1
|
Wei Y, Liu Y, Lei J, Jiang Q, Geng X, Guo Y, Zhang B. Quercetin-based treatment improves eggshell quality in aged laying hens by modulating immune response, eggshell gland health and serum metabolome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40387095 DOI: 10.1002/jsfa.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Eggshell quality is a critical determinant of egg product value and consumer preference. Deficient eggshells increase breakage susceptibility, leading to economic losses and reduced marketability. Dietary interventions hold promise for improving eggshell quality. Quercetin, a naturally occurring flavonoid, exhibits diverse biological activities relevant to eggshell formation. These include antioxidant and anti-inflammatory properties, and potential modulation of estrogen levels, which are known to influence eggshell quality. RESULTS A total of 160 46-week-old laying hens were randomly divided into two groups, with 8 replicates in each group and 10 chickens in each replicate. The control group was fed a corn-soybean meal basal diet, while the experimental group received a basal diet supplemented with 300 mg kg-1 quercetin. The trial period lasted for 10 weeks. The study showed that dietary supplementation with quercetin significantly increased eggshell thickness (P < 0.001). Eggshell ultrastructure analysis revealed significant increases in effective layer thickness (P < 0.001) and a marked decrease in the thickness ratio of the mammillary layer to total eggshell thickness (P < 0.001) with quercetin supplementation. Serum analysis indicated significantly higher levels of immunoglobulin A, immunoglobulin G, estrogen receptors and carbonic anhydrase-2 in hens supplemented with quercetin compared to controls (P < 0.05). Furthermore, quercetin supplementation reduced tubular gland edema and improved villus height, luminal epithelial cell height and gland duct diameter (P < 0.05). Quantitative real-time PCR analysis showed that quercetin supplementation altered immune responses in the liver, spleen and oviduct. Notably, quercetin supplementation increased metabolites associated with glycine, serine and threonine metabolism. These amino acids, key precursors of eggshell matrix proteins, showed increased metabolism, suggesting a potential mechanism by which quercetin supports eggshell biomineralization. CONCLUSION This study suggests that compromised eggshell quality might be associated with impaired biomineralization function in the eggshell gland, potentially due to tissue damage. Conversely, dietary quercetin supplementation significantly increased eggshell thickness. We propose a potential mechanism involving the activation of glycine, serine and threonine metabolic pathways, which might enhance the biomineralization capacity and overall health of the eggshell gland. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangfei Geng
- Beijing Lab Anim Sci Tech Develop Co. Ltd, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Xie Y, Fang B, Liu W, Li G, Huang RL, Zhang L, He J, Zhou S, Liu K, Li Q. Transcriptome differences in adipose stromal cells derived from pre- and postmenopausal women. Stem Cell Res Ther 2020; 11:92. [PMID: 32111240 PMCID: PMC7049195 DOI: 10.1186/s13287-020-01613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As the population ages, an increasing number of postmenopausal women are donors of adipose stromal cells (ASCs) and may benefit from autologous ASC-related treatments. However, the effect of menopausal status on ASCs has not been investigated. METHODS RNA sequencing data were downloaded, and differentially expressed genes (DEGs) were identified. Hierarchical clustering, Gene Ontology, and pathway analyses were applied to the DEGs. Two gene coexpression network analysis approaches were applied to the DEGs to provide a holistic view and preserve gene interactions. Hub genes of the gene coexpression network were identified, and their expression profiles were examined with clinical samples. ASCs from pre- and postmenopausal women were co-cultured with monocytes and T cells to determine their immunoregulatory role. RESULTS In total, 2299 DEGs were identified and presented distinct expression profiles between pre- and postmenopausal women. Gene Ontology and pathway analyses revealed some fertility-, sex hormone-, immune-, aging-, and angiogenesis-related terms and pathways. Gene coexpression networks were constructed, and the top hub genes, including TIE1, ANGPT2, RNASE1, PLVAP, CA2, and MPZL2, were consistent between the two approaches. Expression profiles of hub genes from the RNA sequencing data and clinical samples were consistent. ASCs from postmenopausal women elicit M1 polarization, while their counterparts facilitate CD3/4+ T cell proliferation. CONCLUSIONS The present study reveals the transcriptome differences in ASCs derived from pre- and postmenopausal women and provides holistic views by preserving gene interactions via gene coexpression network analysis. The top hub genes identified by this study could serve as potential targets to enhance the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Guangshuai Li
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
3
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
5
|
Yang JX, Chaudhry MT, Yao JY, Wang SN, Zhou B, Wang M, Han CY, You Y, Li Y. Effects of phyto-oestrogen quercetin on productive performance, hormones, reproductive organs and apoptotic genes in laying hens. J Anim Physiol Anim Nutr (Berl) 2017; 102:505-513. [PMID: 28986927 DOI: 10.1111/jpn.12778] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/06/2017] [Indexed: 12/26/2022]
