1
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
2
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
3
|
Koszegi Z, Cheong RY. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022; 13:999236. [PMID: 36187099 PMCID: PMC9521328 DOI: 10.3389/fendo.2022.999236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens can alter the biology of various tissues and organs, including the brain, and thus play an essential role in modulating homeostasis. Despite its traditional role in reproduction, it is now accepted that estrogen and its analogues can exert neuroprotective effects. Several studies have shown the beneficial effects of estrogen in ameliorating and delaying the progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease and various forms of brain injury disorders. While the classical effects of estrogen through intracellular receptors are more established, the impact of the non-classical pathway through receptors located at the plasma membrane as well as the rapid stimulation of intracellular signaling cascades are still under active research. Moreover, it has been suggested that the non-classical estrogen pathway plays a crucial role in neuroprotection in various brain areas. In this mini-review, we will discuss the use of compounds targeting the non-classical estrogen pathway in their potential use as treatment in neurodegenerative diseases and brain injury disorders.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Y. Cheong
- Timeline Bioresearch AB, Medicon Village, Lund, Sweden
- *Correspondence: Rachel Y. Cheong,
| |
Collapse
|
4
|
Bálint M, Jeszenői N, Horváth I, Ábrahám IM, Hetényi C. Dynamic changes in binding interaction networks of sex steroids establish their non-classical effects. Sci Rep 2017; 7:14847. [PMID: 29093525 PMCID: PMC5665952 DOI: 10.1038/s41598-017-14840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022] Open
Abstract
Non-classical signaling in the intracellular second messenger system plays a pivotal role in the cytoprotective effect of estradiol. Estrogen receptor is a common target of sex steroids and important in mediating estradiol-induced neuroprotection. Whereas the mechanism of genomic effects of sex steroids is fairly understood, their non-classical effects have not been elucidated completely. We use real time molecular dynamics calculations to uncover the interaction network of estradiol and activator estren. Besides steroid interactions, we also investigate the co-activation of the receptor. We show how steroid binding to the alternative binding site of the non-classical action is facilitated by the presence of a steroid in the classical binding site and the absence of the co-activator peptide. Uncovering such dynamic mechanisms behind steroid action will help the structure-based design of new drugs with non-classical responses and cytoprotective potential.
Collapse
Affiliation(s)
- Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.,Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Norbert Jeszenői
- MTA NAP-B Molecular Neuroendocrinology Group, Institute of Physiology, Szentágothai Research Center, Center for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - István Horváth
- Chemistry Doctoral School, University of Szeged, Dugonics tér 13, 6720, Szeged, Hungary
| | - István M Ábrahám
- MTA NAP-B Molecular Neuroendocrinology Group, Institute of Physiology, Szentágothai Research Center, Center for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.
| |
Collapse
|
5
|
Kim SC, Boese AC, Moore MH, Cleland RM, Chang L, Delafontaine P, Yin KJ, Lee JP, Hamblin MH. Rapid estrogen receptor-α signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice. Am J Physiol Heart Circ Physiol 2017; 314:H330-H342. [PMID: 28887333 DOI: 10.1152/ajpheart.00841.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Estrogen has been shown to affect vascular reactivity. Here, we assessed the estrogen receptor-α (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17β-estradiol (E2) or 4,4',4″-(4-propyl-[1H]pyrazole-1,3,5-triyl)tris-phenol (PPT; selective ERα agonist). We found that E2 and PPT induced greater aortic relaxation in female mice than in male mice, indicating ERα mediation, which was further validated by using ERα antagonism. Treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP dihydrochloride; ERα antagonist) attenuated PPT-mediated vessel relaxation in both sexes. ERα-mediated vessel relaxation was further validated by the absence of significant PPT-mediated relaxation in aortas isolated from ERα knockout mice. Treatment with a specific ERK inhibitor, PD-98059, reduced E2-induced vessel relaxation in both sexes but to a lesser extent in female mice. Furthermore, PD-98059 prevented PPT-induced vessel relaxation in both sexes. Both E2 and PPT treatment activated ERK as early as 5-10 min, which was attenuated by PD-98059 in aortic tissue, cultured primary vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). Aortic rings denuded of endothelium showed no differences in vessel relaxation after E2 or PPT treatment, implicating a role of ECs in the observed sex differences. Here, our results are unique to show estrogen-stimulated rapid ERα signaling mediated by ERK activation in aortic tissue, as well as VSMCs and ECs in vitro, in regulating vascular function by using side-by-side comparisons in male and ovary-intact female mice in response to E2 or PPT. NEW & NOTEWORTHY Here, we assessed the estrogen receptor-α dependency of estrogenic effects in vasorelaxation of both male and ovary-intact female mice by performing side-by-side comparisons. Also, we describe the connection between estrogen-stimulated rapid estrogen receptor-α signaling and downstream ERK activation in regulating vascular function in male and ovary-intact female mice.
