1
|
Dzichenka Y, Shapira M, Sachanka A, Cherkesova T, Shchur V, Grbović L, Pavlović K, Vasiljević B, Savić M, Nikolić A, Oklješa A, Ajduković J, Kuzminac I, Yantsevich A, Usanov S, Jovanović-Šanta S. Discovery of the potential of cholesterol-lowering human CYP7 enzymes as biocatalysts for the production of C7 hydroxylated steroids. Biophys Chem 2025; 319:107393. [PMID: 39908942 DOI: 10.1016/j.bpc.2025.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Steroidal C7 alcohols and their esters are perspective agents in drug discovery. In addition, hydroxylation at C7 position could allow further modification of steroidal moiety. Such transformation is performed easily by the enzymes. Human steroid 7α-hydroxylases CYP7A1 and CYP7B1 are key enzymes taking part in the biotransformation of cholestanes, androstanes, pregnanes. In the article, we are focusing on the results of in vitro screening of a library of modified steroids toward CYP7 enzymes. A couple of compounds were found to express the affinity for binding to the enzymes, comparable with corresponding values for CYP7 natural ligands. Among them are 17-substituted androstane derivatives with N-containing pyridine ring and enone derivative of lithocholic acid, which bound by human CYP7A1, and D-seco and C16 oxime androstanes, which were identified as novel CYP7B1 ligands. Screening results revealed that both enzymes bind with high affinity a well-known drug abiraterone: in the case of CYP7A1 substrate-like binding mode was detected, with the formation of monohydroxylated product, while in case of CYP7B1 inhibitor-like binding was observed. Since CYP7 enzymes convert some of the studied compounds into their 7-hydroxy derivatives, potential of these enzymes as perspective regio- and stereoselective biocatalysts for obtaining C7 hydroxylated steroids could be assumed.
Collapse
Affiliation(s)
- Yaraslau Dzichenka
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus.
| | - Michail Shapira
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Antos Sachanka
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Tatsiana Cherkesova
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Veronika Shchur
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Ljubica Grbović
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Ksenija Pavlović
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Bojana Vasiljević
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Institute of Nuclear Sciences Vinča - National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Marina Savić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Andrea Nikolić
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Aleksandar Oklješa
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Jovana Ajduković
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Ivana Kuzminac
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Aliaksei Yantsevich
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Sergey Usanov
- Institute of Bioorganic Chemistry NAS of Belarus, Kuprevich str., 5/2, Minsk 220084, Belarus
| | - Suzana Jovanović-Šanta
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia.
| |
Collapse
|
2
|
Sefik E, Boamah M, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Keshavan MS, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Cannon TD, Walker EF. Sex- and Age-Specific Deviations in Cerebellar Structure and Their Link With Symptom Dimensions and Clinical Outcome in Individuals at Clinical High Risk for Psychosis. Schizophr Bull 2023; 49:350-363. [PMID: 36394426 PMCID: PMC10016422 DOI: 10.1093/schbul/sbac169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The clinical high-risk (CHR) period offers a temporal window into neurobiological deviations preceding psychosis onset, but little attention has been given to regions outside the cerebrum in large-scale studies of CHR. Recently, the North American Prodrome Longitudinal Study (NAPLS)-2 revealed altered functional connectivity of the cerebello-thalamo-cortical circuitry among individuals at CHR; however, cerebellar morphology remains underinvestigated in this at-risk population, despite growing evidence of its involvement in psychosis. STUDY DESIGN In this multisite study, we analyzed T1-weighted magnetic resonance imaging scans obtained from N = 469 CHR individuals (61% male, ages = 12-36 years) and N = 212 healthy controls (52% male, ages = 12-34 years) from NAPLS-2, with a focus on cerebellar cortex and white matter volumes separately. Symptoms were rated by the Structured Interview for Psychosis-Risk Syndromes (SIPS). The outcome by two-year follow-up was categorized as in-remission, symptomatic, prodromal-progression, or psychotic. General linear models were used for case-control comparisons and tests for volumetric associations with baseline SIPS ratings and clinical outcomes. STUDY RESULTS Cerebellar cortex and white matter volumes differed between the CHR and healthy control groups at baseline, with sex moderating the difference in cortical volumes, and both sex and age moderating the difference in white matter volumes. Baseline ratings for major psychosis-risk dimensions as well as a clinical outcome at follow-up had tissue-specific associations with cerebellar volumes. CONCLUSIONS These findings point to clinically relevant deviations in cerebellar cortex and white matter structures among CHR individuals and highlight the importance of considering the complex interplay between sex and age when studying the neuromaturational substrates of psychosis risk.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Michelle Boamah
