1
|
Ständer SHD, Reboul CF, Le SN, Williams DE, Chandler PG, Costa MGS, Hoke DE, Jimma JDT, Fodor J, Fenalti G, Mannering SI, Porebski BT, Schofield P, Christ D, Buckle M, McGowan S, Elmlund D, Rand KD, Buckle AM. Structure and dynamics of GAD65 in complex with an autoimmune polyendocrine syndrome type 2-associated autoantibody. Nat Commun 2025; 16:2275. [PMID: 40055307 PMCID: PMC11889217 DOI: 10.1038/s41467-025-57492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
The enzyme glutamate decarboxylase (GAD) produces the neurotransmitter GABA, using pyridoxal-5'-phosphate (PLP). GAD exists as two isoforms, GAD65 and GAD67. Only GAD65 acts as a major autoantigen, frequently implicated in type 1 diabetes and other autoimmune diseases. Here we characterize the structure and dynamics of GAD65 and its interaction with the autoimmune polyendocrine syndrome type 2-associated autoantibody b96.11. Using hydrogen-deuterium exchange mass spectrometry (HDX), X-ray crystallography, cryo-electron microscopy, and computational approaches, we examine the conformational dynamics of apo- and holoGAD65 and the GAD65-autoantibody complex. HDX reveals local dynamics accompanying autoinactivation, with the catalytic loop promoting collective motions at the CTD-PLP domain interface. In the GAD65-b96.11 complex, heavy chain CDRs dominate the interaction, with a long CDRH3 bridging the GAD65 dimer via electrostatic interactions with the 260PEVKEK265motif. This bridging links structural elements controlling GAD65's conformational flexibility to its autoantigenicity. Thus, intrinsic dynamics, rather than sequence differences within epitopes, appear to be responsible for the contrasting autoantigenicities of GAD65 and GAD67. Our findings elucidate the structural and dynamic factors that govern the varying autoantibody reactivities of GAD65 and GAD67, offering a revised rationale for the autoimmune response to GAD65.
Collapse
Affiliation(s)
- Susanne H D Ständer
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- National Institutes of Health, National Cancer Institute-Frederick Campus, Fredrick, MD, USA
| | - Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel E Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D T Jimma
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James Fodor
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- The Centre for Brain, Mind and Markets, The University of Melbourne, Melbourne, VIC, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Malcolm Buckle
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay 4, Gif-sur-Yvette, France
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- San Diego Biomedical Research Institute, San Diego, CA, USA.
| |
Collapse
|
2
|
Abstract
In the recent years, the protein databank has been fueled by the exponential growth of high-resolution electron cryo-microscopy (cryo-EM) structures. This trend will be further accelerated through the continuous software and method developments and the increasing availability of imaging centers, which will open cryo-EM to a wide array of researchers with their diverse scientific goals and questions. Especially for structural biology of membrane proteins, cryo-EM offers significant advantages as it can overcome multiple limitations of classical methods. Most importantly, in cryo-EM, the sample is prepared as a vitrified suspension, which abolishes the need for crystallization, reduces the required sample amount and allows usage of a wide arsenal of hydrophobic environments. Despite recent improvements, high-resolution cryo-EM still poses some significant challenges, and standardized procedures, especially for the characterization of membrane proteins, are missing. While there can be no ultimate recipe toward a high-resolution cryo-EM structure for every membrane protein, certain factors seem to be universally relevant. Here, we share the protocols that have been successfully used in our laboratory. We hope that this may be a useful resource to other researchers in the field and may increase their chances of success.
Collapse
Affiliation(s)
- Dovile Januliene
- Max-Planck Institute of Biophysics, Frankfurt, Germany.,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany
| | - Arne Moeller
- Max-Planck Institute of Biophysics, Frankfurt, Germany. .,Department of Structural Biology, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
3
|
Reboul CF, Heo J, Machello C, Kiesewetter S, Kim BH, Kim S, Elmlund D, Ercius P, Park J, Elmlund H. SINGLE: Atomic-resolution structure identification of nanocrystals by graphene liquid cell EM. SCIENCE ADVANCES 2021; 7:7/5/eabe6679. [PMID: 33514557 PMCID: PMC7846166 DOI: 10.1126/sciadv.abe6679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Analysis of the three-dimensional (3D) structures of nanocrystals with solution-phase transmission electron microscopy is beginning to reveal their unique physiochemical properties. We developed a "one-particle Brownian 3D reconstruction method" based on imaging of ensembles of colloidal nanocrystals using graphene liquid cell electron microscopy. Projection images of differently rotated nanocrystals are acquired using a direct electron detector with high temporal (<2.5 ms) resolution and analyzed to obtain an ensemble of 3D reconstructions. Here, we introduce computational methods required for successful atomic-resolution 3D reconstruction: (i) tracking of the individual particles throughout the time series, (ii) subtraction of the interfering background of the graphene liquid cell, (iii) identification and rejection of low-quality images, and (iv) tailored strategies for 2D/3D alignment and averaging that differ from those used in biological cryo-electron microscopy. Our developments are made available through the open-source software package SINGLE.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, South Korea
| | - Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Caesar J, Reboul CF, Machello C, Kiesewetter S, Tang ML, Deme JC, Johnson S, Elmlund D, Lea SM, Elmlund H. WITHDRAWN: SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. J Struct Biol 2020; 212:107635. [PMID: 33022362 DOI: 10.1016/j.jsb.2020.107635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Molly L Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK.
