1
|
Last MGF, Voortman LM, Sharp TH. Imaging intracellular components in situ using super-resolution cryo-correlative light and electron microscopy. Methods Cell Biol 2024; 187:223-248. [PMID: 38705626 DOI: 10.1016/bs.mcb.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Super-resolution cryo-correlative light and electron microscopy (SRcryoCLEM) is emerging as a powerful method to enable targeted in situ structural studies of biological samples. By combining the high specificity and localization accuracy of single-molecule localization microscopy (cryoSMLM) with the high resolution of cryo-electron tomography (cryoET), this method enables accurately targeted data acquisition and the observation and identification of biomolecules within their natural cellular context. Despite its potential, the adaptation of SRcryoCLEM has been hindered by the need for specialized equipment and expertise. In this chapter, we outline a workflow for cryoSMLM and cryoET-based SRcryoCLEM, and we demonstrate that, given the right tools, it is possible to incorporate cryoSMLM into an established cryoET workflow. Using Vimentin as an exemplary target of interest, we demonstrate all stages of an SRcryoCLEM experiment: performing cryoSMLM, targeting cryoET acquisition based on single-molecule localization maps, and correlation of cryoSMLM and cryoET datasets using scNodes, a software package dedicated to SRcryoCLEM. By showing how SRcryoCLEM enables the imaging of specific intracellular components in situ, we hope to facilitate adoption of the technique within the field of cryoEM.
Collapse
Affiliation(s)
- Mart G F Last
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
2
|
Hoyer MJ, Capitanio C, Smith IR, Paoli JC, Bieber A, Jiang Y, Paulo JA, Gonzalez-Lozano MA, Baumeister W, Wilfling F, Schulman BA, Harper JW. Combinatorial selective ER-phagy remodels the ER during neurogenesis. Nat Cell Biol 2024; 26:378-392. [PMID: 38429475 PMCID: PMC10940164 DOI: 10.1038/s41556-024-01356-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024]
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Collapse
Affiliation(s)
- Melissa J Hoyer
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cristina Capitanio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ian R Smith
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Velia Therapeutics, San Diego, CA, USA
| | - Julia C Paoli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anna Bieber
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Wolfgang Baumeister
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Ganeva I, Lim K, Boulanger J, Hoffmann PC, Muriel O, Borgeaud AC, Hagen WJH, Savage DB, Kukulski W. The architecture of Cidec-mediated interfaces between lipid droplets. Cell Rep 2023; 42:112107. [PMID: 36800289 PMCID: PMC9989828 DOI: 10.1016/j.celrep.2023.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 μm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.
Collapse
Affiliation(s)
- Iva Ganeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Patrick C Hoffmann
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Olivia Muriel
- Electron Microscopy Facility, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Alicia C Borgeaud
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Wanda Kukulski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
4
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
5
|
Lowery AW, Ambi A, Miller LM, Boreyko JB. Reducing Frost during Cryoimaging Using a Hygroscopic Ice Frame. ACS OMEGA 2022; 7:43421-43431. [PMID: 36506191 PMCID: PMC9730467 DOI: 10.1021/acsomega.2c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Cryomicroscopy is commonly hampered by frost accumulation, reducing the visual clarity of the specimen. Pulling a vacuum or purging with nitrogen gas can greatly reduce the sample chamber's humidity, but at cryogenic temperatures, even minute concentrations of water vapor can still result in frost deposition. Here, a hygroscopic ice frame was created around the specimen to suppress frost growth during cryomicroscopy. Specifically, fluorescently tagged rat brain vessels were frozen on a silicon nitride window with an ice frame, and the luminescence of the fluorescent tag was improved by a factor of 6 compared to a similar specimen in only a nitrogen purge environment. These findings suggest that the simple implementation of a hygroscopic ice frame surrounding the specimen can substantially improve the visual clarity for cryomicroscopy, beyond that of a vacuum or nitrogen purge system.