Abstract
Quercetin, a polyphenolic flavonoid with diverse biological activities including anti-inflammatory and antiviral, inhibits lipid peroxidation, prevents oxidative injury and cell death. The purpose of the research was to investigate the effect of quercetin on productive performance, reproductive organs, hormones and apoptotic genes in laying hens between 37 and 45 weeks of age, because of the structure and oestrogenic activities similar to 17β-oestradiol. The trial was conducted using 240 Hessian laying hens (37 weeks old), housed in wire cages with two hens in each cage. These hens were randomly allotted to four treatments with six replicates, 10 hens in each replicate and fed with diets containing quercetin as 0, 0.2, 0.4 and 0.6 g/kg feed for 8 weeks. The results showed that dietary quercetin significantly increased (p < .05) the laying rate and was higher in group supplemented with 0.4 g/kg, and feed-egg ratio was decreased (p < .05) by quercetin. Dietary quercetin has no effect (p > .05) on average egg weight and average daily feed intake. Compared with control, secretion of hormones, oestradiol (E2 ), progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin-like growth factors-1 (IGF-1) and growth hormone (GH), was found to be significantly higher (p < .05) in quercetin-supplemented groups. Also ovary index, uterus index and oviduct index were not significantly influenced (p > .05) by quercetin, whereas magnum index, isthmus index, magnum length, isthmus length and follicle numbers were significantly increased (p < .05) with quercetin supplementation. Additionally, expression of apoptotic genes was significantly (p < .05) up-regulated or down-regulated by quercetin. These results indicated that quercetin improved productive performance, and its mechanism may be due to the oestrogen-like activities of quercetin.
Collapse
Affiliation(s)
- J X Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - M T Chaudhry
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - J Y Yao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - S N Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - B Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - M Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - C Y Han
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Y You
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Y Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Calvello R, Aresta A, Trapani A, Zambonin C, Cianciulli A, Salvatore R, Clodoveo ML, Corbo F, Franchini C, Panaro MA. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells. Food Chem 2016; 210:276-85. [PMID: 27211648 DOI: 10.1016/j.foodchem.2016.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Antonella Aresta
- Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Carlo Zambonin
- Department of Chemistry, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Rosaria Salvatore
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Maria Lisa Clodoveo
- Department of Agro-Environmental and Territorial Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Carlo Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceuticals, University of Bari, via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
7
|
Activity of the antiestrogenic cajanin stilbene acid towards breast cancer. J Nutr Biochem 2015; 26:1273-82. [DOI: 10.1016/j.jnutbio.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 06/03/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
8
|
Wandernoth PM, Mannowetz N, Szczyrba J, Grannemann L, Wolf A, Becker HM, Sly WS, Wennemuth G. Normal Fertility Requires the Expression of Carbonic Anhydrases II and IV in Sperm. J Biol Chem 2015; 290:29202-16. [PMID: 26487715 PMCID: PMC4705926 DOI: 10.1074/jbc.m115.698597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
HCO3 (-) is a key factor in the regulation of sperm motility. High concentrations of HCO3 (-) in the female genital tract induce an increase in sperm beat frequency, which speeds progress of the sperm through the female reproductive tract. Carbonic anhydrases (CA), which catalyze the reversible hydration of CO2 to HCO3 (-), represent potential candidates in the regulation of the HCO3 (-) homeostasis in sperm and the composition of the male and female genital tract fluids. We show that two CA isoforms, CAII and CAIV, are distributed along the epididymal epithelium and appear with the onset of puberty. Expression analyses reveal an up-regulation of CAII and CAIV in the different epididymal sections of the knockout lines. In sperm, we find that CAII is located in the principal piece, whereas CAIV is present in the plasma membrane of the entire sperm tail. CAII and CAIV single knockout animals display an imbalanced HCO3 (-) homeostasis, resulting in substantially reduced sperm motility, swimming speed, and HCO3 (-)-enhanced beat frequency. The CA activity remaining in the sperm of CAII- and CAIV-null mutants is 35% and 68% of that found in WT mice. Sperm of the double knockout mutant mice show responses to stimulus by HCO3 (-) or CO2 that were delayed in onset and reduced in magnitude. In comparison with sperm from CAII and CAIV double knockout animals, pharmacological loss of CAIV in sperm from CAII knockout animals, show an even lower response to HCO3 (-). These results suggest that CAII and CAIV are required for optimal fertilization.