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Kim H, Park B, Kim SY, Kim J, Kim B, Jung KI, Lee SY, Hyun Y, Kim BN, Park S, Park MH. Cerebellar Gray Matter Volume and its Role in Executive Function, and Attention: Sex Differences by Age in Adolescents. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:621-634. [DOI: 10.9758/cpn.2022.20.4.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Hayeon Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Korea
| | - Shin-Young Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jiyea Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bora Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyu-In Jung
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Seung-Yup Lee
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yerin Hyun
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Korea
| | - Subin Park
- Department of Research Planning, National Center for Mental Health, Seoul, Korea
| | - Min-Hyeon Park
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Fruzzetti F, Fidecicchi T. Hormonal Contraception and Depression: Updated Evidence and Implications in Clinical Practice. Clin Drug Investig 2021; 40:1097-1106. [PMID: 32980990 DOI: 10.1007/s40261-020-00966-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hormonal contraceptives are used worldwide by more than 100 million women. Some studies have been published about the possible appearance of depressive symptoms when using hormonal contraceptives, but this link is still a matter of debate. The purpose of this review is to provide an update of the literature on this issue, and to investigate the possible explanations of this problem based on animal and human studies. The main pathway responsible for menstrual cycle-related mood changes is the γ-aminobutyric acid pathway, which is sensitive to changes in the levels of progesterone and of its metabolites, the neurosteroids. In particular, allopregnanolone is a potentiating neurosteroid with anxiolytic and anti-convulsant effects whose levels change during a normal menstrual cycle together with progesterone levels. Progestins have different effects on allopregnanolone, mainly owing to their diverse androgenicity. Moreover, they might affect brain structure and function, even though the meaning of these changes has yet to be clarified. It is important to define the groups of women in which negative mood disorders are more likely to occur. Adolescence is a critical period and this age-specific vulnerability is complex and likely bidirectional. Moreover, women with a history of mood affective disorders or premenstrual dysphoric syndrome are at a higher risk when taking contraceptives. In this review, we aim to provide clinicians with advice on how to approach these difficult situations.
Collapse
Affiliation(s)
- Franca Fruzzetti
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy.
| | - Tiziana Fidecicchi
- Department of Obstetrics and Gynecology, Pisa University Hospital of S. Chiara, Azienda Ospedaliera Universitaria, Via Roma 65, 56126, Pisa, Italy
| |
Collapse
|
5
|
Tsutsui K. Kobayashi award: Discovery of cerebellar and pineal neurosteroids and their biological actions on the growth and survival of Purkinje cells during development (review). Gen Comp Endocrinol 2019; 284:113051. [PMID: 30339808 DOI: 10.1016/j.ygcen.2018.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022]
Abstract
The brain has traditionally been considered to be a target site of peripheral steroid hormones. On the other hand, extensive studies over the past thirty years have demonstrated that the brain is a site of biosynthesis of several steroids. Such steroids synthesized de novo from cholesterol in the brain are called neurosteroids. To investigate the biosynthesis and biological actions of neurosteroids in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. In the mid 1990s, the Purkinje cell, an important cerebellar neuron, was discovered as a major cell producing neurosteroids in the brain of vertebrates. It was the first demonstration of de novo neuronal biosynthesis of neurosteroids in the brain. Subsequently, neuronal biosynthesis of neurosteroids and biological actions of neurosteroids have become clear by the follow-up studies using the Purkinje cell as an excellent cellular model. Progesterone and estradiol, which are known as sex steroid hormones, are actively synthesized de novo from cholesterol in the Purkinje cell during development, when cerebellar neuronal circuit formation occurs. Importantly, progesterone and estradiol synthesized in the Purkinje cell promote dendritic growth, spinogenesis and synaptogenesis via their cognate nuclear receptors in the Purkinje cell. Neurotrophic factors may mediate these neurosteroid actions. Futhermore, allopregnanolone (3α,5α-tetrahydroprogesterone), a progesterone metabolite, is also synthesized in the cerebellum and acts on the survival of Purkinje cells. On the other hand, at the beginning of 2010s, the pineal gland, an endocrine organ located close to the cerebellum, was discovered as an important site of the biosynthesis of neurosteroids. Allopregnanolone, a major pineal neurosteroid, acts on the Purkinje cell for the survival of Purkinje cells by suppressing the expression of caspase-3, a crucial mediator of apoptosis. I as a recipient of Kobayashi Award from the Japan Society for Comparative Endocrinology in 2016 summarize the discovery of cerebellar and pineal neurosteroids and their biological actions on the growth and survival of Purkinje cells during development.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