Collapse
Affiliation(s)
- Adam W. Lowery
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Ashwin Ambi
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lisa M. Miller
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan B. Boreyko
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
6
|
Lovatt M, Leistner C, Frank RAW. Bridging length scales from molecules to the whole organism by cryoCLEM and cryoET. Faraday Discuss 2022; 240:114-126. [PMID: 35959706 PMCID: PMC9642002 DOI: 10.1039/d2fd00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023]
Abstract
Resolving atomic structures of isolated proteins has uncovered mechanisms and fundamental processes in biology. However, many functions can only be tested in the context of intact cells and tissues that are many orders of magnitude larger than the macromolecules on which they depend. Therefore, methods that interrogate macromolecular structure in situ provide a means of directly relating structure to function across length scales. Here, we developed several workflows using cryogenic correlated light and electron microscopy (cryoCLEM) and electron tomography (cryoET) that can bridge this gap to reveal the molecular infrastructure that underlies higher order functions within cells and tissues. We also describe experimental design considerations, including cryoCLEM labelling, sample preparation, and quality control, for determining the in situ molecular architectures within native, hydrated cells and tissues.
Collapse
Affiliation(s)
- Megan Lovatt
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | - Conny Leistner
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | - René A W Frank
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Klykov O, Bobe D, Paraan M, Johnston JD, Potter CS, Carragher B, Kopylov M, Noble AJ. In situ cryo-FIB/SEM Specimen Preparation Using the Waffle Method. Bio Protoc 2022; 12:e4544. [PMID: 36618877 PMCID: PMC9795037 DOI: 10.21769/bioprotoc.4544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/24/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Cryo-focused ion beam (FIB) milling of vitrified specimens is emerging as a powerful method for in situ specimen preparation. It allows for the preservation of native and near-native conditions in cells, and can reveal the molecular structure of protein complexes when combined with cryo-electron tomography (cryo-ET) and sub-tomogram averaging. Cryo-FIB milling is often performed on plunge-frozen specimens of limited thickness. However, this approach may have several disadvantages, including low throughput for cells that are small, or at low concentration, or poorly distributed across accessible areas of the grid, as well as for samples that may adopt a preferred orientation. Here, we present a detailed description of the "Waffle Method" protocol for vitrifying thick specimens followed by a semi-automated milling procedure using the Thermo Fisher Scientific (TFS) Aquilos 2 cryo-FIB/scanning electron microscope (SEM) instrument and AutoTEM Cryo software to produce cryo-lamellae. With this protocol, cryo-lamellae may be generated from specimens, such as microsporidia spores, yeast, bacteria, and mammalian cells, as well as purified proteins and protein complexes. An experienced lab can perform the entire protocol presented here within an 8-hour working day, resulting in two to three cryo-lamellae with target thicknesses of 100-200 nm and dimensions of approximately 12 μm width and 15-20 μm length. For cryo-FIB/SEMs with particularly low-contamination chambers, the protocol can be extended to overnight milling, resulting in up to 16 cryo-lamellae in 24 h. Graphical abstract.
Collapse
Affiliation(s)
- Oleg Klykov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Daija Bobe
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Mohammadreza Paraan
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Jake D. Johnston
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Clinton S. Potter
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; *Contributed equally to this work
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; *Contributed equally to this work
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alex J. Noble
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| |
Collapse
|
8
|
Quantitative, in situ visualization of intracellular insulin vesicles in pancreatic beta cells. Proc Natl Acad Sci U S A 2022; 119:e2202695119. [PMID: 35921440 PMCID: PMC9371705 DOI: 10.1073/pnas.2202695119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Characterizing relationships between Zn2+, insulin, and insulin vesicles is of vital importance to the study of pancreatic beta cells. However, the precise content of Zn2+ and the specific location of insulin inside insulin vesicles are not clear, which hinders a thorough understanding of the insulin secretion process and diseases caused by blood sugar dysregulation. Here, we demonstrated the colocalization of Zn2+ and insulin in both single extracellular insulin vesicles and pancreatic beta cells by using an X-ray scanning coherent diffraction imaging (ptychography) technique. We also analyzed the elemental Zn2+ and Ca2+ contents of insulin vesicles using electron microscopy and energy dispersive spectroscopy (EDS) mapping. We found that the presence of Zn2+ is an important characteristic that can be used to distinguish insulin vesicles from other types of vesicles in pancreatic beta cells and that the content of Zn2+ is proportional to the size of insulin vesicles. By using dual-energy contrast X-ray microscopy and scanning transmission X-ray microscopy (STXM) image stacks, we observed that insulin accumulates in the off-center position of extracellular insulin vesicles. Furthermore, the spatial distribution of insulin vesicles and their colocalization with other organelles inside pancreatic beta cells were demonstrated using three-dimensional (3D) imaging by combining X-ray ptychography and an equally sloped tomography (EST) algorithm. This study describes a powerful method to univocally describe the location and quantitative analysis of intracellular insulin, which will be of great significance to the study of diabetes and other blood sugar diseases.
