1
|
Sequeira K, Henríquez S, Kohen P, Fuentes A, Tapia-Pizarro A, Céspedes P, Godoy A, Devoto L. Steroid sulfatase and the transporter of sulfated steroids are upregulated in granulose cells from women of POSEIDON group 4 in controlled ovarian hyperstimulation for in vitro fertilization cycles. Steroids 2025; 219:109626. [PMID: 40318834 DOI: 10.1016/j.steroids.2025.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE The reduced circulating levels of dehydroepiandrosterone sulphate (DHEA-S) are associated with women with poor ovarian response, > 35 years old and low ovarian reserve (POSEIDON group 4, PG4) in cycles of controlled ovarian hyperstimulation. In the ovary, the uptake of DHEA-S is facilitated by the transmembrane organic anion-transporting polypeptide, OATP2B1, whereas in the cytoplasm, the hydrolysis of the inactive precursor DHEA-S into the biologically active steroid DHEA is catalyzed by the steroid sulfatase enzyme (STS). The objective of the present study was to evaluate DHEA and DHEA-S in serum and follicular fluid as well as the expression levels for STS and OATP2B1 in granulosa cells from women in PG4 compared to a control group (control) of age matched women with normal ovarian reserve and response to controlled ovarian hyperstimulation. METHODS Prospective study which included 23 women who underwent in vitro fertilization. We compared women in PG4 (n = 13) with a control (n = 8). Transcript levels and the cellular distribution of STS and OATP2B1 transporter were determined by qPCR and immunofluorescence respectively in granulosa cells collected at the time of oocyte pick-up. Gene expression was analyzed according to age, circulating AMH, antral follicle count (AFC) along with DHEA-S and DHEA in serum and follicular fluid. RESULTS Serum and follicular fluid analysis showed that DHEA-S was significantly decreased in PG4 compared to control, whereas no differences in DHEA concentrations were observed. Women in PG4 had significantly higher expression of STS and OATP2B1 mRNA (n = 13, p < 0.05) compared with those of the control. CONCLUSION Our results suggest that up-regulation of STS and OATP2B1 in granulosa cells from women in PG4 could be a compensatory mechanism to overcome the decreased circulating levels of DHEA-S possibly required as substrate for intraovarian production of DHEA.
Collapse
Affiliation(s)
- Karina Sequeira
- Shady Grove Fertility Chile, Av. Presidente Kennedy 6800, Torre B, Piso -1, Vitacura, Santiago, Chile
| | - Soledad Henríquez
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile; Instituto de Investigación Interdisciplinar en Ciencias Biomédicas (I3CBSEK), Facultad de Ciencias de la Salud, Universidad SEK, Fernando Manterola 0789, Santiago, Providencia, Chile.
| | - Paulina Kohen
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile
| | - Ariel Fuentes
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile
| | - Alejandro Tapia-Pizarro
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile
| | - Pablo Céspedes
- Clínica Indisa, Av. Sta. Maria 1810, Providencia, Santiago, Chile
| | - Ana Godoy
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile
| | - Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Faculty of Medicine, Universidad de Chile, Santa Rosa 1234, Santiago, Chile
| |
Collapse
|
2
|
Rydder PM, Andreasen L, Thomsen SH, Jensen UB, Becher N, Dunø M, Vogel I. Mosaic STS gene deletions in chorionic villus samples are often confined to the placenta, and they differ in size from STS gene deletions in patients with X-linked Ichthyosis. Placenta 2025; 165:16-22. [PMID: 40157041 DOI: 10.1016/j.placenta.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/28/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE This study presents several cases of mosaicism for STS gene deletions in uncultured chorionic villus samples analyzed with chromosomal microarray without prior trypsinization. We aimed to confirm these results with MLPA on the chorionic villus samples and to evaluate the presence of mosaicism in follow-up amniocentesis. METHODS We retrospectively collected cases of prenatally identified STS gene deletions in chorionic villus samples and amniocenteses at Aarhus University Hospital. A subgroup with mosaic microarray results was analyzed with MLPA. RESULTS Four non-mosaic (of which three were inherited) and 16 mosaic STS gene deletions were identified. Mosaicism was confirmed with MLPA in all cases suitable for MLPA analysis. All 10 mosaic cases with follow-up amniocentesis showed normal results. In general, STS gene deletions in a mosaic state were smaller in size and had breakpoints located within the common fragile site FRAXB, whereas non-mosaic STS deletions were larger with breakpoints located close to VCX genes. Deletion size differed significantly between mosaic cases of this study and STS gene deletions in patients with X-linked Ichthyosis reported in ClinVar. CONCLUSION We report and confirm several cases of placental mosaicism for STS gene deletions. All mosaic cases with follow-up amniocentesis were confined to the placenta. Mosaic deletions likely arose from strand breaks at the common fragile site FRAXB, whereas the classical non-mosaic genotype found in patients with X-linked Ichthyosis arises from non-allelic homologous recombination during meiosis. These results support the existing hypothesis that placental mosaicism for copy number variants likely arise in common fragile sites.