6
|
Santillo A, Falvo S, Di Fiore MM, Chieffi Baccari G. Seasonal changes and sexual dimorphism in gene expression of StAR protein, steroidogenic enzymes and sex hormone receptors in the frog brain. Gen Comp Endocrinol 2017; 246:226-232. [PMID: 28027903 DOI: 10.1016/j.ygcen.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Abstract
The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi, 43, 81100 Caserta, Italy
| |
Collapse
|
7
|
Montelli S, Suman M, Corain L, Cozzi B, Peruffo A. Sexually Diergic Trophic Effects of Estradiol Exposure on Developing Bovine Cerebellar Granule Cells. Neuroendocrinology 2017; 104:51-71. [PMID: 26882349 DOI: 10.1159/000444528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/06/2016] [Indexed: 11/19/2022]
Abstract
In the mammalian brain, the differentiation of neural cells and the developmental organization of the underlying circuitry are influenced by steroid hormones. The estrogen 17-β estradiol (E2) is one of the most potent regulators of neural growth during prenatal life, synthetized locally from steroid precursors including prenatal testicular testosterone. Estradiol promotes brain differentiation counting sexually dimorphic neural circuits by binding to the estrogen receptors, ER-α and ER-β. The cerebellum has been described as a site of estrogen action and a potentially sexually dimorphic area. The goal of this study was to analyze the capacity of E2 to affect the growth of male and female fetal bovine cerebellar granule. We performed primary cultures of fetal cerebellar granules, and verified the mRNA expression of the ER-α and ER-β in both sexes. Moreover, the distribution of ERs in the male and female cerebellar granules of the second fetal stage was characterized by immunohistochemistry. We measured morphological parameters in presence (or absence) of estradiol administration, focusing on the variations of the dendritic branching pattern of granule neurons. By using the nonparametric combination and permutation testing approach, we proposed a sophisticated multivariate statistical analysis to demonstrate that E2 induces multifarious and dimorphic changes in the granule cells. E2 exerts trophic effects in both female and male granules and this effect is stronger in female. Male granules treated with E2 became similar to female control granule. Bos taurus species has a long gestation and a large brain that offers an interesting alternative in comparative neuroscience.
Collapse
Affiliation(s)
- Stefano Montelli
- Department of Comparative Biomedicine and Food Science of the University of Padova, Legnaro, taly
| | | | | | | | | |
Collapse
|
8
|
STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism. Sci Rep 2016; 6:28486. [PMID: 27340016 PMCID: PMC4919784 DOI: 10.1038/srep28486] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
Collapse
|
9
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. The binding site specificity of STARD4 subfamily: Breaking the cholesterol paradigm. Mol Cell Endocrinol 2015; 408:53-61. [PMID: 25542846 DOI: 10.1016/j.mce.2014.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/16/2022]
Abstract
Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain proteins display diverse expression patterns and cellular localisations. They bind a large variety of lipids and sterols and are involved in lipid metabolism, lipid transfer and cell signalling. The START domain tertiary structure is an α-helix/β-grip fold module of approximately 210 amino acids delimiting an internal cavity forming the binding site. However, the determinants that dictate ligand specificity and the mechanism of ligand entry and exit are ill-defined. Herein, we review and discuss the current knowledge on ligand specificity and binding mechanism of START domains. More specifically, we highlight that the conserved residues of STARD1, STARD3, STARD4, STARD5 and STARD6 START domains binding sterol play an important structural role for the global protein fold, whereas the residues forming the cavity that fits the shape of their respective ligand are divergent, suggesting their participation in ligand specificity. We also explore the potential binding of steroids to STARD6 in the context of ligand selectivity.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Andrée Lefebvre
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Guy LeHoux
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
11
|
