearance of growth lines. To identify gene expression markers for studying shell formation, we isolated three potential larval shell formation genes CgPOU2F1, CgSox5, and CgPax6 and analyzed their expression during shell morphogenesis. The three potential shell formation genes possessed a similar pattern of expression. Their expression was detected in the shell gland and shell field regions in early D-shaped larvae, hereafter, their expression was detected at the larval mantle edge in the calcified shell stages. Together, these studies provide knowledge of shell morphogenesis in pacific oyster and molecular markers for studying the molecular regulation of biomineralization and shell formation.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Batzel GO, Moreno BK, Lopez LS, Nguyen CK, Livingston BT, Joester D, Lyons DC. Proteomic and Transcriptomic Analyses in the Slipper Snail Crepidula
fornicata Uncover Shell Matrix Genes Expressed During Adult and Larval Biomineralization. Integr Org Biol 2022; 4:obac023. [PMID: 35968217 PMCID: PMC9365450 DOI: 10.1093/iob/obac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
The gastropod shell is a composite composed of minerals and shell matrix proteins (SMPs). SMPs have been identified by proteomics in many molluscs, but few have been studied in detail. Open questions include (1) what gene regulatory networks regulate SMP expression, (2) what roles individual SMPs play in biomineralization, and (3) how the complement of SMPs changes over development. These questions are best addressed in a species in which gene perturbation studies are available; one such species is the slipper snail, Crepidula fornicata. Here, SEM and pXRD analysis demonstrated that the adult shell of C. fornicata exhibits crossed lamellar microstructure and is composed of aragonite. Using high-throughput proteomics we identified 185 SMPs occluded within the adult shell. Over half of the proteins in the shell proteome have known biomineralization domains, while at least 10% have no homologs in public databases. Differential gene expression analysis identified 20 SMP genes that are up-regulated in the shell-producing mantle tissue. Over half of these 20 SMPs are expressed during development with two, CfSMP1 and CfSMP2, expressed exclusively in the shell gland. Together, the description of the shell microstructure and a list of SMPs now sets the stage for studying the consequences of SMP gene knockdowns in molluscs.
Collapse
Affiliation(s)
- G O Batzel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , UCSD, La Jolla, CA 92037, USA
| | - B K Moreno
- Department of Materials Science and Engineering, Northwestern University , Evanston, IL 60208, USA
| | - L S Lopez
- Department of Biological Sciences, California State University , Long Beach, CA 90802, USA
| | - C K Nguyen
- Department of Biological Sciences, California State University , Long Beach, CA 90802, USA
| | - B T Livingston
- Department of Biological Sciences, California State University , Long Beach, CA 90802, USA
| | - D Joester
- Department of Materials Science and Engineering, Northwestern University , Evanston, IL 60208, USA
| | - D C Lyons
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , UCSD, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
10
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
11
|
Saenko SV, Groenenberg DSJ, Davison A, Schilthuizen M. The draft genome sequence of the grove snail Cepaea nemoralis. G3-GENES GENOMES GENETICS 2021; 11:6080775. [PMID: 33604668 PMCID: PMC8022989 DOI: 10.1093/g3journal/jkaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Studies on the shell color and banding polymorphism of the grove snail Cepaea nemoralis and the sister taxon Cepaea hortensis have provided compelling evidence for the fundamental role of natural selection in promoting and maintaining intraspecific variation. More recently, Cepaea has been the focus of citizen science projects on shell color evolution in relation to climate change and urbanization. C. nemoralis is particularly useful for studies on the genetics of shell polymorphism and the evolution of "supergenes," as well as evo-devo studies of shell biomineralization, because it is relatively easily maintained in captivity. However, an absence of genomic resources for C. nemoralis has generally hindered detailed genetic and molecular investigations. We therefore generated ∼23× coverage long-read data for the ∼3.5 Gb genome, and produced a draft assembly composed of 28,537 contigs with the N50 length of 333 kb. Genome completeness, estimated by BUSCO using the metazoa dataset, was 91%. Repetitive regions cover over 77% of the genome. A total of 43,519 protein-coding genes were predicted in the assembled genome, and 97.3% of these were functionally annotated from either sequence homology or protein signature searches. This first assembled and annotated genome sequence for a helicoid snail, a large group that includes edible species, agricultural pests, and parasite hosts, will be a core resource for identifying the loci that determine the shell polymorphism, as well as in a wide range of analyses in evolutionary and developmental biology, and snail biology in general.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden 2333CR, the Netherlands.,Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333BE, the Netherlands
| | - Dick S J Groenenberg
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden 2333CR, the Netherlands
| | - Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Menno Schilthuizen
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden 2333CR, the Netherlands.,Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333BE, the Netherlands
| |
Collapse
|
12
|
Abstract
The freshwater snail Lymnaea stagnalis has a long research history, but only relatively recently has it emerged as an attractive model organism to study molecular mechanisms in the areas of developmental biology and translational medicine such as learning/memory and neurodegenerative diseases. The species has the advantage of being a hermaphrodite and can both cross- and self-mate, which greatly facilitates genetic approaches. The establishment of body-handedness, or chiromorphogenesis, is a major topic of study, since chirality is evident in the shell coiling. Chirality is maternally inherited, and only recently a gene-editing approach identified the actin-related gene Lsdia1 as the key handedness determinant. This short article reviews the natural habitat, life cycle, major research questions and interests, and experimental approaches.
Collapse
Affiliation(s)
- Reiko Kuroda
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan.
| | - Masanori Abe
- Frontier Research Institute, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
13
|
Clark MS, Peck LS, Arivalagan J, Backeljau T, Berland S, Cardoso JCR, Caurcel C, Chapelle G, De Noia M, Dupont S, Gharbi K, Hoffman JI, Last KS, Marie A, Melzner F, Michalek K, Morris J, Power DM, Ramesh K, Sanders T, Sillanpää K, Sleight VA, Stewart-Sinclair PJ, Sundell K, Telesca L, Vendrami DLJ, Ventura A, Wilding TA, Yarra T, Harper EM. Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics. Biol Rev Camb Philos Soc 2020; 95:1812-1837. [PMID: 32737956 DOI: 10.1111/brv.12640] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Jaison Arivalagan
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France.,Proteomics Center of Excellence, Northwestern University, 710 N Fairbanks Ct, Chicago, IL, U.S.A
| | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium.,Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Sophie Berland
- UMR 7208 CNRS/MNHN/UPMC/IRD Biologie des Organismes Aquatiques et Ecosystèmes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Joao C R Cardoso
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Carlos Caurcel
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Gauthier Chapelle
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Michele De Noia
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany.,Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Karim Gharbi
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Joseph I Hoffman
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Kim S Last
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Arul Marie
- UMR 7245 CNRS/MNHN Molécules de Communications et Adaptations des Micro-organismes, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kati Michalek
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - James Morris
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Brussels, B-1000, Belgium
| | - Deborah M Power
- Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Trystan Sanders
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
| | - Kirsikka Sillanpää
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | | | - Kristina Sundell
- Swemarc, Department of Biological and Environmental Science, University of Gothenburg, Box 463, Gothenburg, SE405 30, Sweden
| | - Luca Telesca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| | - David L J Vendrami
- Department of Animal Behavior, University of Bielefeld, Postfach 100131, Bielefeld, 33615, Germany
| | - Alexander Ventura
- Department of Biological and Environmental Sciences, University of Göteburg, Box 463, Göteburg, SE405 30, Sweden
| | - Thomas A Wilding
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, U.K
| | - Tejaswi Yarra
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K.,Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, U.K
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, U.K
| |
Collapse
|
14
|
Wada H, Phuangphong S, Hashimoto N, Nagai K. Establishment of the novel bivalve body plan through modification of early developmental events in mollusks. Evol Dev 2020; 22:463-470. [PMID: 32291900 DOI: 10.1111/ede.12334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mollusks have a wide variety of body plans, which develop through conserved early embryogenesis, namely spiral embryonic development and trochophore larvae. Although the comparative study of mollusks has attracted the interest of evolutionary developmental biology researchers, less attention has been paid to bivalves. In this review, we focused on the evolutionary process from single-shell ancestors to bivalves, which possess bilaterally separated shells. Our study tracing the lineage of shell field cells in bivalves did not support the old hypothesis that shell plate morphology is due to modification of the spiral cleavage pattern. Rather, we suggest that modification of the shell field induction process is the key to understanding the evolution of shell morphology. The novel body plan of bivalves cannot be established solely via separating shell plates, but rather requires the formation of additional organs, such as adductor muscles. The evolutionary biology of bivalves offers a unique view on how multiple organs evolve in a coordinated manner to establish a novel body plan.