Collapse
Affiliation(s)
- Seong Chul Kim
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Matthew H Moore
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Rea M Cleland
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine , New Orleans, Louisiana
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
6
|
Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal 2017; 34:121-132. [PMID: 28341599 DOI: 10.1016/j.cellsig.2017.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70% cases of breast cancers exhibit high expression and activity levels of estrogen receptor alpha (ERα), a transcription regulator that induces the expression of genes associated with cellular proliferation and survival. These nuclear functions of the receptor are associated with the development of breast cancer. However, ERα localization is not static, but rather, dynamic with continuous shuttling between the nucleus and the cytoplasm. Interestingly, both the nuclear import and export of ERα are modulated by several stimuli that include estradiol, antiestrogens, and growth factors. As ERα nuclear accumulation is critical to the regulation of gene expression, nuclear export of this receptor modulates the intensity and duration of its transcriptional activity. Thus, the subcellular spatial distribution of ERα ensures tight modulation of its concentration in cellular compartments, as well as of its nuclear and extranuclear functions. In this review, we will discuss current findings regarding the biological importance of molecular mechanisms of, and proteins responsible for, the nuclear import and export of ERα in breast cancer cells.
Collapse
|
7
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015; 80:67-78. [PMID: 26453497 PMCID: PMC4600533 DOI: 10.1016/j.bone.2015.04.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Estrogens and androgens influence the growth and maintenance of bones and muscles and are responsible for their sexual dimorphism. A decline in their circulating levels leads to loss of mass and functional integrity in both tissues. In the article, we highlight the similarities of the molecular and cellular mechanisms of action of sex steroids in the two tissues; the commonality of a critical role of mechanical forces on tissue mass and function; emerging evidence for an interplay between mechanical forces and hormonal and growth factor signals in both bones and muscles; as well as the current state of evidence for or against a cross-talk between muscles and bone. In addition, we review evidence for the parallels in the development of osteoporosis and sarcopenia with advancing age and the potential common mechanisms responsible for the age-dependent involution of these two tissues. Lastly, we discuss the striking difference in the availability of several drug therapies for the prevention and treatment of osteoporosis, as compared to none for sarcopenia. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- James A Carson
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
9
|
Selina AK, Murat K, Emre K, Ismail M, Bunyami U, Cemal G. The relationship between estrogen receptors and microtubule dynamics in post-menopausal rat brain. Acta Histochem 2015; 117:747-51. [PMID: 26319549 DOI: 10.1016/j.acthis.2015.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Estrogen is one of the most important regulators of neuron function. There is a broad consensus that a loss of estrogen is associated with neurodegeneration in the hippocampus which leads to cognitive impairment. Hematopoietic-Pbx-interaction-protein (HPIP) is a novel scaffolding protein which interacts with microtubules and estrogen receptors. In this study, we investigated the presence and role of HPIP in hippocampal neurons and examined the relationship between estrogen receptors and microtubule damage in post-menopausal rat brains. METHOD Eighty female Wistar albino rats, 12 weeks old, were divided into 10 groups: control, control+17-β-estradiol, control+tamoxifen, control+mitogen-activated protein kinases (MAPK) inhibitor, control+phosphoinositide 3-kinase (PI3-K) inhibitor, ovariectomized, ovariectomized+17-β-estradiol, ovariectomized+tamoxifen, ovariectomized+MAPK inhibitor, and ovariectomized+PI3-K inhibitor. Light and electron microscopic examinations were performed. Real-time polymerase chain reaction (PCR) was used to determine the expression level of HPIP in experimental groups. RESULTS Light and electron microscopic examinations revealed morphological changes in hippocampal neuron axons. Axonal fluctuations and shrinkage were detected in all ovariectomized groups. HPIP was detected in all neurons with difference expression levels. CONCLUSION Proof that the HPIP protein can be found on hippocampal neurons may give rise to a new focus on neurodegeneration in post-menopausal women. Future molecular and pharmacological studies should be performed to reduce the rate of cognitive symptoms resulting from hippocampal neurodegeneration.
Collapse
|
10
|
Pourié G, Martin N, Bossenmeyer-Pourié C, Akchiche N, Guéant-Rodriguez RM, Geoffroy A, Jeannesson E, El Hajj Chehadeh S, Mimoun K, Brachet P, Koziel V, Alberto JM, Helle D, Debard R, Leininger B, Daval JL, Guéant JL. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α. FASEB J 2015; 29:3713-25. [PMID: 26018677 DOI: 10.1096/fj.14-264267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.