Seljeset S, Laverty D, Smart TG. Inhibitory Neurosteroids and the GABAA Receptor. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART A 2015; 72:165-87. [DOI: 10.1016/bs.apha.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
El Hajj Chehadeh S, Dreumont N, Willekens J, Canabady-Rochelle L, Jeannesson E, Alberto JM, Daval JL, Guéant JL, Leininger-Muller B. Early methyl donor deficiency alters cAMP signaling pathway and neurosteroidogenesis in the cerebellum of female rat pups. Am J Physiol Endocrinol Metab 2014; 307:E1009-19. [PMID: 25294213 PMCID: PMC4254983 DOI: 10.1152/ajpendo.00364.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Early deficiency of the methyl donors folate and vitamin B12 produces hyperhomocysteinemia and cognitive and motor disorders in 21-day-old rat pups from dams fed a diet deficient in methyl donors during gestation and lactation. These disorders are associated with impaired neurogenesis and altered synaptic plasticity in cerebellum. We aimed to investigate whether these disorders could be related to impaired expression of neurosteroidogenesis-associated proteins, key regulator receptors, and some steroid content in the cerebellum. The methyl donor deficiency produced a decreased concentration of folate and vitamin B12, along with accumulation of homocysteine in Purkinje cells in both sexes, whereas the S-adenosylmethionine/S-adenosylhomocysteine ratio was reduced only in females. The transcription level and protein expression of StAR, aromatase, ERα, ERβ, and LH receptors were decreased only in females, with a marked effect in Purkinje cells, as shown by immunohistochemistry. Consistently, reduced levels of estradiol and pregnenolone were measured in cerebellar extracts of females only. The decreased expression levels of the transcriptional factors CREB, phospho-CREB, and SF-1, the lesser increase of cAMP concentration, and the lower level of phospho-PKC in the cerebellum of deficient females suggest that the activation of neurosteroidogenesis via cAMP-mediated signaling pathways associated with LHR activation would be altered. In conclusion, a gestational methyl donor deficiency impairs neurosteroidogenesis in cerebellum in a sex-dependent manner.
Collapse
Affiliation(s)
- Sarah El Hajj Chehadeh
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Natacha Dreumont
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Jérèmy Willekens
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Laetitia Canabady-Rochelle
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Elise Jeannesson
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Jean-Marc Alberto
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Jean-Luc Daval
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Jean-Louis Guéant
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| | - Brigitte Leininger-Muller
- Institut National de la Sante et de la Recherche Medicale, U-954, Nutrition-Génétique et Exposition Aux Risques Environnementaux, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
| |
Collapse
|
13
|
Tsutsui K, Haraguchi S. Biosynthesis and biological action of pineal allopregnanolone. Front Cell Neurosci 2014; 8:118. [PMID: 24834027 PMCID: PMC4017145 DOI: 10.3389/fncel.2014.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/14/2014] [Indexed: 12/02/2022] Open
Abstract
The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
14
|
Yantsevich AV, Dichenko YV, Mackenzie F, Mukha DV, Baranovsky AV, Gilep AA, Usanov SA, Strushkevich NV. Human steroid and oxysterol 7α-hydroxylase CYP7B1: substrate specificity, azole binding and misfolding of clinically relevant mutants. FEBS J 2014; 281:1700-13. [PMID: 24491228 DOI: 10.1111/febs.12733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
Abstract
Oxysterols and neurosteroids are important signaling molecules produced by monooxygenases of the cytochrome P450 family that realize their effect through nuclear receptors. CYP7B1 catalyzes the 6- or 7-hydroxylation of both steroids and oxysterols and thus is involved in the metabolism of neurosteroids and bile acid synthesis, respectively. The dual physiological role of CYP7B1 is evidenced from different diseases, liver failure and progressive neuropathy, caused by enzyme malfunction. Here we present biochemical characterization of CYP7B1 at the molecular level to understand substrate specificity and susceptibility to azole drugs. Based on our experiments with purified enzyme, the requirements for CYP7B1 hydroxylation of steroid molecules are as follows: C5 hydrogen in the α-configuration (or double bond at C5), a polar group at C17, a hydroxyl group at C3, and the absence of the hydroxyl group at C20-C24 in the C27-sterol side chain. 21-hydroxy-pregnenolone was identified as a new substrate, and overall low activity toward pregnanes could be related to the increased potency of 7-hydroxy derivatives produced by CYP7B1. Metabolic conversion (deactivation) of oxysterols by CYP7B1 in a reconstituted system proceeds via two sequential hydroxylations. Two mutations that are found in patients with diseases, Gly57Arg and Phe216Ser, result in apo-P450 (devoid of heme) protein formation. Our CYP7B1 homology model provides a rationale for understanding clinical mutations and relatively broad substrate specificity for steroid hydroxylase.