Collapse
Affiliation(s)
- Hiroshi Wada
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Supanat Phuangphong
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| | - Kiyohito Nagai
- Pearl Research Institute, K. Mikimoto & Co., Ltd., Shima, Mie, Japan
| |
Collapse
|
15
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Chandra Rajan K, Vengatesen T. Molecular adaptation of molluscan biomineralisation to high-CO 2 oceans - The known and the unknown. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104883. [PMID: 32072987 DOI: 10.1016/j.marenvres.2020.104883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
High-CO2 induced ocean acidification (OA) reduces the calcium carbonate (CaCO3) saturation level (Ω) and the pH of oceans. Consequently, OA is causing a serious threat to several ecologically and economically important biomineralising molluscs. Biomineralisation is a highly controlled biochemical process by which molluscs deposit their calcareous structures. In this process, shell matrix proteins aid the nucleation, growth and assemblage of the CaCO3 crystals in the shell. These molluscan shell proteins (MSPs) are, ultimately, responsible for determination of the diverse shell microstructures and mechanical strength. Recent studies have attempted to integrate gene and protein expression data of MSPs with shell structure and mechanical properties. These advances made in understanding the molecular mechanism of biomineralisation suggest that molluscs either succumb or adapt to OA stress. In this review, we discuss the fate of biomineralisation process in future high-CO2 oceans and its ultimate impact on the mineralised shell's structure and mechanical properties from the perspectives of limited substrate availability theory, proton flux limitation model and the omega myth theory. Furthermore, studying the interplay of energy availability and differential gene expression is an essential first step towards understanding adaptation of molluscan biomineralisation to OA, because if there is a need to change gene expression under stressors, any living system would require more energy than usual. To conclude, we have listed, four important future research directions for molecular adaptation of molluscan biomineralisation in high-CO2 oceans: 1) Including an energy budgeting factor while understanding differential gene expression of MSPs and ion transporters under OA. 2) Unraveling the genetic or epigenetic changes related to biomineralisation under stressors to help solving a bigger picture about future evolution of molluscs, and 3) Understanding Post Translational Modifications of MSPs with and without stressors. 4) Understanding carbon uptake mechanisms across taxa with and without OA to clarify the OA theories on Ω.
Collapse
Affiliation(s)
- Kanmani Chandra Rajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Hong Kong SAR, China.
| | - Thiyagarajan Vengatesen
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Hong Kong SAR, China.
| |
Collapse
|
17
|
Dorsoventral decoupling of Hox gene expression underpins the diversification of molluscs. Proc Natl Acad Sci U S A 2019; 117:503-512. [PMID: 31871200 DOI: 10.1073/pnas.1907328117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In contrast to the Hox genes in arthropods and vertebrates, those in molluscs show diverse expression patterns with differences reported among lineages. Here, we investigate 2 phylogenetically distant molluscs, a gastropod and a polyplacophoran, and show that the Hox expression in both species can be divided into 2 categories. The Hox expression in the ventral ectoderm generally shows a canonical staggered pattern comparable to the patterns of other bilaterians and likely contributes to ventral patterning, such as neurogenesis. The other category of Hox expression on the dorsal side is strongly correlated with shell formation and exhibits lineage-specific characteristics in each class of mollusc. This generalized model of decoupled dorsoventral Hox expression is compatible with known Hox expression data from other molluscan lineages and may represent a key characteristic of molluscan Hox expression. These results support the concept of widespread staggered Hox expression in Mollusca and reveal aspects that may be related to the evolutionary diversification of molluscs. We propose that dorsoventral decoupling of Hox expression allowed lineage-specific dorsal and ventral patterning, which may have facilitated the evolution of diverse body plans in different molluscan lineages.