Collapse
Affiliation(s)
- Grégory Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nicolas Martin
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Carine Bossenmeyer-Pourié
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Nassila Akchiche
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Rosa Maria Guéant-Rodriguez
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Andréa Geoffroy
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Elise Jeannesson
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Sarah El Hajj Chehadeh
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Khalid Mimoun
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Patrick Brachet
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Violette Koziel
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Marc Alberto
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Deborah Helle
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Renée Debard
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Brigitte Leininger
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Luc Daval
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Jean-Louis Guéant
- *Institut National de la Santé et de la Recherche Médicale, Unité 954, Nutrition-Genetics and Environmental Exposure, Medical Faculty and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France; Human Nutrition Unit, Unité Mixte de Recherche 1019 Institut National de la Recherche Agronomique/University of Auvergne, Institut National de la Recherche Agronomique Centre of Theix, Saint-Genès Champanelle, France; and Istituto di Ricovero e Cura a Carattere Scientifico, Oasi Maria Santissima-Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| |
Collapse
|
11
|
Biologic roles of estrogen receptor-β and insulin-like growth factor-2 in triple-negative breast cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925703. [PMID: 25874233 PMCID: PMC4385615 DOI: 10.1155/2015/925703] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022]
Abstract
Triple-negative breast cancer (TNBC) occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated
with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.
Collapse
|
12
|
Abstract
Mouse models with cell-specific deletion of the estrogen receptor (ER) α, the androgen receptor (AR) or the receptor activator of nuclear factor κB ligand (RANKL), as well as cascade-selective estrogenic compounds have provided novel insights into the function and signalling of ERα and AR. The studies reveal that the effects of estrogens on trabecular versus cortical bone mass are mediated by direct effects on osteoclasts and osteoblasts, respectively. The protection of cortical bone mass by estrogens is mediated via ERα, using a non-nucleus-initiated mechanism. By contrast, the AR of mature osteoblasts is indispensable for the maintenance of trabecular bone mass in male mammals, but not required for the anabolic effects of androgens on cortical bone. Most unexpectedly, and independently of estrogens, ERα in osteoblast progenitors stimulates Wnt signalling and periosteal bone accrual in response to mechanical strain. RANKL expression in B lymphocytes, but not T lymphocytes, contributes to the loss of trabecular bone caused by estrogen deficiency. In this Review, we summarize this evidence and discuss its implications for understanding the regulation of trabecular and cortical bone mass; the integration of hormonal and mechanical signals; the relative importance of estrogens versus androgens in the male skeleton; and, finally, the pathogenesis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Centre for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, 4301 West Markham, Little Rock, AR 72205-7199, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Centre for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, 4301 West Markham, Little Rock, AR 72205-7199, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Centre for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, 4301 West Markham, Little Rock, AR 72205-7199, USA
| |
Collapse
|
13
|
Binai NA, Carra G, Löwer J, Löwer R, Wessler S. Differential gene expression in ERα-positive and ERα-negative breast cancer cells upon leptin stimulation. Endocrine 2013; 44:496-503. [PMID: 23412922 DOI: 10.1007/s12020-013-9897-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
In postmenopausal women, adipositas represents a serious risk factor for cancer development and progression. White adipose tissue secretes the 16 kDa hormone leptin which plays a key role in the regulation of appetite and metabolism. An increasing number of reports indicate that leptin also interferes with signal transduction pathways implicated in the development of breast cancer. In our previous study, we identified the estrogen receptor alpha (ERα) as a relevant enhancer of leptin-induced signal transduction leading to transactivation of signal transducer and activator of transcription 3 (Stat3). The purpose of this study is the investigation of specific target gene expression in response to leptin-mediated Stat3 signaling. We performed a comprehensive microarray analysis of ERα-positive and ERα-negative MDA-MB-231 cells upon leptin treatment and identified 49 genes which showed a significant ERα-dependent regulation in leptin-treated MDA-MB-231 cells. There was no intersection with genes which were merely up- or downregulated by ERα expression and only 9 and 11 genes overlapping targets which were regulated by leptin stimulation either in ERα-expressing or ERα-negative MDA-MB-231 cells, respectively. To demonstrate the specificity, expression of three target genes was validated by quantitative real-time PCR. In conclusion, these data imply that leptin can induce a different set of target genes dependent on ERα expression, which might contribute to the development and progression of cancer diseases.