Collapse
Affiliation(s)
- Pernille Marker Rydder
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Lotte Andreasen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark
| | - Simon Horsholt Thomsen
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Naja Becher
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Ida Vogel
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
3
|
Banibakhsh A, Sidhu D, Khan S, Haime H, Foster PA. Sex steroid metabolism and action in colon health and disease. J Steroid Biochem Mol Biol 2023; 233:106371. [PMID: 37516405 DOI: 10.1016/j.jsbmb.2023.106371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
The colon is the largest hormonally active tissue in the human body. It has been known for over a hundred years that various hormones and bioactive peptides play important roles in colon function. More recently there is a growing interest in the role the sex steroids, oestrogens and androgens, may play in both normal colon physiology and colon pathophysiology. In this review, we examine the potential role oestrogens and androgens play in the colon. The metabolism and subsequent action of sex steroids in colonic tissue is discussed and how these hormones impact colon motility is investigated. Furthermore, we also determine how oestrogens and androgens influence colorectal cancer incidence and development and highlight potential new therapeutic targets for this malignancy. This review also examines how sex steroids potentially impact the severity and progression of other colon disease, such as diverticulitis, irritable bowel syndrome, and polyp formation.
Collapse
Affiliation(s)
- Afnan Banibakhsh
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Daljit Sidhu
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Sunera Khan
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Hope Haime
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research, Centre for Endocrinology, Diabetes, and Metabolism, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes, and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.
| |
Collapse
|
4
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
Penning TM, Detlefsen AJ. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol 2020; 196:105499. [PMID: 31614208 PMCID: PMC6954292 DOI: 10.1016/j.jsbmb.2019.105499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
The formation of steroid hormones in peripheral target tissues is referred to as their intracrine formation. This process occurs in hormone dependent malignancies such as prostate and breast cancer in which the disease can be either castrate resistant or occur post-menopausally, respectively. In these instances, the major precursor steroid of androgens and estrogens is dehydroepiandrosterone (DHEA) and DHEA-SO4. This article reviews the major pathways by which adrenal steroids are converted to the potent male sex hormones, testosterone (T) and 5α-dihydrotestosterone (5α-DHT) and the discrete enzyme isoforms involved in castration resistant prostate cancer. Previous studies have mainly utilized radiotracers to investigate these pathways but have not used prevailing concentrations of precursors found in castrate male human serum. In addition, the full power of stable-isotope dilution liquid chromatography tandem mass spectrometry has not been applied routinely. Furthermore, it is clear that adaptive responses occur in the transporters and enzyme isoforms involved in response to androgen deprivation therapy that need to be considered.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, 421 Curie Blvd, 1350 BRBII/IIII, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6084, United States.