Collapse
|
18
|
Proteomic investigation of the blue mussel larval shell organic matrix. J Struct Biol 2019; 208:107385. [DOI: 10.1016/j.jsb.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
|
19
|
Hilgers L, Hartmann S, Hofreiter M, von Rintelen T. Novel Genes, Ancient Genes, and Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation. Mol Biol Evol 2019; 35:1638-1652. [PMID: 29672732 PMCID: PMC5995198 DOI: 10.1093/molbev/msy052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.
Collapse
Affiliation(s)
- Leon Hilgers
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Corresponding author: E-mail:
| | - Stefanie Hartmann
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
20
|
Abstract
Gastropod shell morphologies are famously diverse but generally share a common geometry, the logarithmic coil. Variations on this morphology have been modeled mathematically and computationally but the developmental biology of shell morphogenesis remains poorly understood. Here we characterize the organization and growth patterns of the shell-secreting epithelium of the larval shell of the basket whelk Tritia (also known as Ilyanassa). Despite the larval shell's relative simplicity, we find a surprisingly complex organization of the shell margin in terms of rows and zones of cells. We examined cell division patterns with EdU incorporation assays and found two growth zones within the shell margin. In the more anterior aperture growth zone, we find that inferred division angles are biased to lie parallel to the shell edge, and these divisions occur more on the margin's left side. In the more posterior mantle epithelium growth zone, inferred divisions are significantly biased to the right, relative to the anterior-posterior axis. These growth zones, and the left-right asymmetries in cleavage patterns they display, can explain the major modes of shell morphogenesis at the level of cellular behavior. In a gastropod with a different coiling geometry, Planorbella sp., we find similar shell margin organization and growth zones as Tritia, but different left-right asymmetries than we observed in the helically coiled shell of Tritia These results indicate that differential growth patterns in the mantle edge epithelium contribute to shell shape in gastropod shells and identify cellular mechanisms that may vary to generate shell diversity in evolution.
Collapse
Affiliation(s)
- Adam B Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Nina S Fogel
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
21
|
Kingston ACN, Sigwart JD, Chappell DR, Speiser DI. Monster or multiplacophoran: A teratological specimen of the chiton
Acanthopleura granulata
(Mollusca: Polyplacophora) with a valve split into independent and symmetrical halves. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Daniel R. Chappell
- Department of Biological Sciences University of South Carolina Columbia South Carolina
| | - Daniel I. Speiser
- Department of Biological Sciences University of South Carolina Columbia South Carolina
| |
Collapse
|
22
|
Shimizu K, Kimura K, Isowa Y, Oshima K, Ishikawa M, Kagi H, Kito K, Hattori M, Chiba S, Endo K. Insights into the Evolution of Shells and Love Darts of Land Snails Revealed from Their Matrix Proteins. Genome Biol Evol 2019; 11:380-397. [PMID: 30388206 PMCID: PMC6368272 DOI: 10.1093/gbe/evy242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, many skeletal matrix proteins that are possibly related to calcification have been reported in various calcifying animals. Molluscs are among the most diverse calcifying animals and some gastropods have adapted to terrestrial ecological niches. Although many shell matrix proteins (SMPs) have already been reported in molluscs, most reports have focused on marine molluscs, and the SMPs of terrestrial snails remain unclear. In addition, some terrestrial stylommatophoran snails have evolved an additional unique calcified character, called a "love dart," used for mating behavior. We identified 54 SMPs in the terrestrial snail Euhadra quaesita, and found that they contain specific domains that are widely conserved in molluscan SMPs. However, our results also suggest that some of them possibly have evolved independently by domain shuffling, domain recruitment, or gene co-option. We then identified four dart matrix proteins, and found that two of them are the same proteins as those identified as SMPs. Our results suggest that some dart matrix proteins possibly have evolved by independent gene co-option from SMPs during dart evolution events. These results provide a new perspective on the evolution of SMPs and "love darts" in land snails.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Kazuki Kimura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Research Institute for Ulleungdo and Dokdo Islands, Kyungpook National University, Bukgu, Daegu, Korea
| | - Yukinobu Isowa
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Makiko Ishikawa
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Cooperative Major of Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Satoshi Chiba
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
| |
Collapse
|
23
|
Tan S, Huan P, Liu B. An investigation of oyster TGF-β receptor genes and their potential roles in early molluscan development. Gene 2018; 663:65-71. [DOI: 10.1016/j.gene.2018.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
24
|
Mann K, Cerveau N, Gummich M, Fritz M, Mann M, Jackson DJ. In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Sci 2018; 16:11. [PMID: 29983641 PMCID: PMC6003135 DOI: 10.1186/s12953-018-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly. Electronic supplementary material The online version of this article (10.1186/s12953-018-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nicolas Cerveau
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Meike Gummich
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Monika Fritz
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Matthias Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Daniel J Jackson
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience 2018; 7:4997018. [PMID: 29788257 PMCID: PMC6007483 DOI: 10.1093/gigascience/giy056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. Results By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. Conclusions This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.