Collapse
|
14
|
A new hypothesis about hematopoietic Pbx-interaction protein (HPIP): can it be a key factor in neurodegeneration in the post-menopausal period? Med Hypotheses 2013; 81:470-6. [PMID: 23845560 DOI: 10.1016/j.mehy.2013.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/21/2013] [Accepted: 06/15/2013] [Indexed: 11/24/2022]
Abstract
Neuronal degeneration in the post-menopausal term leads to cognitive symptoms such as anxiety, difficulty in concentrating, overreacting to minor upsets, quickly becoming irritated and forgetfulness in approximately 70-80% of all women around the world. These symptoms, which result from microtubule damage in the axon extensions of hippocampal neurons in during menopause, greatly reduce individuals' life quality. Thus, an investigation of the estrogen receptor-signaling pathway-microtubule dynamic triangle and the possible links between them is important when it comes to explaining the possible mechanism of neurodegeneration. Hematopoietic Pbx-interaction protein (HPIP), a microtubule-binding protein, is a novel scaffolding protein. The detection of this protein on neurons represents the most important step in our hypothesis. The importance of the hypothesis is that it might provide important clues about the possible role of HPIP and its mechanism through in vivo and in vitro studies of estrogen receptors-microtubules and the HPIP triangle in terms of neuronal degeneration in the post-menopausal period. A preliminary study was performed to test the main part of our hypothesis using real-time PCR. According to the results, the mRNA expression of HPIP was found in hippocampal neurons. After the detection of this novel protein in neurons, it was observed that there were differences in the experimental groups when compared with the control group relating to the mRNA expression of this protein. An important scientific question remains concerning the mechanisms of neurodegeneration appearing in the post-menopausal period and the receptors, proteins, and signaling pathways that play a role in this degeneration. In consideration of the data from in vivo and in vitro studies used to test our hypothesis, we will try to address the relevant questions. As this issue is resolved, new studies and treatment procedures that can help to prevent the possible difficulties in the menopausal period will be illuminated.
Collapse
|
15
|
Garrido P, Morán J, Alonso A, González S, González C. 17β-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells. Endocrinology 2013; 154:1979-89. [PMID: 23546602 DOI: 10.1210/en.2012-1558] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between estrogen and some types of breast cancer has been clearly established. However, although several studies have demonstrated the relationship between estrogen and glucose uptake via phosphatidylinositol 3-kinase (PI3K)/Akt in other tissues, not too much is known about the possible cross talk between them for development and maintenance of breast cancer. This study was designed to test the rapid effects of 17β-estradiol (E2) or its membrane-impermeable form conjugated with BSA (E2BSA) on glucose uptake in a positive estrogen receptor (ER) breast cancer cell line, through the possible relationship between key components of the PI3K/Akt signaling pathway and acute steroid treatment. MCF-7 human breast cancer cells were cultured in standard conditions. Then 10 nM E2 or E2BSA conjugated were administered before obtaining the cell lysates. To study the glucose uptake, the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose was used. We report an ER-dependent activation of some of the key steps of the PI3K/Akt signaling pathway cascade that leads cells to improve some mechanisms that finally increase glucose uptake capacity. Our data suggest that both E2 and E2BSA enhance the entrance of the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose, and also activates PI3K/Akt signaling pathway, leading to translocation of glucose transporter 4 to the plasma membrane in an ERα-dependent manner. E2 enhances ER-dependent rapid signaling triggered, partially in the plasma membrane, allowing ERα-positive MCF-7 breast cancer cells to increase glucose uptake, which could be essential to meet the energy demands of the high rate of proliferation.
Collapse
Affiliation(s)
- Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, c/ Julian Claveria s/n, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
16
|
Bartell SM, Han L, Kim HN, Kim SH, Katzenellenbogen JA, Katzenellenbogen BS, Chambliss KL, Shaul PW, Roberson PK, Weinstein RS, Jilka RL, Almeida M, Manolagas SC. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass. Mol Endocrinol 2013; 27:649-56. [PMID: 23443267 DOI: 10.1210/me.2012-1368] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Extensive evidence has suggested that at least some of the effects of estrogens on bone are mediated via extranuclear estrogen receptor α signaling. However, definitive proof for this contention and the extent to which such effects may contribute to the overall protective effects of estrogens on bone maintenance have remained elusive. Here, we investigated the ability of a 17β-estradiol (E2) dendrimer conjugate (EDC), incapable of stimulating nuclear-initiated actions of estrogen receptor α, to prevent the effects of ovariectomy (OVX) on the murine skeleton. We report that EDC was as potent as an equimolar dose of E2 in preventing bone loss in the cortical compartment that represents 80% of the entire skeleton, but was ineffective on cancellous bone. In contrast, E2 was effective in both compartments. Consistent with its effect on cortical bone mass, EDC partially prevented the loss of both vertebral and femoral strength. In addition, EDC, as did E2, prevented the OVX-induced increase in osteoclastogenesis, osteoblastogenesis, and oxidative stress. Nonetheless, the OVX-induced decrease in uterine weight was unaltered by EDC but was restored by E2. These results demonstrate that the protection of cortical bone mass by estrogens is mediated, at least in part, via a mechanism that is distinct from the classic mechanism of estrogen action on reproductive organs.