Collapse
|
15
|
Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. STARD5 specific ligand binding: comparison with STARD1 and STARD4 subfamilies. Mol Cell Endocrinol 2013; 371:20-5. [PMID: 23337244 DOI: 10.1016/j.mce.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical techniques. Whereas STARD1 and STARD6 bind cholesterol, no cholesterol binding could be detected for STARD5. However, titration of STARD5 with cholic acid and chenodeoxycholic acid led to specific binding. Using perturbation of the (1)H-(15)N-HSQC spectra and the sequence specific NMR assignments, we identified the amino acids in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Interestingly, these residues are not conserved in STARD1 and STARD6 and could therefore be key structural determinants of the specificity of START domains toward their ligands. We highlight three tissues expressing STARD5 that are affected by bile acids.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
16
|
Tsutsui K, Ukena K, Sakamoto H, Okuyama SI, Haraguchi S. Biosynthesis, mode of action, and functional significance of neurosteroids in the purkinje cell. Front Endocrinol (Lausanne) 2011; 2:61. [PMID: 22654818 PMCID: PMC3356128 DOI: 10.3389/fendo.2011.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 10/08/2011] [Indexed: 01/30/2023] Open
Abstract
The brain has traditionally been considered to be a target site of peripheral steroid hormones. In addition to this classical concept, we now know that the brain has the capacity to synthesize steroids de novo from cholesterol, the so-called "neurosteroids." In the middle 1990s, the Purkinje cell, an important cerebellar neuron, was identified as a major site for neurosteroid formation in the brain of mammals and other vertebrates. This discovery has provided the opportunity to understand neuronal neurosteroidogenesis in the brain. In addition, biological actions of neurosteroids are becoming clear by the studies using the Purkinje cell, an excellent cellular model, which is known to play an important role in memory and learning processes. Based on the studies on mammals over the past decade, it is considered that the Purkinje cell actively synthesizes progesterone and estradiol from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions mediated by neurotrophic factors may contribute to the formation of cerebellar neuronal circuit during neonatal life. 3α,5α-Tetrahydroprogesterone (allopregnanolone), a progesterone metabolite, is also synthesized in the cerebellum and considered to act as a survival factor of Purkinje cells in the neonate. This review summarizes the current knowledge regarding the biosynthesis, mode of action, and functional significance of neurosteroids in the Purkinje cell during development in terms of synaptic formation of cerebellar neuronal networks.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| | - Kazuyoshi Ukena
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Hirotaka Sakamoto
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Shin-Ichiro Okuyama
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda UniversityShinjuku-ku, Tokyo, Japan
| |
Collapse
|
17
|
Davare MA, Saneyoshi T, Soderling TR. Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J Neurooncol 2010; 104:65-82. [PMID: 21107644 DOI: 10.1007/s11060-010-0472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/12/2010] [Indexed: 01/05/2023]
Abstract
Medulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration. It has been previously shown that the calcium/calmodulin activated kinase kinase (CaMKK) pathway promotes cerebellar granule precursor migration and differentiation during normal cerebellar development via CaMKIV. Here we investigate the regulatory role of the CaMKK pathway in migration of the human medulloblastoma DAOY and cerebellar granule cells. Using pharmacological inhibitors and dominant negative approaches, we demonstrate that the CaMKK/CaMKI cascade regulates basal medulloblastoma cell migration via Rac1, in part by activation of the RacGEF, βPIX. Additionally, pharmacological inhibition of CaMKK blocks both the estrogen induced Rac1 activation and medulloblastoma migration. The CaMKK signaling module described here is one of the first reported calcium regulated pathways that modulates medulloblastoma migration. Since tumor dissemination requires cell migration to ectopic sites, this CaMKK pathway may be a putative therapeutic target to limit medulloblastoma metastasis.
