1
|
Zhou R, Lu D, Mi J, Wang C, Lu W, Wang Z, Li X, Wei C, Zhang H, Ji J, Zhang Y, Zhang D, Wang F. Disulfidptosis-related genes serve as potential prognostic biomarkers and indicate tumor microenvironment characteristics and immunotherapy response in prostate cancer. Sci Rep 2024; 14:14107. [PMID: 38898043 PMCID: PMC11187134 DOI: 10.1038/s41598-024-61679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Disulfidptosis, a newly identified programmed cell death pathway in prostate cancer (PCa), is closely associated with intracellular disulfide stress and glycolysis. This study aims to elucidate the roles of disulfidptosis-related genes (DRGs) in the pathogenesis and progression of PCa, with the goal of improving diagnostic and therapeutic approaches. We analyzed PCa datasets and normal tissue transcriptome data from TCGA, GEO, and MSKCC. Using consensus clustering analysis and LASSO regression, we developed a risk scoring model, which was validated in an independent cohort. The model's predictive accuracy was confirmed through Kaplan-Meier curves, receiver operating characteristic (ROC) curves, and nomograms. Additionally, we explored the relationship between the risk score and immune cell infiltration, and examined the tumor microenvironment and somatic mutations across different risk groups. We also investigated responses to immunotherapy and drug sensitivity. Our analysis identified two disulfidosis subtypes with significant differences in survival, immune environments, and treatment responses. According to our risk score, the high-risk group exhibited poorer progression-free survival (PFS) and higher tumor mutational burden (TMB), associated with increased immune suppression. Functional enrichment analysis linked high-risk features to key cancer pathways, including the IL-17 signaling pathway. Moreover, drug sensitivity analysis revealed varied responses to chemotherapy, suggesting the potential for disulfidosis-based personalized treatment strategies. Notably, we identified PROK1 as a crucial prognostic marker in PCa, with its reduced expression correlating with disease progression. In summary, our study comprehensively assessed the clinical implications of DRGs in PCa progression and prognosis, offering vital insights for tailored precision medicine approaches.
Collapse
Affiliation(s)
- Rongbin Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dingjin Lu
- Department of Urology, People's Hospital of Beihai, Beihai, 536000, Guangxi, China
| | - Junhao Mi
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenhao Lu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zuheng Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Li
- School of Life Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunmeng Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiyong Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jin Ji
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Urology, Naval Medical Center, Naval Medical Univiersiy, 338 Huaihai West Road, Shanghai, 200433, China
| | - Yifeng Zhang
- Department of Urology, Naval Medical Center, Naval Medical Univiersiy, 338 Huaihai West Road, Shanghai, 200433, China.
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, 616 The Third Bianyang Road, Yongqiao District, Suzhou, 234000, Anhui, China.
| | - Fubo Wang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Medical University, No. 22, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Life Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|