1
|
Heydari S, Liu J. High-throughput cryo-electron tomography enables multiscale visualization of the inner life of microbes. Curr Opin Struct Biol 2025; 93:103065. [PMID: 40381356 DOI: 10.1016/j.sbi.2025.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Cryo-electron tomography (cryo-ET) is an advanced and rapidly evolving imaging technique that enables three-dimensional visualization of biological structures in their native state. Although cryo-ET has historically faced significant challenges, including limited applications, tedious data acquisition, labor-intensive image processing, and lower resolution when compared with single particle cryo-electron microscopy (cryo-EM), recent breakthroughs in hardware and software development have significantly improved the entire cryo-ET workflow to enable higher throughput and resolution. These advances have accelerated discoveries in structural and cellular biology, particularly in microbiology, where cryo-ET has unveiled unprecedented insights into the inner life of microbes. This review presents pivotal advances propelling high-throughput cryo-ET and the visualization of microbial architecture. As innovations in imaging technologies, workflow automation, and computational methods continue progressing rapidly, cryo-ET is expected to be increasingly utilized across various fields of life sciences, shaping the future of biological research and biomedical discoveries.
Collapse
Affiliation(s)
- Samira Heydari
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
2
|
Tan X, Boniuk E, Abraham A, Zhou X, Yu Z, Ludtke SJ, Wang Z. TomoScore: A Neural Network Approach for Quality Assessment of Cellular cryo-ET. RESEARCH SQUARE 2025:rs.3.rs-5405930. [PMID: 40343344 PMCID: PMC12060984 DOI: 10.21203/rs.3.rs-5405930/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Electron cryo-tomography (cryo-ET) is a powerful imaging tool that allows three-dimensional visualization of subcellular and molecular architecture without chemical fixation. Tomogram quality varies widely, particularly during large high-throughput data collections, and the most common strategy for initial quality assessment is empirical judgment by an expert. Tomograms may be collected for two distinct purposes: annotation of subcellular features and cellular morphology, typically performed at lower magnifications and higher defocus, and subtomogram averaging, at high magnifications, closer to focus. For the first purpose, contrast and the ability to distinguish cellular features of interest are key, whereas for subtomogram averaging, recoverable signal at high resolution is the key factor. We have developed "TomoScore" a deep-learning based tomogram screening tool targeting cellular annotation. This tool provides a single quantitative measure of the suitability of a tomogram for annotation of subcellular features, in terms of the scale of features that can be readily distinguished. We further explore the relationship between accumulated electron dose and resulting quality, suggesting an optimum dose range for cryo-ET data collection. Overall, our study streamlines data processing and reduces the need for human involvement during pre-selection for tomogram segmentation.
Collapse
Affiliation(s)
- Xuqian Tan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Boniuk
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Bioengineering Program, Rice University, Houston, TX 77030, USA
| | - Anisha Abraham
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Chemistry and Sociology Program, Rice University, Houston, TX 77030, USA
| | - Xueting Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J. Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- CryoEM Core (Advanced Technology Core), Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- CryoEM Core (Advanced Technology Core), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Li Q, Zhang L, Xu Q, Zhang P, Zhu S. SLICK: A Sandwich-LIke Culturing Kit for in situ Cryo-ET Sample Preparation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638381. [PMID: 39990359 PMCID: PMC11844457 DOI: 10.1101/2025.02.14.638381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In situ cryo-electron tomography (cryo-ET) has recently been widely used in observing subcellular structures and macromolecules in their native states at high resolution. One of the reasons that it has not been more widely adopted by cell biologists and structural biologists is the difficulties in sample preparation. Here we present the Sandwich-LIke Culturing Kit (SLICK), simplifying the procedure and increasing the throughput for sample preparation for in situ cryo-ET (69 words).