Collapse
|
9
|
Guo A, He B, Li A, Jiang H. In vitro and in vivo characterization of insulin vesicles by electron microscopy. Biochem Biophys Res Commun 2022; 597:23-29. [PMID: 35123262 DOI: 10.1016/j.bbrc.2022.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Insulin is the main hypoglycemic hormone, promoting the absorption and storage of glucose and inhibiting its production. It is a hexamer composed of six insulin macromolecules and a Zn2+ and clustered in insulin vesicles of pancreatic β cell. Most current research has focused on the in vivo imaging of whole cells while there are few detailed studies on structure of insulin vesicles. The precise content of Zn2+ in vesicles is not clear, and the aggregation state and location of insulin in insulin vesicles is not fully characterized, which hinders a thorough understanding of insulin secretion process and diseases caused by blood sugar regulation. Here, we performed electron microscopy (EM) studies on both whole cells (in vivo) and extracted isolated insulin vesicles by supercentrifugation (in vitro) to explore the location and distribution of insulin vesicles in pancreatic β cells. Meanwhile, we analyzed the content of Zn2+ and Ca2+ through EM imaging and energy dispersive spectroscopy (EDS) mapping, and the content of Zn2+ was found to be proportional to the size of insulin vesicles. In addition, by taking advantage of TEM tomography, the three-dimensional structure of insulin vesicle was obtained by acquisition projections in different angles of insulin vesicle. This study provides a promising way to quantitative analysis of intracellular insulin, which may be of great significance to the study of diabetes and other blood sugar diseases.
Collapse
Affiliation(s)
- Amin Guo
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Bo He
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huaidong Jiang
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Wu Q, Feng Z, Hu W. Reduction of autofluorescence in whole adult worms of Schistosoma japonicum for immunofluorescence assay. Parasit Vectors 2021; 14:532. [PMID: 34649608 PMCID: PMC8515762 DOI: 10.1186/s13071-021-05027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Immunofluorescence assay is one of methods to understand the spatial biology by visualizing localization of biomolecules in cells and tissues. Autofluorescence, as a common phenomenon in organisms, is a background signal interfering the immunolocalization assay of schistosome biomolecules, and may lead to misinterpretation of the biomolecular function. However, applicable method for reducing the autofluorescence in Schistosoma remains unclear. In order to find a suitable method for reducing autofluorescence of schistosomes, different chemical reagents, such as Sudan black B (SBB), trypan blue (TB), copper sulfate (CuSO4), Tris-glycine (Gly), and ammonia/ethanol (AE), at different concentrations and treatment time were tested, and SBB and CuSO4 were verified for the effect of blocking autofluorescence in immunofluorescence to localize the target with anti-SjCRT antibody. By comparing the autofluorescence characteristics of different conditions, it was found that SBB, TB and CuSO4 had a certain degree of reducing autofluorescence effect, and the best effect in females was using 50 mM CuSO4 for 6 h and in males was 0.5% SBB for 6 h. Furthermore, we have applied the optimized conditions to the immunofluorescence of SjCRT protein, and the results revealed that the immunofluorescence signal of SjCRT was clearly visible without autofluorescence interference. We present an effective method to reduce autofluorescence in male and female worm of Schistosoma japonicum for immunofluorescence assay, which could be helpful to better understand biomolecular functions. Our method provides an idea for immunofluorescence assay in other flukes with autofluoresence. ![]()
Collapse
Affiliation(s)
- Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology On Parasite-Host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
11
|
Tran NH, Carter SD, De Mazière A, Ashkenazi A, Klumperman J, Walter P, Jensen GJ. The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science 2021; 374:52-57. [PMID: 34591618 PMCID: PMC9041316 DOI: 10.1126/science.abh2474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signaling network of the unfolded protein response (UPR) adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The most conserved UPR sensor, IRE1α, spans the ER membrane and activates through oligomerization. IRE1α oligomers accumulate in dynamic foci. We determined the in situ structure of IRE1α foci by cryogenic correlated light and electron microscopy combined with electron cryo-tomography and complementary immuno–electron microscopy in mammalian cell lines. IRE1α foci localized to a network of narrow anastomosing ER tubes (diameter, ~28 nm) with complex branching. The lumen of the tubes contained protein filaments, which were likely composed of arrays of IRE1α lumenal domain dimers that were arranged in two intertwined, left-handed helices. This specialized ER subdomain may play a role in modulating IRE1α signaling.