Collapse
Affiliation(s)
- Ines Herlitze
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Département Aviv, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne - Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Jackson DJ, Reim L, Randow C, Cerveau N, Degnan BM, Fleck C. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity. Mol Biol Evol 2018; 34:2959-2969. [PMID: 28961798 PMCID: PMC5850307 DOI: 10.1093/molbev/msx232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany.,School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Laurin Reim
- Department of Earth- and Environmental Sciences, Ludwig-Maximilian University of Munich, München, Germany
| | - Clemens Randow
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| | - Nicolas Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Claudia Fleck
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| |
Collapse
|
27
|
Sussarellu R, Lebreton M, Rouxel J, Akcha F, Rivière G. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:70-78. [PMID: 29353135 DOI: 10.1016/j.aquatox.2018.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L-1 Cu2+) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L-1, while significant genotoxic effects were detected at 1 μg L-1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels.
Collapse
Affiliation(s)
- Rossana Sussarellu
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France.
| | - Morgane Lebreton
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France; UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Guillaume Rivière
- UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| |
Collapse
|
28
|
McDougall C, Degnan BM. The evolution of mollusc shells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e313. [DOI: 10.1002/wdev.313] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 11/09/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Carmel McDougall
- Centre for Marine Sciences, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Bernard M. Degnan
- Centre for Marine Sciences, School of Biological SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
29
|
Shimizu K, Luo YJ, Satoh N, Endo K. Possible co-option of engrailed during brachiopod and mollusc shell development. Biol Lett 2017; 13:rsbl.2017.0254. [PMID: 28768795 DOI: 10.1098/rsbl.2017.0254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
In molluscs, two homeobox genes, engrailed (en) and distal-less (dlx), are transcription factors that are expressed in correlation with shell development. They are expressed in the regions between shell-forming and non-shell-forming cells, likely defining the boundaries of shell-forming fields. Here we investigate the expression of two transcription factors in the brachiopod Lingula anatina We find that en is expressed in larval mantle lobes, whereas dlx is expressed in larval tentacles. We also demonstrate that the embryonic shell marker mantle peroxidase (mpox) is specifically expressed in mantle lobes. Our results suggest that en and mpox are possibly involved in brachiopod embryonic shell development. We discuss the evolutionary developmental origin of lophotrochozoan biomineralization through independent gene co-option.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Flores RL, Livingston BT. The skeletal proteome of the sea star Patiria miniata and evolution of biomineralization in echinoderms. BMC Evol Biol 2017; 17:125. [PMID: 28583083 PMCID: PMC5460417 DOI: 10.1186/s12862-017-0978-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Proteomic studies of skeletal proteins have revealed large, complex mixtures of proteins occluded within the mineral. Many skeletal proteomes contain rapidly evolving proteins with repetitive domains, further complicating our understanding. In echinoderms, proteomic analysis of the skeletal proteomes of mineralized tissues of the sea urchin Strongylocentrotus purpuratus prominently featured spicule matrix proteins with repetitive sequences linked to a C-type lectin domain. A comparative study of the brittle star Ophiocoma wendtii skeletal proteome revealed an order of magnitude fewer proteins containing C-type lectin domains. A number of other proteins conserved in the skeletons of the two groups were identified. Here we report the complete skeletal proteome of the sea star Patiria miniata and compare it to that of the other echinoderm groups. RESULTS We have identified eighty-five proteins in the P. miniata skeletal proteome. Forty-two percent of the proteins were determined to be homologous to proteins found in the S. purpuratus skeletal proteomes. An additional 34 % were from similar functional classes as proteins in the urchin proteomes. Thirteen percent of the P. miniata proteins had homologues in the O. wendtii skeletal proteome with an additional 29% showing similarity to brittle star skeletal proteins. The P. miniata