Collapse
Affiliation(s)
- Shoshana M Bartell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 West Markham Street, MS 587, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Decrease of Tau hyperphosphorylation by 17β estradiol requires sphingosine kinase in a glutamate toxicity model. Neurochem Res 2011; 34:2206-14. [PMID: 19543831 DOI: 10.1007/s11064-009-0017-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2009] [Indexed: 01/08/2023]
Abstract
Several studies have linked estrogens with sphingosine kinase (SphK) activity, enzyme responsible of sphingosine-1-phosphate synthesis (S-1P), however their possible interaction in the nervous system is not documented yet. In the present study, we developed a glutamate toxicity model in SH-SY5Y cells to evaluate the possible effect of the inhibition of SphK activity on the protective capability of 17β-estradiol (E2). Glutamate induced cytoskeletal actin changes associated to cytotoxic stress, significant increase of apoptotic-like nuclear fragmentation, Tau hyperphosphorylation and increase of p25/p35 cleavage. These effects were prevented by E2 pre-treatment during 24 h. Although the inhibition of SphK did not block this protective effect, significantly increased Tau hyperphosphorylation by glutamate, in a way that was not reverted by E2. Our results suggest that the decrease of glutamate-induced Tau hyperphosphorylation by 17β-estradiol requires SphK.
Collapse
|
18
|
Hiscox S, Nicholson RI. Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer. Expert Rev Endocrinol Metab 2011; 6:423-435. [PMID: 30754115 DOI: 10.1586/eem.11.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intracellular kinase, Src, interacts with a diverse array of signaling elements, including the estrogen receptor to regulate breast cancer progression. Recent evidence has also implicated Src in mediating the response of breast cancer to endocrine agents and in the acquisition of antihormone resistance, a significant limiting factor to the clinical effectiveness of systemic endocrine therapy. A number of pharmacological inhibitors of Src kinase have been developed that are effective at suppressing breast cancer growth and invasion in vitro and inhibiting disease spread in vivo. Significantly, there appears to be added benefit when these agents are given in combination with anti-estrogens in endocrine-sensitive and -resistant models. These new findings suggest that Src inhibitors might have therapeutic value in breast cancer patients to improve endocrine response and circumvent resistance.
Collapse
Affiliation(s)
- Stephen Hiscox
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
- b
| | - Robert I Nicholson
- a Breast Cancer (Molecular Pharmacology) Group, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
19
|
Binai NA, Damert A, Carra G, Steckelbroeck S, Löwer J, Löwer R, Wessler S. Expression of estrogen receptor alpha increases leptin-induced STAT3 activity in breast cancer cells. Int J Cancer 2010; 127:55-66. [PMID: 19876927 DOI: 10.1002/ijc.25010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adipositas correlates with an enhanced risk of developing malignant diseases such as breast cancer, endometrial tumor or prostate carcinoma, but the molecular basis for this is not well understood. Potential mechanisms include increased bioavailability of adipocytokines (e.g. leptin) and steroid hormones. Here, we investigated cross-talk between ERalpha (estrogen receptor alpha) and leptin-induced activation of signal transducer and activator of transcription 3 (STAT3), a transactivator of important oncogenes. Upon leptin binding to its receptor Ob-RL (obesity receptor), STAT3 tyrosine phosphorylation and transactivation activity were enhanced by simultaneously expressing ERalpha. Downregulation of ERalpha using small interfering RNA abolished leptin-induced STAT3 phosphorylation. Interestingly, leptin-mediated STAT3 activation was unaffected by co-stimulation with the ERalpha ligands estradiol (E2) or estrogen antagonists ICI182,780 and tamoxifen, implying that enhancement of leptin-mediated STAT3 activity is independent of ERalpha ligands. We also detected ERalpha binding to STAT3 and JAK2 (Janus kinase 2), resulting in enhanced JAK2 activity upstream of STAT3 in response to leptin that might lead to an increased ERalpha-dependent cell viability. Altogether, our results indicate that leptin-induced STAT3 activation acts as a key event in ERalpha-dependent development of malignant diseases.