Collapse
|
4
|
Purnell C, Heebner J, Nguyen L, Swulius MT, Hylton R, Kabonick S, Grillo M, Grillo S, Grigoryev S, Heberle FA, Waxham MN, Swulius MT. Training Generalized Segmentation Networks with Real and Synthetic Cryo-ET data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635598. [PMID: 39975172 PMCID: PMC11838407 DOI: 10.1101/2025.01.31.635598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Deep learning excels at segmenting objects within noisy cryo-electron tomograms, but the approach is typically bottlenecked by access to ground truth training data. To address this issue we have developed CryoTomoSim (CTS), an open-source software package that builds coarse-grained models of macromolecular complexes embedded in vitreous ice and then simulates transmitted electron tilt series for tomographic reconstruction. Using CTS outputs, we demonstrate the effects of key microscope parameters (dose, defocus, and pixel size) on deep learning-based segmentation, and show that including both molecular crowding and diversity within synthetic datasets is key to training cellular segmentation networks from purely synthetic inputs. While very effective as initial models, the accuracy of these networks is currently limited, and real cellular data is necessary to train the most accurate and generalizable U-Nets. Using a co-training approach, we first segment over 100 tomograms from neuronal growth cones to quantify their cytoskeletal distributions and then we build a generalized cellular cryo-ET segmentation network called NeuralSeg that can segment a subset of cellular features in tomograms from all domains of life.
Collapse
|
5
|
Caspy I, Wang Z, Bharat TA. Structural biology inside multicellular specimens using electron cryotomography. Q Rev Biophys 2025; 58:e6. [PMID: 39801355 PMCID: PMC7617309 DOI: 10.1017/s0033583525000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Collapse
Affiliation(s)
- Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
6
|
Rickgauer JP, Choi H, Moore AS, Denk W, Lippincott-Schwartz J. Structural dynamics of human ribosomes in situ reconstructed by exhaustive high-resolution template matching. Mol Cell 2024; 84:4912-4928.e7. [PMID: 39626661 DOI: 10.1016/j.molcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
Protein synthesis is central to life and requires the ribosome, which catalyzes the stepwise addition of amino acids to a polypeptide chain by undergoing a sequence of structural transformations. Here, we employed high-resolution template matching (HRTM) on cryoelectron microscopy (cryo-EM) images of directly cryofixed living cells to obtain a set of ribosomal configurations covering the entire elongation cycle, with each configuration occurring at its native abundance. HRTM's position and orientation precision and ability to detect small targets (∼300 kDa) made it possible to order these configurations along the reaction coordinate and to reconstruct molecular features of any configuration along the elongation cycle. Visualizing the cycle's structural dynamics by combining a sequence of >40 reconstructions into a 3D movie readily revealed component and ligand movements, some of them surprising, such as spring-like intramolecular motion, providing clues about the molecular mechanisms involved in some still mysterious steps during chain elongation.
Collapse
Affiliation(s)
- J Peter Rickgauer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Heejun Choi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Winfried Denk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | |
Collapse
|
7
|
Schiøtz OH, Klumpe S, Plitzko JM, Kaiser CJO. Cryo-electron tomography: en route to the molecular anatomy of organisms and tissues. Biochem Soc Trans 2024; 52:2415-2425. [PMID: 39641594 PMCID: PMC11668301 DOI: 10.1042/bst20240173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Cryo-electron tomography (cryo-ET) has become a key technique for obtaining structures of macromolecular complexes in their native environment, assessing their local organization and describing the molecular sociology of the cell. While microorganisms and adherent mammalian cells are common targets for tomography studies, appropriate sample preparation and data acquisition strategies for larger cellular assemblies such as tissues, organoids or small model organisms have only recently become sufficiently practical to allow for in-depth structural characterization of such samples in situ. These advances include tailored lift-out approaches using focused ion beam (FIB) milling, and improved data acquisition schemes. Consequently, cryo-ET of FIB lamellae from large volume samples can complement ultrastructural analysis with another level of information: molecular anatomy. This review highlights the recent developments towards molecular anatomy studies using cryo-ET, and briefly outlines what can be expected in the near future.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Juergen M. Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J. O. Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
8
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 PMCID: PMC11650999 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Watson AJI, Bartesaghi A. Advances in cryo-ET data processing: meeting the demands of visual proteomics. Curr Opin Struct Biol 2024; 87:102861. [PMID: 38889501 PMCID: PMC11283971 DOI: 10.1016/j.sbi.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Cryogenic electron tomography (cryo-ET), a method that enables the viewing of biomolecules in near-native environments at high resolution, is rising in accessibility and applicability. Over the past several years, once slow sample preparation and data collection procedures have seen innovations which enable rapid collection of the large datasets required for attaining high resolution structures. Increased data availability has provided a driving force for exciting improvements in cryo-ET data processing methodologies throughout the entire processing pipeline and the development of accessible graphical user interfaces (GUIs) that enable individuals inexperienced in computational fields to convert raw tilt series into 3D structures. These advances in data processing are enabling cryo-ET to attain higher resolution and extending its applicability to more complex samples.