Collapse
Affiliation(s)
- Ngoc-Han Tran
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ann De Mazière
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
12
|
Mi Z, Chen CB, Tan HQ, Dou Y, Yang C, Turaga SP, Ren M, Vajandar SK, Yuen GH, Osipowicz T, Watt F, Bettiol AA. Quantifying nanodiamonds biodistribution in whole cells with correlative iono-nanoscopy. Nat Commun 2021; 12:4657. [PMID: 34341359 PMCID: PMC8329174 DOI: 10.1038/s41467-021-25004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy. The authors demonstrate efficient excitation of nanodiamonds by a focused beam of helium ions, resulting in ionoluminescence. They use this for quantification and correlative localization of single particles within a whole cell at sub-30 nm resolution, and investigate nanodiamond radiosensitisation effects.
Collapse
Affiliation(s)
- Zhaohong Mi
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Hong Qi Tan
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.,Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yanxin Dou
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Chengyuan Yang
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shuvan Prashant Turaga
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Gin Hao Yuen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Frank Watt
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore. .,Division of Science, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
13
|
Yang JE, Larson MR, Sibert BS, Shrum S, Wright ER. CorRelator: Interactive software for real-time high precision cryo-correlative light and electron microscopy. J Struct Biol 2021; 213:107709. [PMID: 33610654 PMCID: PMC8601405 DOI: 10.1016/j.jsb.2021.107709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/06/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Cryo-correlative light and electron microscopy (CLEM) is a technique that uses the spatiotemporal cues from fluorescence light microscopy (FLM) to investigate the high-resolution ultrastructure of biological samples by cryo-electron microscopy (cryo-EM). Cryo-CLEM provides advantages for identifying and distinguishing fluorescently labeled proteins, macromolecular complexes, and organelles from the cellular environment. Challenges remain on how correlation workflows and software tools are implemented on different microscope platforms to support automated cryo-EM data acquisition. Here, we present CorRelator: an open-source desktop application that bridges between cryo-FLM and real-time cryo-EM/ET automated data collection. CorRelator implements a pixel-coordinate-to-stage-position transformation for flexible, high accuracy on-the-fly and post-acquisition correlation. CorRelator can be integrated into cryo-CLEM workflows and easily adapted to standard fluorescence and transmission electron microscope (TEM) system configurations. CorRelator was benchmarked under live-cell and cryogenic conditions using several FLM and TEM instruments, demonstrating that CorRelator reliably supports real-time, automated correlative cryo-EM/ET acquisition, through a combination of software-aided and interactive alignment. CorRelator is a cross-platform software package featuring an intuitive Graphical User Interface (GUI) that guides the user through the correlation process. CorRelator source code is available at: https://github.com/wright-cemrc-projects/corr.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Matthew R Larson
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Bryan S Sibert
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States
| | - Samantha Shrum
- Biophysics Graduate Program, University of Wisconsin, Madison, WI 53706, United States
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States; Biophysics Graduate Program, University of Wisconsin, Madison, WI 53706, United States; Morgridge Institute for Research, Madison, WI, 53715, United States; Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
14
|
Kaplan M, Nicolas WJ, Zhao W, Carter SD, Metskas LA, Chreifi G, Ghosal D, Jensen GJ. In Situ Imaging and Structure Determination of Biomolecular Complexes Using Electron Cryo-Tomography. Methods Mol Biol 2021; 2215:83-111. [PMID: 33368000 DOI: 10.1007/978-1-0716-0966-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.g., focused ion beam milling (FIB-milling) and cryo-light microscopy, has extended the realm of cryo-ET to include transient molecular complexes embedded deep in thick samples (like eukaryotic cells) and enhanced the resolution of structures obtained by cryo-ET. In this chapter, we will present an outline of how to perform cryo-ET studies on a wide variety of biological samples including prokaryotic and eukaryotic cells and biological plant tissues. This outline will include sample preparation, data collection, and data processing as well as hybrid approaches like FIB-milling, cryosectioning, and cryo-correlated light and electron microscopy (cryo-CLEM).