Collapse
Affiliation(s)
- Nadine A Binai
- Junior Research Group, Paul-Ehrlich-Institute, Langen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
21
|
Länge R, Steger-Hartmann T, Borden SA, Pietsch H. Discussion by Reinhard Länge et al. on "Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water" by Krause et al. [Chemosphere 75(2) (2009) 163-168]. CHEMOSPHERE 2010; 78:631-634. [PMID: 19926112 DOI: 10.1016/j.chemosphere.2009.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
|
22
|
Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif-Relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells. Biochem Pharmacol 2009; 79:746-57. [PMID: 19879249 DOI: 10.1016/j.bcp.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERalpha) belongs to the superfamily of nuclear receptors and as such acts as a ligand-modulated transcription factor. Ligands elicit in ERalpha conformational changes leading to the recruitment of coactivators required for the transactivation of target genes via cognate response elements. In many cells, activated ERalpha also undergoes downregulation by proteolysis mediated by the ubiquitin/proteasome system. Although these various molecular processes have been well characterized, little is known as to which extent they are interrelated. In the present study, we used a panel of type I (estradiol derivatives and "linear", non-steroidal ligands) and type II ("angular" ligands) estrogens, in order to identify possible relationships between ligand binding affinity, recruitment of LxxLL-containing coactivators, ERalpha downregulation in MCF-7 cells and related transactivation activity of ligand-bound ERalpha. For type I estrogens, there was a clear-cut relationship between ligand binding affinity, hydrophobicity around C-11 of estradiol and ability of ERalpha to associate with LxxLL motifs, both in cell-free condition and in vivo (MCF-7 cells). Moreover, LxxLL motif recruitment by ERalpha seemed to be a prerequisite for the downregulation of the receptor. By contrast, type II ligands, as well as estradiol derivatives bearing a bulky side chain at 11beta, had much less tendency to promote ERalpha-LxxLL interaction or even behaved as antagonists in this respect, in agreement with the well known partial estrogenicity/antiestrogenicity of some of these compounds. Interestingly, some type II ligands which antagonized LxxLL motif recruitment were nonetheless able to enhance ERalpha-mediated gene transactivation.
Collapse
|
23
|
Novelli F, Milella M, Melucci E, Di Benedetto A, Sperduti I, Perrone-Donnorso R, Perracchio L, Venturo I, Nisticò C, Fabi A, Buglioni S, Natali PG, Mottolese M. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study. Breast Cancer Res 2008; 10:R74. [PMID: 18771580 PMCID: PMC2614505 DOI: 10.1186/bcr2139] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 07/09/2008] [Accepted: 09/04/2008] [Indexed: 11/20/2022] Open
Abstract
Introduction Estrogen receptor-alpha (ER-α) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-β) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-β distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods We conducted an observational prospective study using immunohistochemistry to evaluate ER-β expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-β on disease-free survival in the 728 patients with complete follow-up data. Results ER-β evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-β and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-β positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-α/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-β as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-β positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations are necessary to better assess the role of the different ER-β isophorms.
Collapse
Affiliation(s)
- Flavia Novelli
- Pathology Department, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Otto C, Fuchs I, Altmann H, Klewer M, Schwarz G, Bohlmann R, Nguyen D, Zorn L, Vonk R, Prelle K, Osterman T, Malmström C, Fritzemeier KH. In vivo characterization of estrogen receptor modulators with reduced genomic versus nongenomic activity in vitro. J Steroid Biochem Mol Biol 2008; 111:95-100. [PMID: 18606537 DOI: 10.1016/j.jsbmb.2008.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 04/08/2008] [Accepted: 05/26/2008] [Indexed: 11/21/2022]
Abstract
Estrogen receptor (ER) ligands that are able to prevent postmenopausal bone loss, but have reduced activity in the uterus and the mammary gland might be of great value for hormone therapy. It is well established that the classical ER can activate genomic as well as nongenomic signal transduction pathways. In this study, we analyse the in vivo behaviour of ER ligands that stimulate nongenomic ER effects to the same extent as estradiol, but show clearly reduced activation of genomic ER effects in vitro. Using different readout parameters such as morphological changes, cellular proliferation, and target gene induction, we are able to demonstrate that ER ligands with reduced genomic activity in vitro show a better dissociation of bone versus uterine and mammary gland effects than estradiol that stimulates genomic and nongenomic effects to the same extent. We conclude that pathway-selective ER ligands may represent an interesting option for hormone therapy.