Collapse
Affiliation(s)
- Abigail J I Watson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Computer Science, Duke University, Durham, NC, 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
10
|
Noble AJ, de Marco A. Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives. Curr Opin Struct Biol 2024; 87:102864. [PMID: 38901373 DOI: 10.1016/j.sbi.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.
Collapse
Affiliation(s)
- Alex J Noble
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA. https://twitter.com/alexjamesnoble
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027, USA.
| |
Collapse
|
11
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
12
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
13
|
Parkhurst JM, Varslot T, Dumoux M, Siebert CA, Darrow M, Basham M, Kirkland A, Grange M, Evans G, Naismith JH. Pillar data-acquisition strategies for cryo-electron tomography of beam-sensitive biological samples. Acta Crystallogr D Struct Biol 2024; 80:421-438. [PMID: 38829361 PMCID: PMC11154591 DOI: 10.1107/s2059798324004546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.
Collapse
Affiliation(s)
- James M. Parkhurst
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Trond Varslot
- Thermo Fisher Scientific, Vlastimila Pecha, Brno, Czechia
| | - Maud Dumoux
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - C. Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Michele Darrow
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Mark Basham
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Angus Kirkland
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
- Electron Physical Science Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Michael Grange
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Gwyndaf Evans
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James H. Naismith
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
14
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Zhao X. Unlocking cryo-EM's multishot potential with square or rectangular beams. Nat Methods 2024; 21:555-557. [PMID: 38485741 DOI: 10.1038/s41592-024-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Xiaowei Zhao
- Cryo-EM shared resource, Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| |
Collapse
|
16
|
Chua EYD, Alink LM, Kopylov M, Johnston JD, Eisenstein F, de Marco A. Square beams for optimal tiling in transmission electron microscopy. Nat Methods 2024; 21:562-565. [PMID: 38238558 PMCID: PMC11009100 DOI: 10.1038/s41592-023-02161-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
Imaging large fields of view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large area is either imperfect or results in uneven exposures, a problem for dose-sensitive samples. Here, we introduce a square electron beam that can easily be retrofitted in existing microscopes, and demonstrate its application, showing that it can tile nearly perfectly and deliver cryo-electron microscopy imaging with a resolution comparable to conventional set-ups.
Collapse
Affiliation(s)
- Eugene Y D Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Lambertus M Alink
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Jake D Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Asarnow D, Becker VA, Bobe D, Dubbledam C, Johnston JD, Kopylov M, Lavoie NR, Li Q, Mattingly JM, Mendez JH, Paraan M, Turner J, Upadhye V, Walsh RM, Gupta M, Eng ET. Recent advances in infectious disease research using cryo-electron tomography. Front Mol Biosci 2024; 10:1296941. [PMID: 38288336 PMCID: PMC10822977 DOI: 10.3389/fmolb.2023.1296941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
With the increasing spread of infectious diseases worldwide, there is an urgent need for novel strategies to combat them. Cryogenic sample electron microscopy (cryo-EM) techniques, particularly electron tomography (cryo-ET), have revolutionized the field of infectious disease research by enabling multiscale observation of biological structures in a near-native state. This review highlights the recent advances in infectious disease research using cryo-ET and discusses the potential of this structural biology technique to help discover mechanisms of infection in native environments and guiding in the right direction for future drug discovery.