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lauren Ann Metskas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Georges Chreifi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Molecular Biology; and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
15
|
Correlated cryogenic fluorescence microscopy and electron cryo-tomography shows that exogenous TRIM5α can form hexagonal lattices or autophagy aggregates in vivo. Proc Natl Acad Sci U S A 2020; 117:29702-29711. [PMID: 33154161 PMCID: PMC7703684 DOI: 10.1073/pnas.1920323117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the most notable features of TRIM5 proteins is their ability to restrict retroviral infections by binding viral capsids. TRIM5α forms highly dynamic puncta of various sizes, and, when purified, hexagonal nets on the surface of HIV virions, but the molecular ultrastructure of the cellular bodies and the relationship of the in vitro nets to HIV restriction has remained unclear. To define the cellular ultrastructure underlying the punctate and dynamic nature of YFP-rhTRIM5α bodies, we applied cryogenic correlated light and electron microscopy combined with electron cryo-tomography to TRIM5α bodies and observed YFP-rhTRIM5α-localization to organelles found along the aggrephagy branch of the autophagy pathway. Consistent with previous work, we also found that TRIM5α forms hexagonal nets inside cells. Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.
Collapse
|
16
|
Sabdyusheva Litschauer I, Becker K, Saghafi S, Ballke S, Bollwein C, Foroughipour M, Gaugeler J, Foroughipour M, Schavelová V, László V, Döme B, Brostjan C, Weichert W, Dodt HU. 3D histopathology of human tumours by fast clearing and ultramicroscopy. Sci Rep 2020; 10:17619. [PMID: 33077794 PMCID: PMC7572501 DOI: 10.1038/s41598-020-71737-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Here, we describe a novel approach that allows pathologists to three-dimensionally analyse malignant tissues, including the tumour-host tissue interface. Our visualization technique utilizes a combination of ultrafast chemical tissue clearing and light-sheet microscopy to obtain virtual slices and 3D reconstructions of up to multiple centimetre sized tumour resectates. For the clearing of tumours we propose a preparation technique comprising three steps: (a) Fixation and enhancement of tissue autofluorescence with formalin/5-sulfosalicylic acid. (b) Ultrafast active chemical dehydration with 2,2-dimethoxypropane and (c) refractive index matching with dibenzyl ether at up to 56 °C. After clearing, the tumour resectates are imaged. The images are computationally post-processed for contrast enhancement and artefact removal and then 3D reconstructed. Importantly, the sequence a–c is fully reversible, allowing the morphological correlation of one and the same histological structures, once visualized with our novel technique and once visualized by standard H&E- and IHC-staining. After reverting the clearing procedure followed by standard H&E processing, the hallmarks of ductal carcinoma in situ (DCIS) found in the cleared samples could be successfully correlated with the corresponding structures present in H&E and IHC staining. Since the imaging of several thousands of optical sections is a fast process, it is possible to analyse a larger part of the tumour than by mechanical slicing. As this also adds further information about the 3D structure of malignancies, we expect that our technology will become a valuable addition for histological diagnosis in clinical pathology.