skeletal proteome did not contain any proteins with C-lectin domains or with acidic repetitive regions similar to the sea urchin or brittle star spicule matrix proteins. MSP130 proteins were also not found. We did identify a number of proteins homologous between the three groups. Some of the highly conserved proteins found in echinoderm skeletons have also been identified in vertebrate skeletons. CONCLUSIONS The presence of proteins conserved in the skeleton in three different echinoderm groups indicates these proteins are important in skeleton formation. That a number of these proteins are involved in skeleton formation in vertebrates suggests a common origin for some of the fundamental processes co-opted for skeleton formation in deuterostomes. The proteins we identify suggest transport of proteins and calcium via endosomes was co-opted to this function in a convergent fashion. Our data also indicate that modifications to the process of skeleton formation can occur through independent co-option of proteins following species divergence as well as through domain shuffling.
Collapse
Affiliation(s)
- Rachel L. Flores
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
| | - Brian T. Livingston
- Department of Biological Sciences, California State University, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
| |
Collapse
|
31
|
Liu G, Huan P, Liu B. A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster. Dev Genes Evol 2017; 227:181-188. [PMID: 28280925 DOI: 10.1007/s00427-017-0579-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 +/soxc +/gata2/3 + cells and tyr1 +/soxc +/gata2/3 - cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| |
Collapse
|
32
|
Aguilera F, McDougall C, Degnan BM. Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity. Mol Biol Evol 2017; 34:779-792. [PMID: 28053006 PMCID: PMC5400390 DOI: 10.1093/molbev/msw294] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness. We find that each species, including four Pinctada (pearl oyster) species that diverged within the last 20 Ma, expresses a unique mantle secretome. Lineage- or species-specific genes comprise a large proportion of each species' mantle secretome. A majority of these secreted proteins have unique domain architectures that include repetitive, low complexity domains (RLCDs), which evolve rapidly, and have a proclivity to expand, contract and rearrange in the genome. There are also a large number of secretome genes expressed in the mantle that arose before the origin of gastropods and bivalves. Each species expresses a unique set of these more ancient genes consistent with their independent co-option into these mantle gene regulatory networks. From this analysis, we infer lineage-specific secretomes underlie shell diversity, and include both rapidly evolving RLCD-containing proteins, and the continual recruitment and loss of both ancient and recently evolved genes into the periphery of the regulatory network controlling gene expression in the mantle epithelium.
Collapse
Affiliation(s)
- Felipe Aguilera
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Carmel McDougall
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Gaitán-Espitia JD, Hofmann GE. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Mesocentrotus franciscanus. Ecol Evol 2017; 7:2798-2811. [PMID: 28428870 PMCID: PMC5395446 DOI: 10.1002/ece3.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo‐to‐larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up‐regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.
Collapse
Affiliation(s)
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
34
|
Sleight VA, Marie B, Jackson DJ, Dyrynda EA, Marie A, Clark MS. An Antarctic molluscan biomineralisation tool-kit. Sci Rep 2016; 6:36978. [PMID: 27833129 PMCID: PMC5105077 DOI: 10.1038/srep36978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
The Antarctic clam Laternula elliptica lives almost permanently below 0 °C and therefore is a valuable and tractable model to study the mechanisms of biomineralisation in cold water. The present study employed a multidisciplinary approach using histology, immunohistochemistry, electron microscopy, proteomics and gene expression to investigate this process. Thirty seven proteins were identified via proteomic extraction of the nacreous shell layer, including two not previously found in nacre; a novel T-rich Mucin-like protein and a Zinc-dependent metalloprotease. In situ hybridisation of seven candidate biomineralisation genes revealed discrete spatial expression patterns within the mantle tissue, hinting at modular organisation, which is also observed in the mantle tissues of other molluscs. All seven of these biomineralisation candidates displayed evidence of multifunctionality and strong association with vesicles, which are potentially involved in shell secretion in this species.