Collapse
Affiliation(s)
- Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vada A. Becker
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| | - Daija Bobe
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Charlie Dubbledam
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jake D. Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Nathalie R. Lavoie
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, MA, United States
| | - Qiuye Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob M. Mattingly
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Joshua H. Mendez
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Mohammadreza Paraan
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| | - Jack Turner
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Viraj Upadhye
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard M. Walsh
- Harvard Cryo-Electron Microscopy Center for Structural Biology and Harvard Medical School, Boston, MA, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, United States
| |
Collapse
|
18
|
Chua EYD, Alink LM, Kopylov M, Johnston J, Eisenstein F, de Marco A. Square beams for optimal tiling in TEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551095. [PMID: 37873376 PMCID: PMC10592621 DOI: 10.1101/2023.07.29.551095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Imaging large fields of view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large area is either imperfect or results in uneven exposures, a problem on dose-sensitive samples. Here, we introduce a square electron beam that can be easily retrofitted in existing microscopes and demonstrate its application, showing it can tile nearly perfectly and deliver cryo-EM imaging with a resolution comparable to conventional setups.
Collapse
Affiliation(s)
- Eugene YD Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Lambertus M Alink
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Jake Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| |
Collapse
|
19
|
Yang JE, Larson MR, Sibert BS, Kim JY, Parrell D, Sanchez JC, Pappas V, Kumar A, Cai K, Thompson K, Wright ER. Correlative montage parallel array cryo-tomography for in situ structural cell biology. Nat Methods 2023; 20:1537-1543. [PMID: 37723245 PMCID: PMC10555823 DOI: 10.1038/s41592-023-01999-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/08/2023] [Indexed: 09/20/2023]
Abstract
Imaging large fields of view while preserving high-resolution structural information remains a challenge in low-dose cryo-electron tomography. Here we present robust tools for montage parallel array cryo-tomography (MPACT) tailored for vitrified specimens. The combination of correlative cryo-fluorescence microscopy, focused-ion-beam milling, substrate micropatterning, and MPACT supports studies that contextually define the three-dimensional architecture of cells. To further extend the flexibility of MPACT, tilt series may be processed in their entirety or as individual tiles suitable for sub-tomogram averaging, enabling efficient data processing and analysis.
Collapse
Affiliation(s)
- Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Matthew R Larson
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Bryan S Sibert
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Joseph Y Kim
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Daniel Parrell
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, USA
| | - Juan C Sanchez
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Biophysics Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Victoria Pappas
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Biophysics Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Anil Kumar
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Kai Cai
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Keith Thompson
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
20
|
Capturing detailed cellular landscapes by montage cryo-electron tomography. Nat Methods 2023; 20:1458-1459. [PMID: 37730894 DOI: 10.1038/s41592-023-02000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
|
21
|
Chua EYD, Alink LM, Kopylov M, de Marco A. Square beams for optimal tiling in TEM. RESEARCH SQUARE 2023:rs.3.rs-3220524. [PMID: 37609243 PMCID: PMC10441458 DOI: 10.21203/rs.3.rs-3220524/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Imaging large fields-of-view at a high magnification requires tiling. Transmission electron microscopes typically have round beam profiles; therefore, tiling across a large field-of-view is either imperfect or results in uneven exposures, which is a problem on dose-sensitive samples. Here we introduce a square electron beam that can be easily retrofitted in existing microscopes and demonstrate its application showing it can tile nearly perfectly and deliver cryo-EM imaging with resolution comparable to conventional setups.
Collapse
Affiliation(s)
| | | | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| |
Collapse
|
22
|
Martinez M, Mageswaran SK, Guérin A, Chen WD, Thompson CP, Chavin S, Soldati-Favre D, Striepen B, Chang YW. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography. Nat Commun 2023; 14:4800. [PMID: 37558667 PMCID: PMC10412601 DOI: 10.1038/s41467-023-40520-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.