Collapse
Affiliation(s)
- Monika A Davare
- Vollum Institute and Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
18
|
Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X, Yu T, Li Z, Evans AC, Liu S. Sexual dimorphism and asymmetry in human cerebellum: An MRI-based morphometric study. Brain Res 2010; 1353:60-73. [DOI: 10.1016/j.brainres.2010.07.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
|
19
|
Ziegler E, Bodusch M, Song Y, Jahn K, Wolfes H, Steinlechner S, Dengler R, Bufler J, Krampfl K. Interaction of androsterone and progesterone with inhibitory ligand-gated ion channels: a patch clamp study. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:277-91. [DOI: 10.1007/s00210-009-0440-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
20
|
Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 2009; 49:63-70. [PMID: 19683586 DOI: 10.1016/j.neuroimage.2009.08.016] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022] Open
Abstract
In addition to its well-established role in balance, coordination, and other motor skills, the cerebellum is increasingly recognized as a prominent contributor to a wide array of cognitive and emotional functions. Many of these capacities undergo dramatic changes during childhood and adolescence. However, accurate characterization of co-occurring anatomical changes has been hindered by lack of longitudinal data and methodologic challenges in quantifying subdivisions of the cerebellum. In this study we apply an innovative image analysis technique to quantify total cerebellar volume and 11 subdivisions (i.e. anterior, superior posterior, and inferior posterior lobes, corpus medullare, and three vermal regions) from anatomic brain MRI scans from 25 healthy females and 25 healthy males aged 5-24 years, each of whom was scanned at least three times at approximately 2-year intervals. Total cerebellum volume followed an inverted U shaped developmental trajectory peaking at age 11.8 years in females and 15.6 years in males. Cerebellar volume was 10% to 13% larger in males depending on the age of comparison and the sexual dimorphism remained significant after covarying for total brain volume. Subdivisions of the cerebellum had distinctive developmental trajectories with more phylogenetically recent regions maturing particularly late. The cerebellum's unique protracted developmental trajectories, sexual dimorphism, preferential vulnerability to environmental influences, and frequent implication in childhood onset disorders such as autism and ADHD make it a prime target for pediatric neuroimaging investigations.
Collapse
Affiliation(s)
- Henning Tiemeier
- Child Psychiatry Branch, National Institute of Mental Health/NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Guerriero G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann N Y Acad Sci 2009; 1163:154-68. [PMID: 19456336 DOI: 10.1111/j.1749-6632.2009.04460.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on our current understanding of vertebrate sex steroid receptors, with an emphasis on their evolutionary relationships. These relationships are discussed based on nucleotide and amino acid sequence data, which provide clues to the process by which structure-function relations have originated, evolved, and been maintained over time. The importance of the distribution of sex steroid receptors in the vertebrate brain is discussed using the example of androgen receptor sites and their relatively conserved localizations in the vertebrate brain.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biological Sciences, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
22
|
Spence RD, Zhen Y, White S, Schlinger BA, Day LB. Recovery of motor and cognitive function after cerebellar lesions in a songbird: role of estrogens. Eur J Neurosci 2009; 29:1225-34. [PMID: 19302157 DOI: 10.1111/j.1460-9568.2009.06685.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to its key role in complex motor function, the cerebellum is increasingly recognized to have a role in cognition. Songbirds are particularly good models for the investigation of motor and cognitive processes but little is known about the role of the songbird cerebellum in these processes. To explore cerebellar function in a songbird, we lesioned the cerebellum of adult female zebra finches and examined the effects on a spatial working memory task and on motor function during this task. There is evidence for steroid synthesis in the songbird brain and neurosteroids may have an impact on some forms of neural plasticity in adult songbirds. We therefore hypothesized that neurosteroids would affect motor and cognitive function after a cerebellar injury. We found that cerebellar lesions produced deficits in motor and cognitive aspects of a spatial task. In line with our prediction, birds in which estrogen synthesis was blocked had impaired performance in our spatial task compared with those that had estrogen synthesis blocked but estrogen replaced. There was no clear effect of estrogen replacement on motor function. We also found that lesions induced expression of the estrogen synthetic enzyme aromatase in reactive astrocytes and Bergmann glia around a cerebellar lesion. These data suggest that the cerebellum of songbirds mediates both motor and cognitive function and that estrogens may improve the recovery of cognitive aspects of cerebellar function after injury.