| | - Andrea J Detlefsen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania School Philadelphia, PA, United States
| |
Collapse
|
6
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
7
|
Penning TM. Dehydroepiandrosterone (DHEA)-SO 4 Depot and Castration-Resistant Prostate Cancer. VITAMINS AND HORMONES 2018; 108:309-331. [PMID: 30029732 DOI: 10.1016/bs.vh.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dehydroepiandrosterone (DHEA)-SO4 of adrenal origin is the major C19 steroid in the serum. It is a precursor of intratumoral androgen biosynthesis in patients with advanced prostate cancer following chemical or surgical castration. DHEA is a product of the P450c17 (17α-hydroxylase-17,20-lyase) enzyme. Despite inhibition of P450c17 with new agents, e.g., Abiraterone acetate, Orterenol, and Galeterone, the level of enzyme inhibition rarely exceeds 90% leaving behind a significant depot for androgen biosynthesis within the tumor. For DHEA-SO4 to be utilized there is uptake by organic anion transporter polypeptides, deconjugation catalyzed by steroid sulfatase, and adaptive upregulation of prostate steroidogenic enzymes that will convert DHEA into either testosterone or dihydrotestosterone. The depot of DHEA-SO4 that remains after P450c17 inhibition and the adaptive responses that occur within the tumor to promote DHEA utilization contribute to mechanisms of drug resistance observed with P450c17 inhibitors. Knowledge of these mechanisms identify new targets for therapeutics that could be used to surmount drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Garbacz WG, Jiang M, Xie W. Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:455-469. [PMID: 29224107 DOI: 10.1007/978-3-319-70178-3_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.
Collapse
Affiliation(s)
- Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
10
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
11
|
Steroid sulphatase and oestrogen sulphotransferase in human non-small-cell lung carcinoma. Br J Cancer 2013; 108:1415-24. [PMID: 23531699 PMCID: PMC3629433 DOI: 10.1038/bjc.2013.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Steroid sulphatase (STS) is one of the steroid-metabolising enzymes involved in desulphating inactive steroid sulphates and oestrogen sulphotransferase (EST) sulphates active oestrogen. The roles of both STS and EST have not been examined in oestrogen-dependent non-small-cell lung cancer (NSCLC). Methods: We evaluated the immunoreactivity of STS and EST in NSCLC cases using immunohistochemistry. The function of STS and EST was further demonstrated using NSCLC cell lines. Results: The immunoreactivity of STS and EST was detected in 49.5% and 27.8% of NSCLC cases, respectively. The immunoreactivity of STS was significantly higher in female adenocarcinoma cases. The STS-positive NSCLCs were also significantly correlated in an inversed manner with tumour size and cell proliferation and tended to be associated with better clinical outcome. However, the immunoreactivity of EST was significantly correlated with intracellular oestradiol concentration. Results of in vitro analysis demonstrated that oestrone sulphate (E1-S) induced and pregnenolone sulphate (Preg-S) inhibited the proliferation in STS-expressing cell lines. The inhibition by Preg-S was reversed by a specific progesterone receptor blocker. Simultaneous addition of E1-S and Preg-S significantly suppressed the proliferation. Conclusion: In NSCLC patients, STS is considered a good prognostic factor. Results of our present study also indicated the benefits of potential progesterone therapy for NSCLC patients.
Collapse
|
12
|
Matsumoto J, Ariyoshi N, Ishii I, Kitada M. Functional characterization of seven single-nucleotide polymorphisms of the steroid sulfatase gene found in a Japanese population. J Hum Genet 2013; 58:267-72. [PMID: 23466819 DOI: 10.1038/jhg.2013.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Steroid sulfatase (STS) is an enzyme that hydrolyzes steroid sulfates such as dehydroepiandrosterone sulfate (DHEA-S) and estrone sulfate. STS has a key role in the synthesis of steroid hormones in placenta and breast cancer cells. Recently, we have identified six novel single-nucleotide polymorphisms (SNPs) and one nonsynonymous SNP (V476M) in the STS gene in a Japanese population. To clarify the effects of SNPs in the 5'-flanking region or 5' untranslated region on transcriptional activity, a reporter gene assay was conducted. In addition, DHEA-S desulfatase activity of a variant (Met at codon 476)-type enzyme was compared with that of the wild (Wd)-type enzyme in COS-1 cells. The transcriptional activities were significantly decreased (155A) and increased (-2837A and -1588C) in MCF-7 cells. On the other hand, no significant difference was found in expression levels of STS protein or specific activities of DHEA-S desulfation between Wd and the variant enzymes. This is the first report on the effects of various SNPs in the STS gene detected in Japanese healthy subjects.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | |
Collapse
|
13
|
Suzuki T, Miki Y, Nakamura Y, Ito K, Sasano H. Steroid sulfatase and estrogen sulfotransferase in human carcinomas. Mol Cell Endocrinol 2011; 340:148-53. [PMID: 21073915 DOI: 10.1016/j.mce.2010.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 10/06/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
Abstract
Estrogens are closely involved in the development of hormone-dependent carcinomas. Estrone is locally produced from circulating inactive estrone sulfate by steroid sulfatase (STS), while estrone is inversely inactivated into estrone sulfate by estrogen sulfotransferase (EST). Recent studies suggested importance of this STS pathway in various human carcinomas. Therefore, in this review, we summarized recent results of STS and EST in several estrogen-dependent carcinomas. STS and EST expressions were detected in the breast and endometrial carcinomas, and activation of STS pathway due to increment in STS and/or decrement in EST expressions plays important role in their estrogen-dependent growth. STS expression was also reported in the ovarian and prostate carcinomas. STS/EST status was associated with intratumoral estrogen level in the colon carcinoma, and STS-negative/EST-positive colon carcinoma patients had longer survival. Therefore, STS pathway and estrogen actions may play an important role in the development of these carcinomas, and further investigations are required.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University, Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
14
|
Brookes KJ, Hawi Z, Park J, Scott S, Gill M, Kent L. Polymorphisms of the steroid sulfatase (STS) gene are associated with attention deficit hyperactivity disorder and influence brain tissue mRNA expression. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1417-24. [PMID: 20862695 PMCID: PMC3132592 DOI: 10.1002/ajmg.b.31120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/03/2010] [Indexed: 11/09/2022]
Abstract
Previous studies in animals and humans have implicated the X-chromosome STS gene in the etiology of attentional difficulties and attention deficit hyperactivity disorder (ADHD). This family based association study has fine mapped a region of the STS gene across intron 1 and 2 previously associated with ADHD, in an extended sample of 450 ADHD probands and their parents. Significant association across this region is demonstrated individually with 7 of the 12 genotyped SNPs, as well as an allele specific haplotype of the 12 SNPs. The over transmitted risk allele of rs12861247 was also associated with reduced STS mRNA expression in normal human post-mortem frontal cortex brain tissue compared to the non-risk allele (P = 0.01). These results are consistent with the hypothesis arising from previous literature demonstrating that boys with deletions of the STS gene, and hence no STS protein are at a significantly increased risk of developing ADHD. Furthermore, this study has established the brain tissue transcript of STS, which except from adipose tissue, differs from that seen in all other tissues investigated. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- KJ Brookes
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - Z Hawi
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's HospitalDublin, Ireland
| | - J Park
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - S Scott
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK
| | - M Gill
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's HospitalDublin, Ireland
| | - L Kent
- Bute Medical School, University of St AndrewsSt Andrews, Scotland, UK,*Correspondence to: L. Kent, Bute Medical School, University of St Andrews, St Andrews, Scotland KY16 9TS, UK. E-mail:
| |
Collapse
|
15
|
Management of the adult with congenital adrenal hyperplasia. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2010; 2010:614107. [PMID: 20613954 PMCID: PMC2896848 DOI: 10.1155/2010/614107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 03/09/2010] [Indexed: 11/18/2022]
Abstract
Congenital adrenal hyperplasia (CAH), most commonly due to 21-hydroxylase deficiency (21OHD), has been studied by pediatric endocrinologists for decades. Advances in the care of these patients have enabled many of these children to reach adulthood. In contrast to the course and management of the disease in childhood, little is known about CAH in adults. In many patients, the proclivity to salt-wasting crises decreases. Linear growth ceases, and reproductive function becomes an issue. Most importantly, management must minimize the potential for long-term consequences of conventional therapies. Here we review the existing literature regarding comorbidities of adults with 21OHD, goals of treatment, and approaches to therapy, with an emphasis on need for improved management strategies.