Collapse
Affiliation(s)
- Inna Sabdyusheva Litschauer
- Department of Bioelectronics, TU Wien, Vienna, Austria. .,Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Klaus Becker
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Saiedeh Saghafi
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Simone Ballke
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Bollwein
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Meraaj Foroughipour
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Julia Gaugeler
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Massih Foroughipour
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Viktória Schavelová
- Department of Bioelectronics, TU Wien, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Viktória László
- Department of Surgery, Anna Spiegel Center of Translational Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Surgery, Anna Spiegel Center of Translational Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Anna Spiegel Center of Translational Research, Medical University of Vienna, Vienna, Austria
| | - Wilko Weichert
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, TU Wien, Vienna, Austria. .,Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Carter SD, Hampton CM, Langlois R, Melero R, Farino ZJ, Calderon MJ, Li W, Wallace CT, Tran NH, Grassucci RA, Siegmund SE, Pemberton J, Morgenstern TJ, Eisenman L, Aguilar JI, Greenberg NL, Levy ES, Yi E, Mitchell WG, Rice WJ, Wigge C, Pilli J, George EW, Aslanoglou D, Courel M, Freyberg RJ, Javitch JA, Wills ZP, Area-Gomez E, Shiva S, Bartolini F, Volchuk A, Murray SA, Aridor M, Fish KN, Walter P, Balla T, Fass D, Wolf SG, Watkins SC, Carazo JM, Jensen GJ, Frank J, Freyberg Z. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. SCIENCE ADVANCES 2020; 6:eaay9572. [PMID: 32270040 PMCID: PMC7112762 DOI: 10.1126/sciadv.aay9572] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.
Collapse
Affiliation(s)
- Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheri M. Hampton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Callen T. Wallace
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ngoc Han Tran
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stephanie E. Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenny I. Aguilar
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Nili L. Greenberg
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Elana S. Levy
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Edward Yi
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - William G. Mitchell
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily W. George
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Maïté Courel
- CNRS-UMR7622, Institut de Biologie Paris-Seine, Université Pierre & Marie Curie, 75252 Paris, France
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meir Aridor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter Walter
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Grant J. Jensen
- HHMI, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Sazhina E, Okotrub K, Amstislavsky S, Surovtsev N. Effect of low temperatures on cytochrome photoresponse in mouse embryos. Arch Biochem Biophys 2019; 669:32-38. [DOI: 10.1016/j.abb.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
19
|
Prigozhin MB, Maurer PC, Courtis AM, Liu N, Wisser MD, Siefe C, Tian B, Chan E, Song G, Fischer S, Aloni S, Ogletree DF, Barnard ES, Joubert LM, Rao J, Alivisatos AP, Macfarlane RM, Cohen BE, Cui Y, Dionne JA, Chu S. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. NATURE NANOTECHNOLOGY 2019; 14:420-425. [PMID: 30833691 PMCID: PMC6786485 DOI: 10.1038/s41565-019-0395-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/28/2019] [Indexed: 05/19/2023]
Abstract
Electron microscopy has been instrumental in our understanding of complex biological systems. Although electron microscopy reveals cellular morphology with nanoscale resolution, it does not provide information on the location of different types of proteins. An electron-microscopy-based bioimaging technology capable of localizing individual proteins and resolving protein-protein interactions with respect to cellular ultrastructure would provide important insights into the molecular biology of a cell. Here, we synthesize small lanthanide-doped nanoparticles and measure the absolute photon emission rate of individual nanoparticles resulting from a given electron excitation flux (cathodoluminescence). Our results suggest that the optimization of nanoparticle composition, synthesis protocols and electron imaging conditions can lead to sub-20-nm nanolabels that would enable high signal-to-noise localization of individual biomolecules within a cellular context. In ensemble measurements, these labels exhibit narrow spectra of nine distinct colours, so the imaging of biomolecules in a multicolour electron microscopy modality may be possible.