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Caesar J, Reboul CF, Machello C, Kiesewetter S, Tang ML, Deme JC, Johnson S, Elmlund D, Lea SM, Elmlund H. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100040. [PMID: 33294840 PMCID: PMC7695977 DOI: 10.1016/j.yjsbx.2020.100040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We here introduce the third major release of the SIMPLE (Single-particle IMage Processing Linux Engine) open-source software package for analysis of cryogenic transmission electron microscopy (cryo-EM) movies of single-particles (Single-Particle Analysis, SPA). Development of SIMPLE 3.0 has been focused on real-time data processing using minimal CPU computing resources to allow easy and cost-efficient scaling of processing as data rates escalate. Our stream SPA tool implements the steps of anisotropic motion correction and CTF estimation, rapid template-based particle identification and 2D clustering with automatic class rejection. SIMPLE 3.0 additionally features an easy-to-use web-based graphical user interface (GUI) that can be run on any device (workstation, laptop, tablet or phone) and supports a remote multi-user environment over the network. The new project-based execution model automatically records the executed workflow and represents it as a flow diagram in the GUI. This facilitates meta-data handling and greatly simplifies usage. Using SIMPLE 3.0, it is possible to automatically obtain a clean SP data set amenable to high-resolution 3D reconstruction directly upon completion of the data acquisition, without the need for extensive image processing post collection. Only minimal standard CPU computing resources are required to keep up with a rate of ∼300 Gatan K3 direct electron detector movies per hour. SIMPLE 3.0 is available for download from simplecryoem.com.
Collapse
Affiliation(s)
- Joseph Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Molly L Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford UK
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Reboul CF, Kiesewetter S, Elmlund D, Elmlund H. Point-group symmetry detection in three-dimensional charge density of biomolecules. Bioinformatics 2020; 36:2237-2243. [PMID: 31790146 DOI: 10.1093/bioinformatics/btz904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 01/27/2023] Open
Abstract
MOTIVATION No rigorous statistical tests for detecting point-group symmetry in three-dimensional (3D) charge density maps obtained by electron microscopy (EM) and related techniques have been developed. RESULTS We propose a method for determining the point-group symmetry of 3D charge density maps obtained by EM and related techniques. Our ab initio algorithm does not depend on atomic coordinates but utilizes the density map directly. We validate the approach for a range of publicly available single-particle cryo-EM datasets. In straightforward cases, our method enables fully automated single-particle 3D reconstruction without having to input an arbitrarily selected point-group symmetry. When pseudo-symmetry is present, our method provides statistics quantifying the degree to which the 3D density agrees with the different point-groups tested. AVAILABILITY AND IMPLEMENTATION The software is freely available at https://github.com/hael/SIMPLE3.0.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Simon Kiesewetter
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Melbourne, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Johnson S, Fong YH, Deme JC, Furlong EJ, Kuhlen L, Lea SM. Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation. Nat Microbiol 2020; 5:966-975. [PMID: 32284565 PMCID: PMC7320910 DOI: 10.1038/s41564-020-0703-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 11/14/2022]
Abstract
The bacterial flagellum is a complex self-assembling nanomachine that confers motility to the cell. Despite great variation across species, all flagella are ultimately constructed from a helical propeller that is attached to a motor embedded in the inner membrane. The motor consists of a series of stator units surrounding a central rotor made up of two ring complexes, the MS-ring and the C-ring. Despite many studies, high-resolution structural information is still lacking for the MS-ring of the rotor, and proposed mismatches in stoichiometry between the two rings have long provided a source of confusion for the field. Here, we present structures of the Salmonella MS-ring, revealing a high level of variation in inter- and intrachain symmetry that provides a structural explanation for the ability of the MS-ring to function as a complex and elegant interface between the two main functions of the flagellum-protein secretion and rotation.
Collapse
Affiliation(s)
- Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yu Hang Fong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucas Kuhlen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Xie R, Chen YX, Cai JM, Yang Y, Shen HB. SPREAD: A Fully Automated Toolkit for Single-Particle Cryogenic Electron Microscopy Data 3D Reconstruction with Image-Network-Aided Orientation Assignment. J Chem Inf Model 2020; 60:2614-2625. [DOI: 10.1021/acs.jcim.9b01099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui Xie
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Xuan Chen
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Ming Cai
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yang
- Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Brillault L, Landsberg MJ. Preparation of Proteins and Macromolecular Assemblies for Cryo-electron Microscopy. Methods Mol Biol 2020; 2073:221-246. [PMID: 31612445 DOI: 10.1007/978-1-4939-9869-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cryo-electron microscopy has become popular as the penultimate step on the road to structure determination for many proteins and macromolecular assemblies. The process of obtaining high-resolution images of a purified biomolecular complex in an electron microscope often follows a long, and in many cases exhaustive screening process in which many iterative rounds of protein purification are employed and the sample preparation procedure progressively re-evaluated in order to improve the distribution of particles visualized under the electron microscope, and thus maximize the opportunity for high-resolution structure determination. Typically, negative stain electron microscopy is employed to obtain a preliminary assessment of the sample quality, followed by cryo-EM which first requires the identification of optimal vitrification conditions. The original methods for frozen-hydrated specimen preparation developed over 40 years ago still enjoy widespread use today, although recent developments have set the scene for a future where more systematic and high-throughput approaches to the preparation of vitrified biomolecular complexes may be routinely employed. Here we summarize current approaches and ongoing innovations for the preparation of frozen-hydrated single particle specimens for cryo-EM, highlighting some of the commonly encountered problems and approaches that may help overcome these.
Collapse
Affiliation(s)
- Lou Brillault
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|