Collapse
Affiliation(s)
- Rory D Spence
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
It is now clearly established that steroids can be synthesized de novo by the vertebrate brain. Such steroids are called neurosteroids. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. In the middle 1990s, the Purkinje cell, an important cerebellar neuron, was identified as a major site for neurosteroid formation in vertebrates. This discovery has allowed deeper insights into neuronal neurosteroidogenesis and biological actions of neurosteroids have become clear by the studies using the Purkinje cell as an excellent cellular model, which is known to play an important role in memory and learning processes. From the past 10 years of research on mammals, we now know that the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions that may be mediated by neurotrophic factors contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. The aim of this review is to summarize the current knowledge regarding the biosynthesis and biological actions of neurosteroids in the Purkinje cell during development.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2–2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan
| |
Collapse
|
24
|
Sadri-Vakili G, Janis GC, Pierce RC, Gibbs TT, Farb DH. Nanomolar concentrations of pregnenolone sulfate enhance striatal dopamine overflow in vivo. J Pharmacol Exp Ther 2008; 327:840-5. [PMID: 18772319 PMCID: PMC2864155 DOI: 10.1124/jpet.108.143958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The balance between GABA-mediated inhibitory and glutamate-mediated excitatory synaptic transmission represents a fundamental mechanism for controlling nervous system function, and modulators that can alter this balance may participate in the pathophysiology of neuropsychiatric disorders. Pregnenolone sulfate (PS) is a neuroactive steroid that can modulate the activity of ionotropic glutamate and GABA(A) receptors either positively or negatively, depending upon the particular receptor subtype, and modulates synaptic transmission in a variety of experimental systems. To evaluate the modulatory effect of PS in vivo, we infused PS into rat striatum for 20 min via a microdialysis probe while monitoring local extracellular dopamine (DA) levels. The results demonstrate that PS at low nanomolar concentrations significantly increases extracellular DA levels. The PS-induced increase in extracellular DA is antagonized by the N-methyl-d-aspartate (NMDA) receptor antagonist, d-AP5 [d-(-)-2-amino-5-phosphonopentanoic acid], but not by the sigma receptor antagonist, BD 1063 [1(-)[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine]. The results demonstrate that exogenous PS, at nanomolar concentrations, is able to increase DA overflow in the striatum through an NMDA receptor-mediated pathway.
Collapse
Affiliation(s)
- G Sadri-Vakili
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
25
|
Ogishima T, Mitani F, Suematsu M. Cytochrome P-450(17alpha) in beta-cells of rat pancreas and its local steroidogenesis. J Steroid Biochem Mol Biol 2008; 111:80-6. [PMID: 18556192 DOI: 10.1016/j.jsbmb.2008.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 04/17/2008] [Accepted: 04/29/2008] [Indexed: 11/29/2022]
Abstract
We have found cytochrome P-450(17alpha) in the islets of Langerhans of rat pancreas. Its existence coincided with that of insulin and demarcated those of glucagon and somatostatin, demonstrating the localization in beta-cells. The enzyme has not only 17alpha-hydroxylase activity but also lyase one, which is a prerequisite for androgen biosynthesis. The pancreatic microsomes converted progesterone mainly to androstenedione with a minor production of 17alpha-hydroxyprogesterone. Due to a low activity of the built-in lyase, cytochrome P-450(17alpha) requires a sufficient electron-transfer from P-450 reductase or presence of an activator to promote the C-C bond cleavage. In beta-cells, P-450 reductase was abundant and could efficiently transfer electrons to P-450(17alpha). Actually, inhibition with anti-P-450 reductase or limitation of NADPH preferentially reduced the lyase activity. Androstenedione was accumulated when its further metabolism was suppressed. We also found localization of cytochrome P-450scc and 3beta-hydroxysteroid dehydrogenase in beta-cells. These results indicate that the immediate substrate for androgen formation, progesterone, is intracellularly produced and is converted mainly to androstenedione with support by an efficient electron supply from P-450 reductase. The product was supposed to be further metabolized to the reduced derivatives such as testosterone, 5alpha-androstanedione, and dihydrotestosterone, which would act as local steroids in the islets of Langerhans.