Collapse
Affiliation(s)
- Petra M Wandernoth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Nadja Mannowetz
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Jaroslaw Szczyrba
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Laura Grannemann
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Anne Wolf
- the Department of Internal Medicine I, Saarland University Medical Center, Kirrberger Straße, 66421 Homburg/Saar, Germany
| | - Holger M Becker
- the Division of Zoology/Membrane Transport, Department of Biology, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663 Kaiserslautern, Germany, and
| | - William S Sly
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Gunther Wennemuth
- From the Institute of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany,
| |
Collapse
|
9
|
Karioti A, Ceruso M, Carta F, Bilia AR, Supuran CT. New natural product carbonic anhydrase inhibitors incorporating phenol moieties. Bioorg Med Chem 2015; 23:7219-25. [PMID: 26498393 DOI: 10.1016/j.bmc.2015.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.
Collapse
Affiliation(s)
- Anastasia Karioti
- Laboratory of Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Mariangela Ceruso
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Fabrizio Carta
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy.
| | - Anna-Rita Bilia
- Università degli Studi di Firenze, PHYTOLAB, Departimento di Chimica Ugo Schiff, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Firenze), Italy; Università degli Studi di Firenze, Polo Scientifico, Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
10
|
Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol 2015; 283:139-46. [DOI: 10.1016/j.taap.2015.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 12/27/2022]
|
11
|
Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi JH, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. ACTA ACUST UNITED AC 2013; 217:507-17. [PMID: 24198265 DOI: 10.1242/jeb.089813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Males and females can be highly dimorphic in metabolism and physiology despite sharing nearly identical genomes, and both sexes respond phenotypically to elevated testosterone, a steroid hormone that alters gene expression. Only recently has it become possible to learn how a hormone such as testosterone affects global gene expression in non-model systems, and whether it affects the same genes in males and females. To investigate the transcriptional mechanisms by which testosterone exerts its metabolic and physiological effects on the periphery, we compared gene expression by sex and in response to experimentally elevated testosterone in a well-studied bird species, the dark-eyed junco (Junco hyemalis). We identified 291 genes in the liver and 658 in the pectoralis muscle that were differentially expressed between males and females. In addition, we identified 1727 genes that were differentially expressed between testosterone-treated and control individuals in at least one tissue and sex. Testosterone treatment altered the expression of only 128 genes in both males and females in the same tissue, and 847 genes were affected significantly differently by testosterone treatment in the two sexes. These substantial differences in transcriptional response to testosterone suggest that males and females may employ different pathways when responding to elevated testosterone, despite the fact that many phenotypic effects of experimentally elevated testosterone are similar in both sexes. In contrast, of the 121 genes that were affected by testosterone treatment in both sexes, 78% were regulated in the same direction (e.g. either higher or lower in testosterone-treated than control individuals) in both males and females. Thus, it appears that testosterone acts through both unique and shared transcriptional pathways in males and females, suggesting multiple mechanisms by which sexual conflict can be mediated.