Collapse
Affiliation(s)
- Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William David Chen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Parker Thompson
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Chavin
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Lucas BA. Visualizing everything, everywhere, all at once: Cryo-EM and the new field of structureomics. Curr Opin Struct Biol 2023; 81:102620. [PMID: 37279614 DOI: 10.1016/j.sbi.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Twenty years ago, the release of the first draft of the human genome sequence instigated a paradigm shift in genomics and molecular biology. Arguably, structural biology is entering an analogous era, with availability of an experimentally determined or predicted molecular model for almost every protein-coding gene from many genomes-producing a reference "structureome". Structural predictions require experimental validation and not all proteins conform to a single structure, making any reference structureome necessarily incomplete. Despite these limitations, a reference structureome can be used to characterize cell state in more detail than by quantifying sequence or expression levels alone. Cryogenic electron microscopy (cryo-EM) is a method that can generate atomic resolution views of molecules and cells frozen in place. In this perspective I consider how emerging cryo-EM methods are contributing to the new field of structureomics.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
24
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
25
|
Purnell C, Heebner J, Swulius MT, Hylton R, Kabonick S, Grillo M, Grigoryev S, Heberle F, Waxham MN, Swulius MT. Rapid Synthesis of Cryo-ET Data for Training Deep Learning Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538636. [PMID: 37162972 PMCID: PMC10168359 DOI: 10.1101/2023.04.28.538636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deep learning excels at cryo-tomographic image restoration and segmentation tasks but is hindered by a lack of training data. Here we introduce cryo-TomoSim (CTS), a MATLAB-based software package that builds coarse-grained models of macromolecular complexes embedded in vitreous ice and then simulates transmitted electron tilt series for tomographic reconstruction. We then demonstrate the effectiveness of these simulated datasets in training different deep learning models for use on real cryotomographic reconstructions. Computer-generated ground truth datasets provide the means for training models with voxel-level precision, allowing for unprecedented denoising and precise molecular segmentation of datasets. By modeling phenomena such as a three-dimensional contrast transfer function, probabilistic detection events, and radiation-induced damage, the simulated cryo-electron tomograms can cover a large range of imaging content and conditions to optimize training sets. When paired with small amounts of training data from real tomograms, networks become incredibly accurate at segmenting in situ macromolecular assemblies across a wide range of biological contexts.
Collapse
|
26
|
Eisenstein F, Yanagisawa H, Kashihara H, Kikkawa M, Tsukita S, Danev R. Parallel cryo electron tomography on in situ lamellae. Nat Methods 2023; 20:131-138. [PMID: 36456783 DOI: 10.1038/s41592-022-01690-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
In situ cryo electron tomography of cryo focused ion beam milled samples has emerged in recent years as a powerful technique for structural studies of macromolecular complexes in their native cellular environment. However, the possibilities for recording tomographic tilt series in a high-throughput manner are limited, in part by the lamella-shaped samples. Here we utilize a geometrical sample model and optical image shift to record tens of tilt series in parallel, thereby saving time and gaining access to sample areas conventionally used for tracking specimen movement. The parallel cryo electron tomography (PACE-tomo) method achieves a throughput faster than 5 min per tilt series and allows for the collection of sample areas that were previously unreachable, thus maximizing the amount of data from each lamella. Performance testing with ribosomes in vitro and in situ on state-of-the-art and general-purpose microscopes demonstrated the high throughput and quality of PACE-tomo.
Collapse
Affiliation(s)
| | | | - Hiroka Kashihara
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | | | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Vijayakrishnan S. In Situ Imaging of Virus-Infected Cells by Cryo-Electron Tomography: An Overview. Subcell Biochem 2023; 106:3-36. [PMID: 38159222 DOI: 10.1007/978-3-031-40086-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK.