Collapse
Affiliation(s)
- Tadashi Ogishima
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
26
|
Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol 2008; 37:116-25. [PMID: 18521763 DOI: 10.1007/s12035-008-8024-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 04/25/2008] [Indexed: 02/03/2023]
Abstract
Neurosteroids are synthesized de novo from cholesterol in the brain. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. Recently the Purkinje cell, an important cerebellar neuron, has been identified as a major site for neurosteroid formation in vertebrates. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. Since this discovery, organizing actions of neurosteroids are becoming clear by the studies using the Purkinje cell as an excellent cellular model. In mammals, the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such organizing actions that may be mediated by neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of neurosteroids in the Purkinje cell.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
27
|
Hosie AM, Wilkins ME, Smart TG. Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 2007; 116:7-19. [PMID: 17560657 DOI: 10.1016/j.pharmthera.2007.03.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Controlling neuronal excitability is vitally important for maintaining a healthy central nervous system (CNS) and this relies on the activity of type A gamma-aminobutyric acid (GABA(A)) neurotransmitter receptors. Given this role, it is therefore important to understand how these receptors are regulated by endogenous modulators in the brain and determine where they bind to the receptor. One of the most potent groups of modulators is the neurosteroids which regulate the activity of synaptic and extrasynaptic GABA(A) receptors. This level of regulation is thought to be physiologically important and its dysfunction may be relevant to numerous neurological conditions. The aim of this review is to summarise those studies that over the last 20 years have focussed upon finding the binding sites for neurosteroids on GABA(A) receptors. We consider the nature of steroid binding sites in other proteins where this has been determined at atomic resolution and how their generic features were mapped onto GABA(A) receptors to help locate 2 putative steroid binding sites. Altogether, the findings strongly suggest that neurosteroids do bind to discrete sites on the GABA(A) receptor and that these are located within the transmembrane domains of alpha and beta receptor subunits. The implications for neurosteroid binding to other inhibitory receptors such as glycine and GABA(C) receptors are also considered. Identifying neurosteroid binding sites may enable the precise pathophysiological role(s) of neurosteroids in the CNS to be established for the first time, as well as providing opportunities for the design of novel drug entities.
Collapse
Affiliation(s)
- Alastair M Hosie
- University College London, Department of Pharmacology, Gower Street, London, WC1E 6BT
| | | | | |
Collapse
|
28
|
Quadros PS, Pfau JL, Wagner CK. Distribution of progesterone receptor immunoreactivity in the fetal and neonatal rat forebrain. J Comp Neurol 2007; 504:42-56. [PMID: 17614295 DOI: 10.1002/cne.21427] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Steroid hormones play an influential role in neural development. In addition to androgens and estrogens of fetal and neonatal origin, the developing brain may also be exposed to progesterone. In this regard, identifying forebrain nuclei that are sensitive to progesterone during neural development may elucidate the impact of progesterone on the developing brain. Using immunocytochemistry, the present study documented the distribution of progesterone receptor (PR) expression in the rat forebrain from embryonic day (E) 17 through postnatal day (P) 28. The results indicate that PR expression in the developing brain is extensive, present in numerous forebrain nuclei, but transient, in that PR expression was absent in most nuclei by P28. Regions displaying the highest levels of PR-immunoreactivity (PRir) were found in preoptic and hypothalamic nuclei including the medial preoptic, anteroventral periventricular, arcuate, and ventromedial nuclei. PRir was moderately abundant in the limbic region, particularly in subdivisions of the amygdala, the bed nucleus of the stria terminalis, and hippocampus. The choroid plexus and neocortex were additional structures that demonstrated relatively abundant levels of PRir. The presence PR expression in the developing forebrain implicates the involvement of progesterone and PR in fundamental mechanisms of neural development.
Collapse
Affiliation(s)
- Princy S Quadros
- Center for Neuroendocrine Studies and Neuroscience & Behavior Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|