Collapse
Affiliation(s)
- Mark P Peterson
- Department of Biology, Center for Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effects of genistein on oestrogen and progesterone receptor, proliferative marker Ki-67 and carbonic anhydrase localisation in the uterus and cervix of gilts after insemination. Anim Reprod Sci 2013; 138:90-101. [DOI: 10.1016/j.anireprosci.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 01/23/2013] [Accepted: 01/27/2013] [Indexed: 11/29/2022]
|
13
|
Wistedt A, Ridderstråle Y, Wall H, Holm L. Effects of phytoestrogen supplementation in the feed on the shell gland of laying hens at the end of the laying period. Anim Reprod Sci 2012; 133:205-13. [DOI: 10.1016/j.anireprosci.2012.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022]
|
14
|
Caldarelli A, Minazzi P, Canonico PL, Genazzani AA, Giovenzana GB. N-Arylbenzamides: extremely simple scaffolds for the development of novel estrogen receptor agonists. J Enzyme Inhib Med Chem 2011; 28:148-52. [DOI: 10.3109/14756366.2011.642374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Antonio Caldarelli
- DISCAFF & DFB Center, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Paolo Minazzi
- DISCAFF & DFB Center, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Pier Luigi Canonico
- DISCAFF & DFB Center, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Armando A. Genazzani
- DISCAFF & DFB Center, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Giovanni B. Giovenzana
- DISCAFF & DFB Center, Università degli Studi del Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
15
|
Amer DAM, Kretzschmar G, Müller N, Stanke N, Lindemann D, Vollmer G. Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. J Steroid Biochem Mol Biol 2010; 120:208-17. [PMID: 20433925 DOI: 10.1016/j.jsbmb.2010.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/15/2010] [Accepted: 04/20/2010] [Indexed: 11/26/2022]
Abstract
Many flavonoids, a major group of phenolic plant-derived secondary metabolites, are known to possess estrogen-like bioactivities. However, little is known about their estrogenic properties in the central nervous system due to the lack of suitable cellular models expressing sufficient amounts of functional estrogen receptor beta (ERbeta). To overcome this deficit, we have created a cellular model, which is serotonergic in origin, to study properties of estrogenic substances by stably transducing RN46A-B14 cells derived from raphe nuclei region of the rat brain with a lentiviral vector encoding a human ERbeta. We clearly showed that the transgenic human ERbeta is a spontaneously expressed and a functional receptor. We have further assessed the estrogenicity of three different isoflavones and four different naringenin-type flavanones in this cell line utilizing a luciferase reporter gene assay. Genistein (GEN), Daidzein (DAI), Equol (EQ), Naringenin (NAR) and 8-prenylnaringenin (8-PN) showed strong estrogenic activity in a concentration-dependent manner as compared to 7-(O-prenyl)naringenin-4'-acetate (7-O-PN) which was only slightly estrogenic and 6-(1,1-dimethylallyl)naringenin (6-DMAN) that neither showed estrogenic nor anti-estrogenic activity in our model. All observed effects could be antagonized by the anti-estrogen fulvestrant. Moreover, co-treatment of cells with 17beta-estradiol (E2) and either GEN or DAI showed a slight additive effect as compared to EQ. On the other hand, 8-PN in addition to 7-O-PN, but not NAR and 6-DMAN, were able to slightly antagonize the responses triggered by E2. Our newly established cellular model may prove to be a useful tool in explicating basic physiological properties of ERbeta in the brain and may help unravel molecular and cellular mechanisms involved in serotonergic mood regulation by estrogen or potential plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Dena A M Amer
- Section of Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technische Universität Dresden, 01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Li Q, Wan HY, Helferich WG, Wong MS. Genistein and a soy extract differentially affect three-dimensional bone parameters and bone-specific gene expression in ovariectomized mice. J Nutr 2009; 139:2230-6. [PMID: 19793844 DOI: 10.3945/jn.109.108399] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Soy isoflavone preparations, such as purified genistein and a soy extract (Novasoy), were reported previously to exert beneficial effects on bones. Our purpose in this study was to compare the effects of genistein and Novasoy on 3-dimensional