Collapse
Affiliation(s)
- Victoria A. Sleight
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Centre for Marine Biodiversity & Biotechnology, Institute of Life & Earth Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Daniel J. Jackson
- Department of Geobiology, Goldschmidtstr.3, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Elisabeth A. Dyrynda
- Centre for Marine Biodiversity & Biotechnology, Institute of Life & Earth Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Arul Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Sorbonne Universités, Muséum National d’Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
35
|
De Oliveira AL, Wollesen T, Kristof A, Scherholz M, Redl E, Todt C, Bleidorn C, Wanninger A. Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics 2016; 17:905. [PMID: 27832738 PMCID: PMC5103448 DOI: 10.1186/s12864-016-3080-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mollusks display a striking morphological disparity, including, among others, worm-like animals (the aplacophorans), snails and slugs, bivalves, and cephalopods. This phenotypic diversity renders them ideal for studies into animal evolution. Despite being one of the most species-rich phyla, molecular and in silico studies concerning specific key developmental gene families are still scarce, thus hampering deeper insights into the molecular machinery that governs the development and evolution of the various molluscan class-level taxa. RESULTS Next-generation sequencing was used to retrieve transcriptomes of representatives of seven out of the eight recent class-level taxa of mollusks. Similarity searches, phylogenetic inferences, and a detailed manual curation were used to identify and confirm the orthology of numerous molluscan Hox and ParaHox genes, which resulted in a comprehensive catalog that highlights the evolution of these genes in Mollusca and other metazoans. The identification of a specific molluscan motif in the Hox paralog group 5 and a lophotrochozoan ParaHox motif in the Gsx gene is described. Functional analyses using KEGG and GO tools enabled a detailed description of key developmental genes expressed in important pathways such as Hedgehog, Wnt, and Notch during development of the respective species. The KEGG analysis revealed Wnt8, Wnt11, and Wnt16 as Wnt genes hitherto not reported for mollusks, thereby enlarging the known Wnt complement of the phylum. In addition, novel Hedgehog (Hh)-related genes were identified in the gastropod Lottia cf. kogamogai, demonstrating a more complex gene content in this species than in other mollusks. CONCLUSIONS The use of de novo transcriptome assembly and well-designed in silico protocols proved to be a robust approach for surveying and mining large sequence data in a wide range of non-model mollusks. The data presented herein constitute only a small fraction of the information retrieved from the analysed molluscan transcriptomes, which can be promptly employed in the identification of novel genes and gene families, phylogenetic inferences, and other studies using molecular tools. As such, our study provides an important framework for understanding some of the underlying molecular mechanisms involved in molluscan body plan diversification and hints towards functions of key developmental genes in molluscan morphogenesis.
Collapse
Affiliation(s)
- A. L. De Oliveira
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - T. Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - A. Kristof
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - M. Scherholz
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - E. Redl
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| | - C. Todt
- University of Bergen, University Museum, The Natural History Collections, Allégaten 41, 5007 Bergen, Norway
| | - C. Bleidorn
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), José Gutiérrez Abascal 2, Madrid, 28006 Spain
- Institute of Biology, University of Leipzig, Leipzig, 04103 Germany
| | - A. Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, Vienna, 1090 Austria
| |
Collapse
|
36
|
Kocot KM, Aguilera F, McDougall C, Jackson DJ, Degnan BM. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization. Front Zool 2016; 13:23. [PMID: 27279892 PMCID: PMC4897951 DOI: 10.1186/s12983-016-0155-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes underlying molluscan shell formation may be applied more broadly to understanding the evolution of metazoan biomineralization.
Collapse
Affiliation(s)
- Kevin M Kocot
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, Tuscaloosa, Alabama 35487 USA
| | - Felipe Aguilera
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia.,Current address: Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen, 5008 Norway
| | - Carmel McDougall
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Daniel J Jackson
- Department of Geobiology, Goldschmidtstr.3, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072 Australia
| |
Collapse
|