Collapse
|
16
|
Pomari E, Nardi A, Fiore C, Celeghin A, Colombo L, Dalla Valle L. Transcriptional control of human organic anion transporting polypeptide 2B1 gene. J Steroid Biochem Mol Biol 2009; 115:146-52. [PMID: 19383542 DOI: 10.1016/j.jsbmb.2009.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/31/2009] [Accepted: 04/08/2009] [Indexed: 01/13/2023]
Abstract
Organic anion transporting polypeptides (OATPs) are a group of transmembrane carriers with a wide spectrum of amphipathic substrates. In particular, OATP2B1 (previously called OATP-B) can transport steroid hormone conjugates and is expressed in organs with steroidogenic activity, such as placenta, brain and skin. In this work, we have analyzed the transcription of the OATP2B1 gene (SLCO2B1) in 14 different human tissues by means of 5'-RACE analysis. Five promoters (only two of which were present in GenBank), associated with distinct first exons, were found to drive OATP2B1 expression, giving rise to transcripts with unique 5'-untranslated termini. Exon 1b is widely expressed and was found here in 10 tissues. It is partially coding, while the other four different first exons are untranslated. All exons are spliced to a common exon 2 that contains a putative ATG in frame with the following coding region. Sequence analysis of the 5'-flanking region of each first exon revealed a lack of TATA box, thus accounting for the use of multiple transcriptional start sites in nearly all first exons.
Collapse
Affiliation(s)
- Elena Pomari
- Comparative Endocrinology Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Nardi A, Pomari E, Zambon D, Belvedere P, Colombo L, Dalla Valle L. Transcriptional control of human steroid sulfatase. J Steroid Biochem Mol Biol 2009; 115:68-74. [PMID: 19429462 DOI: 10.1016/j.jsbmb.2009.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Steroid sulfatase (STS) is a membrane-bound microsomal enzyme that hydrolyzes various alkyl and aryl steroid sulfates, leading to the in situ formation of biologically active hormones. The entire human STS gene spans over approximately 200kbp of which the first 100kbp include the regulatory region, while the STS-coding region is located downstream. Previous studies indicated that STS expression, in different human tissues, could be regulated by at least six different promoters associated with alternative first exons. Here, we describe two new splicing patterns: the first, found in the prostatic cell line PC3, is based upon a partially coding new first exon (0d) that is spliced to a new second exon (1e). The second variant was found in the ovary and it is characterized by the novel splicing of the untranslated exon 0b to exon 0c, which is then spliced to the common exon 1b. We also report the results of a multiplex ligation-dependent probe amplification (RT-MLPA) analysis for the simultaneous detection, in qualitative and/or semi-quantitative terms, of the transcription patterns of STS in different tissues.
Collapse
|
18
|
Brookes KJ, Hawi Z, Kirley A, Barry E, Gill M, Kent L. Association of the steroid sulfatase (STS) gene with attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1531-5. [PMID: 18937300 DOI: 10.1002/ajmg.b.30873] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common behavioral disorder affecting children worldwide. The male bias in the prevalence of the disorder, suggests that some susceptibility genes may lie on the X chromosome. In this study we present evidence for a role of the X-linked steroid sulfatase (STS) gene and neurosteroids in the development of ADHD. Previously it has been observed that probands with ADHD have lower serum concentrations of the neurosteroids DHEA, which is synthesized from DHEA-S by STS. In further support, boys that suffer from XLI, a skin disorder caused by the deletion of the STS gene, have higher rates of ADHD, in particular the inattentive subtype. In a moderately sized sample of ADHD families (N = 384), we genotyped seven single nucleotide polymorphisms, tagging the entire gene. TDT analysis of the data yielded two polymorphisms that were significantly associated with ADHD (rs2770112-Transmitted: 71 Not Transmitted; 48; rs12861247-Transmitted: 43 Not Transmitted: 21), located towards the 5' end of the gene (P < 0.05). We conclude that the STS gene may play a role in susceptibility for ADHD, and that the neurosteroids pathways should be investigated further to access their potential contribution in susceptibility to the disorder.
Collapse
Affiliation(s)
- K J Brookes
- Bute Medical School, University of St Andrews, St Andrews, Scotland, UK
| | | | | | | | | | | |
Collapse
|
19
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|