trabecular bone parameters and the expression of bone-specific genes in ovariectomized (OVX) mice. The sham-operated mice were fed the control diet and OVX mice were fed diets containing genistein or Novasoy or the control diet, with or without 17beta-estradiol treatment, for 5 wk. Trabecular bone parameters of tibias were measured by microcomputed tomography and gene expression was assayed by real-time PCR. Consumption of diets containing genistein or Novasoy partially prevented the ovariectomy-induced increase in body weight but did not alter the uterus weight of the OVX mice. Novasoy, but not purified genistein, significantly preserved trabecular bone mass, bone volume, and trabecular bone separation in the proximal tibial metaphysis. Purified genistein decreased mRNA expression of receptor activator of nuclear factor-kappaB ligand (RANKL), carbonic anhydrase II, and cathepsin K and enhanced the ratio of osteoprotegrin:RANKL mRNA expression in the tibial head of the OVX mice. In contrast, the diet containing Novasoy suppressed the OVX-induced increase in serum alkaline phosphatase but did not alter bone-specific gene expression of tibia. Our study demonstrated that a soy extract containing a similar level of genistein in the form of Novasoy is more effective than purified genistein in improving tibial trabecular bone quality in OVX mice, but the mechanism of action might be distinct from that of genistein.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, Guangdong, PRC
| | | | | | | | | |
Collapse
|
17
|
Salas AL, Montezuma TD, Fariña GG, Reyes-Esparza J, Rodríguez-Fragoso L. Genistein modifies liver fibrosis and improves liver function by inducing uPA expression and proteolytic activity in CCl4-treated rats. Pharmacology 2007; 81:41-9. [PMID: 17823541 DOI: 10.1159/000107968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 05/14/2007] [Indexed: 01/18/2023]
Abstract
AIM To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. METHODS Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. RESULTS Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. CONCLUSION Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease.
Collapse
Affiliation(s)
- Alfonso Leija Salas
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
18
|
Mosquette R, de Jesus Simões M, da Silva IDCG, Oshima CTF, Oliveira-Filho RM, Haidar MA, Simões RS, Baracat EC, Soares Júnior JM. The effects of soy extract on the uterus of castrated adult rats. Maturitas 2007; 56:173-83. [PMID: 16997514 DOI: 10.1016/j.maturitas.2006.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of different doses of a standardized soy extract on the uterus of castrated rats. METHODS Fifty-six adult castrated female Wistar rats were randomly divided into seven groups (eight animals in each) that received: GI--drug vehicle (propylene glycol); GII--soy extract 10mg/kg per day; GIII--soy extract 50mg/kg per day; GIV--soy extract 100mg/kg per day; GV--soy extract 300mg/kg per day; GVI--soy extract 600mg/kg per day; GVII-conjugated equine estrogens (CEE) 200microg/kg per day. After 21 days of treatment, all animals were sacrificed and fragments of the uterine horns were immediately removed, fixed in 10% formaldehyde and submitted to routine histological techniques for morphometric study. The endometrial cell proliferation index was determined with the PCNA antibody PC-10 and expressed as the percentuals of the PCNA-positive nuclei relative to the total countings. Other fragments were immediately frozen in liquid nitrogen for RNA extraction and VEGF analysis using RT-PCR technique. RESULTS The minimal dose of soy extract that produced a significant increase of the morphometric parameters was 100mg/kg (GIV). The maximum effects on endometrial and myometrial morphometry were detected in the groups treated with 300 and 600mg/kg of soy extract (groups V and VI) and CEE (GVII). The expression of PCNA in the endometrial epithelium and stroma was increased by treatment with 100-600mg/kg per day of soy extract (groups IV-VI) or with CCE (group VII). Doses equal to or higher than 50mg/kg of soy extract (groups III-VI) and CEE stimulated the expression of VEGF. CONCLUSION The treatment of adult castrated rats during 21 days with doses of 100mg/kg per day or higher of soy extract may determine significant proliferation in the endometrium and myometrium.
Collapse
Affiliation(s)
- Rejane Mosquette
- Department of Gynecology, Federal University of São Paulo, Rua Sena Madureira 1245, 04021051 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|