| |
Collapse
|
28
|
Rodríguez de Francisco B, Bezault A, Xu XP, Hanein D, Volkmann N. MEPSi: A tool for simulating tomograms of membrane-embedded proteins. J Struct Biol 2022; 214:107921. [PMID: 36372192 DOI: 10.1016/j.jsb.2022.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly increasing through advances in cryogenic electron microscope hardware, direct electron detection devices, and powerful image processing algorithms. However, the need for careful optimization of sample preparations and for access to expensive, high-end equipment, make cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-ET workflow, when reconstructed tomograms are available, it becomes clear whether the chosen imaging parameters were suitable for a specific type of sample in order to answer a specific biological question. Tools for a-priory assessment of the feasibility of samples to answer biological questions and how to optimize imaging parameters to do so would be a major advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition parameters for studies of transmembrane proteins in their native environment. We demonstrate the utility of MEPSi by showing how to detangle the influence of different data collection parameters and different orientations in respect to tilt axis and electron beam for two examples: (1) simulated plasma membranes with embedded single-pass transmembrane αIIbβ3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Borja Rodríguez de Francisco
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Armel Bezault
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | | | - Dorit Hanein
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Scintillon Institute, San Diego, CA 92121, USA
| | - Niels Volkmann
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France.
| |
Collapse
|
29
|
Elferich J, Schiroli G, Scadden DT, Grigorieff N. Defocus Corrected Large Area Cryo-EM (DeCo-LACE) for label-free detection of molecules across entire cell sections. eLife 2022; 11:e80980. [PMID: 36382886 PMCID: PMC9711527 DOI: 10.7554/elife.80980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can localize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study, we use a new data-acquisition scheme called Defocus-Corrected Large-Area cryo-EM (DeCo-LACE) to collect high-resolution images of entire sections (100- to 250-nm-thick lamellae) of neutrophil-like mouse cells, representing 1-2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide maps of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.
Collapse
Affiliation(s)
- Johannes Elferich
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| | - Giulia Schiroli
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard UniversityCambridgeUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
- Center for Regenerative Medicine, Massachusetts General HospitalBostonUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Howard Hughes Medical InstituteWorcesterUnited States
| |
Collapse
|
30
|
He B, Zhang Y, Zhang F, Han R. Correction of image distortion in large-field ssEM stitching by an unsupervised intermediate-space solving network. Bioinformatics 2022; 38:4797-4805. [PMID: 35977377 DOI: 10.1093/bioinformatics/btac566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Serial-section electron microscopy (ssEM) is a powerful technique for cellular visualization, especially for large-scale specimens. Limited by the field of view, a megapixel image of whole-specimen is regularly captured by stitching several overlapping images. However, suffering from distortion by manual operations, lens distortion or electron impact, simple rigid transformations are not adequate for perfect mosaic generation. Non-linear deformation usually causes 'ghosting' phenomenon, especially with high magnification. To date, existing microscope image processing tools provide mature rigid stitching methods but have no idea with local distortion correction. RESULTS In this article, following the development of unsupervised deep learning, we present a multi-scale network to predict the dense deformation fields of image pairs in ssEM and blend these images into a clear and seamless montage. The model is composed of two pyramidal backbones, sharing parameters and interacting with a set of registration modules, in which the pyramidal architecture could effectively capture large deformation according to multi-scale decomposition. A novel 'intermediate-space solving' paradigm is adopted in our model to treat inputted images equally and ensure nearly perfect stitching of the overlapping regions. Combining with the existing rigid transformation method, our model further improves the accuracy of sequential image stitching. Extensive experimental results well demonstrate the superiority of our method over the other traditional methods. AVAILABILITY AND IMPLEMENTATION The code is available at https://github.com/HeracleBT/ssEM_stitching. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bintao He
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
- BioMap, Inc., Beijing 100086, China
| | - Yan Zhang
- The Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Shandong 266000, China
| |
Collapse
|
31
|
Abstract
The three-dimensional organization of biomolecules important for the functioning of all living systems can be determined by cryo-electron tomography imaging under native biological contexts. Cryo-electron tomography is continually expanding and evolving, and the development of new methods that use the latest technology for sample thinning is enabling the visualization of ever larger and more complex biological systems, allowing imaging across scales. Quantitative cryo-electron tomography possesses the capability of visualizing the impact of molecular and environmental perturbations in subcellular structure and function to understand fundamental biological processes. This review provides an overview of current hardware and software developments that allow quantitative cryo-electron tomography studies and their limitations and how overcoming them may allow us to unleash the full power of cryo-electron tomography.
Collapse
Affiliation(s)
- Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|