Collapse
Affiliation(s)
- Christiane Otto
- Research Laboratories, Bayer Schering Pharma AG, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu W, Zhang X, Zanello LP. 1alpha,25-Dihydroxyvitamin D(3) antiproliferative actions involve vitamin D receptor-mediated activation of MAPK pathways and AP-1/p21(waf1) upregulation in human osteosarcoma. Cancer Lett 2007; 254:75-86. [PMID: 17412493 PMCID: PMC2760385 DOI: 10.1016/j.canlet.2007.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms underlying antiproliferative actions of the steroid 1alpha,25-dihydroxy vitamin D(3) (1,25D) in human osteosarcoma cells are known only partially. To better understand the signaling involved in 1,25D anti-tumorigenic properties in bone, we stably silenced vitamin D receptor (VDR) expression in the human osteosarcoma SaOS-2 cell line. We found that 1,25D treatment reduced cell proliferation by approximately 25% after 3 days only in SaOS-2 cells expressing native levels of VDR protein, and involved activation of MAPK/AP-1/p21(waf1) pathways. Both sustained (3 days) and transient (15min) 1,25D treatment activated JNK and ERK1/2 MAPK signaling in a nongenomic VDR-dependent manner. However, only sustained exposure to hormone led to upregulation of p21 and subsequent genomic control of the cell cycle. Specific blockade of MEK1/MEK2 cascade upstream from ERK1/2 abrogated 1,25D activation of AP-1 and p21, and subsequent antiproliferative effects, even in the presence of a nuclear VDR. We conclude that 1,25D-induced inhibition of human osteosarcoma cell proliferation occurs via sustained activation of JNK and MEK1/MEK2 pathways downstream of nongenomic VDR signaling that leads to upregulation of a c-Jun/c-Fos (AP-1) complex, which in turn modulates p21(waf1) gene expression. Our results demonstrate a cross-talk between 1,25D/VDR nongenomic and genomic signaling at the level of MAP kinase activation that leads to reduction of cell proliferation in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Xiaoyu Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Laura P. Zanello
- Department of Biochemistry, University of California, Riverside, CA 92521
| |
Collapse
|
26
|
Lerner DT, Björnsson BT, McCormick SD. Larval exposure to 4-nonylphenol and 17beta-estradiol affects physiological and behavioral development of seawater adaptation in Atlantic salmon smolts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:4479-85. [PMID: 17626455 DOI: 10.1021/es070202w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Population declines of anadromous salmonids are attributed to anthropogenic disturbances including dams, commercial and recreational fisheries, and pollutants, such as estrogenic compounds. Nonylphenol (NP), a xenoestrogen, is widespread in the aquatic environment due to its use in agricultural, industrial, and household products. We exposed Atlantic salmon yolk-sac larvae to waterborne 10 or 100 microg L(-1) NP (NP-L or NP-H, respectively), 2 microg L(-1) 17beta-estradiol (E2), or vehicle, for 21 days to investigate their effects on smolt physiology and behavior 1 year later. NP-H caused approximately 50% mortality during exposure, 30 days after exposure, and 60 days after exposure. Mortality rates of NP-L and E2 fish were not affected until 60 days after treatment, when they were 4-fold greater than those of controls. Treatment with NP-L or E2 as yolk-sac larvae decreased gill sodium-potassium-activated adenosine triphosphatase (Na+,K(+)-ATPase) activity and seawater (SW) tolerance during smolt development, 1 year after exposure. Exposure to NP-L and E2 resulted in a latency to enter SW and reduced preference for SW approximately 2- and 5-fold, respectively. NP-L-exposed fish had 20% lower plasma insulin-like growth factor I (IGF-I) levels and 35% lower plasma triiodothyronine (T3). Plasma growth hormone and thyroxine (T4) were unaffected. Exposure to E2 did not affect plasma levels of IGF-I, GH, T3, or T4. Both treatment groups exhibited increased plasma cortisol and decreased osmoregulatory capacity in response to a handling stressor. These results suggest that early exposure to environmentally relevant concentrations of NP, and other estrogenic compounds, can cause direct and delayed mortalities and that this exposure can have long-term, "organizational" effects on life-history events in salmonids.
Collapse
Affiliation(s)
- Darren T Lerner
- Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
27
|
Otto C, Wessler S, Fritzemeier KH. Exploiting Nongenomic Estrogen Receptor-Mediated Signaling for the Development of Pathway-Selective Estrogen Receptor Ligands. ACTA ACUST UNITED AC 2007:163-81. [PMID: 17824177 DOI: 10.1007/2789_2006_022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Different molecular mechanisms mediate the diverse biological effects of estrogens. The classical genomic mechanism is based on the function of the ER as a ligand-dependent transcription factor that binds to estrogen-response elements (EREs) in promoters of target genes to initiate gene expression. These direct genomic effects play a prominent role in the regulation of reproductive function. In contrast, nongenomic effects mediated by the classical ER have been demonstrated to activate PI3K, leading to the activation of endothelial NOS (eNOS) and hence vasorelaxation. Pathway-selective ER ligands might represent a novel option for hormone replacement therapy. Here we describe the identification and in vitro characterization of tool compounds that bind the ER reasonably well but exhibit low transcriptional activity on ERE-driven promoters. However, these compounds behave as potent stimulators of PI3K/Akt activation in vitro and lead to aortic vessel relaxation, a mechanism that is thought to be driven by nongenomic ER action. In a second set of experiments, we analyze how the in vitro pathway selectivity translates into the in vivo situation. We examine our tool compounds in comparison to estradiol and estren in the following paradigms: bone protection, uterine growth assays, and mammary gland assays.