Collapse
Affiliation(s)
| | - Peter C Maurer
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Alexandra M Courtis
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - Nian Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D Wisser
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Bining Tian
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emory Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guosheng Song
- Department of Radiology, Stanford University, Stanford, CA, USA
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Shaul Aloni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - D Frank Ogletree
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lydia-Marie Joubert
- CSIF Beckman Center, Stanford University, Stanford, CA, USA
- EM Unit, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Jianghong Rao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - A Paul Alivisatos
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | | | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc Natl Acad Sci U S A 2019; 116:4804-4809. [PMID: 30808803 PMCID: PMC6421404 DOI: 10.1073/pnas.1810690116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correlative light and electron cryo-microscopy (cryo-CLEM) combines information from the specific labeling of fluorescence cryo-microscopy (cryo-FM) with the high resolution in environmental context of electron cryo-microscopy (cryo-EM). Exploiting super-resolution methods for cryo-FM is advantageous, as it enables the identification of rare events within the environmental background of cryo-EM at a sensitivity and resolution beyond that of conventional methods. However, due to the need for relatively high laser intensities, current super-resolution cryo-CLEM methods require cryo-protectants or support films which can severely reduce image quality in cryo-EM and are not compatible with many samples, such as mammalian cells. Here, we introduce cryogenic super-resolution optical fluctuation imaging (cryo-SOFI), a low-dose super-resolution imaging scheme based on the SOFI principle. As cryo-SOFI does not require special sample preparation, it is fully compatible with conventional cryo-EM specimens, and importantly, it does not affect the quality of cryo-EM imaging. By applying cryo-SOFI to a variety of biological application examples, we demonstrate resolutions up to ∼135 nm, an improvement of up to three times compared with conventional cryo-FM, while maintaining the specimen in a vitrified state for subsequent cryo-EM. Cryo-SOFI presents a general solution to the problem of specimen devitrification in super-resolution cryo-CLEM. It does not require a complex optical setup and can easily be implemented in any existing cryo-FM system.
Collapse
|
21
|
Highlights from the Fourth Biennial Strategies for an HIV Cure Meeting, 10–12 October 2018, Bethesda, MD, USA. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30280-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Kuo L, Lawrence D, McDonald D, Refsland E, Bridges S, Smiley S, Tressler RL, Beaubien C, Salzwedel K. Highlights from the Fourth Biennial Strategies for an HIV Cure Meeting, 10-12 October 2018, Bethesda, MD, USA. J Virus Erad 2019; 5:50-59. [PMID: 30800428 PMCID: PMC6362907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The National Institute of Allergy and Infectious Diseases (NIAID) organised the Strategies for an HIV Cure 2018 meeting focused on research to develop innovative strategies for eradicating or achieving long-term remission of HIV infection. The purpose was to bring together researchers studying HIV persistence and cure strategies, including the six National Institutes of Health (NIH)-funded Martin Delaney Collaboratories for HIV Cure Research (MDCs), as well as industry and community partners, to share scientific results and stimulate active discussion among all stakeholders about the merits of various approaches under investigation. These discussions were intended to stimulate new collaborations and ideas for future research. The meeting covered a comprehensive range of topics spanning basic and translational research, drug discovery and development, and clinical research. Aside from the oral presentations described here, the meeting also included 130 poster presentations. Each of the three days of presentations is available for viewing via the NIH VideoCast website at: https://videocast.nih.gov/PastEvents.asp.
Collapse
Affiliation(s)
- Lillian Kuo
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Diane Lawrence
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - David McDonald
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Eric Refsland
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Sandra Bridges
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Stephen Smiley
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Randall L Tressler
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Candice Beaubien
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Karl Salzwedel
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| |
Collapse
|
23
|
Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:406-419. [PMID: 30175702 PMCID: PMC6265046 DOI: 10.1017/s1431927618012382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy that have contributed to this expansion. We also have included specific biological applications.
Collapse
Affiliation(s)
- Rebecca S Dillard
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Cheri M Hampton
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Joshua D Strauss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Zunlong Ke
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Deanna Altomara
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Ricardo C Guerrero-Ferreira
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Gabriella Kiss
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| | - Elizabeth R Wright
- 1Division of Pediatric Infectious Diseases,Emory University School of Medicine,Children's Healthcare of Atlanta,Atlanta,GA 30322,USA
| |
Collapse
|