Collapse
Affiliation(s)
- C Otto
- TRG Gynecology and Andrology, Bayer Schering Pharma AG, Müllerstr. 178, 13342 Berlin, Germany.
| | | | | |
Collapse
|
28
|
Kousteni S, Almeida M, Han L, Bellido T, Jilka RL, Manolagas SC. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor. Mol Cell Biol 2006; 27:1516-30. [PMID: 17158928 PMCID: PMC1800724 DOI: 10.1128/mcb.01550-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
29
|
Windahl SH, Galien R, Chiusaroli R, Clément-Lacroix P, Morvan F, Lepescheux L, Nique F, Horne WC, Resche-Rigon M, Baron R. Bone protection by estrens occurs through non-tissue-selective activation of the androgen receptor. J Clin Invest 2006; 116:2500-9. [PMID: 16955145 PMCID: PMC1555662 DOI: 10.1172/jci28809] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/20/2006] [Indexed: 11/17/2022] Open
Abstract
The use of estrogens and androgens to prevent bone loss is limited by their unwanted side effects, especially in reproductive organs and breast. Selective estrogen receptor modulators (SERMs) partially avoid such unwanted effects, but their efficacy on bone is only moderate compared with that of estradiol or androgens. Estrens have been suggested to not only prevent bone loss but also exert anabolic effects on bone while avoiding unwanted effects on reproductive organs. In this study, we compared the effects of a SERM (PSK3471) and 2 estrens (estren-alpha and estren-beta) on bone and reproductive organs to determine whether estrens are safe and act via the estrogen receptors and/or the androgen receptor (AR). Estrens and PSK3471 prevented gonadectomy-induced bone loss in male and female mice, but none showed true anabolic effects. Unlike SERMs, the estrens induced reproductive organ hypertrophy in both male and female mice and enhanced MCF-7 cell proliferation in vitro. Estrens directly activated transcription in several cell lines, albeit at much higher concentrations than estradiol or the SERM, and acted for the most part through the AR. We conclude that the estrens act mostly through the AR and, in mice, do not fulfill the preclinical efficacy or safety criteria required for the treatment or prevention of osteoporosis.
Collapse
Affiliation(s)
- Sara H. Windahl
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - René Galien
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Riccardo Chiusaroli
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Philippe Clément-Lacroix
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frederic Morvan
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liên Lepescheux
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - François Nique
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - William C. Horne
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michèle Resche-Rigon
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Roland Baron
- Department of Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
ProStrakan Pharmaceuticals, Romainville, France.
Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Abstract
For many decades, androgens have dominated endocrine research in hair growth control. Androgen metabolism and the androgen receptor currently are the key targets for systemic, pharmacological hair growth control in clinical medicine. However, it has long been known that estrogens also profoundly alter hair follicle growth and cycling by binding to locally expressed high-affinity estrogen receptors (ERs). Besides altering the transcription of genes with estrogen-responsive elements, 17beta-estradiol (E2) also modifies androgen metabolism within distinct subunits of the pilosebaceous unit (i.e., hair follicle and sebaceous gland). The latter displays prominent aromatase activity, the key enzyme for androgen conversion to E2, and is both an estrogen source and target. Here, we chart the recent renaissance of estrogen research in hair research; explain why the hair follicle offers an ideal, clinically relevant test system for studying the role of sex steroids, their receptors, and interactions in neuroectodermal-mesodermal interaction systems in general; and illustrate how it can be exploited to identify novel functions and signaling cross talks of ER-mediated signaling. Emphasizing the long-underestimated complexity and species-, gender-, and site-dependence of E2-induced biological effects on the hair follicle, we explore targets for pharmacological intervention in clinically relevant hair cycle manipulation, ranging from androgenetic alopecia and hirsutism via telogen effluvium to chemotherapy-induced alopecia. While defining major open questions, unsolved clinical challenges, and particularly promising research avenues in this area, we argue that the time has come to pay estrogen-mediated signaling the full attention it deserves in future endocrinological therapy of common hair growth disorders.
Collapse
Affiliation(s)
- Ulrich Ohnemus
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|