1
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Chichiarelli S, Altieri F, Paglia G, Rubini E, Minacori M, Eufemi M. ERp57/PDIA3: new insight. Cell Mol Biol Lett 2022; 27:12. [PMID: 35109791 PMCID: PMC8809632 DOI: 10.1186/s11658-022-00315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.
Collapse
Affiliation(s)
- Silvia Chichiarelli
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.
| | - Fabio Altieri
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy.,Enrico Ed Enrica Sovena" Foundation, Rome, Italy
| | - Marco Minacori
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences "A.Rossi-Fanelli", Sapienza University of Rome, P.le A.Moro 5, 00185, Rome, Italy
| |
Collapse
|
3
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
4
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Gaucci E, Raimondo D, Grillo C, Cervoni L, Altieri F, Nittari G, Eufemi M, Chichiarelli S. Analysis of the interaction of calcitriol with the disulfide isomerase ERp57. Sci Rep 2016; 6:37957. [PMID: 27897272 PMCID: PMC5126700 DOI: 10.1038/srep37957] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Calcitriol, the active form of vitamin D3, can regulate the gene expression through the binding to the nuclear receptor VDR, but it can also display nongenomic actions, acting through a membrane-associated receptor, which has been discovered as the disulfide isomerase ERp57. The aim of our research is to identify the binding sites for calcitriol in ERp57 and to analyze their interaction. We first studied the interaction through bioinformatics and fluorimetric analyses. Subsequently, we focused on two protein mutants containing the predicted interaction domains with calcitriol: abb'-ERp57, containing the first three domains, and a'-ERp57, the fourth domain only. To consolidate the achievements we used the calorimetric approach to the whole protein and its mutants. Our results allow us to hypothesize that the interaction with the a' domain contributes to a greater extent than the other potential binding sites to the dissociation constant, calculated as a Kd of about 10-9 M.
Collapse
Affiliation(s)
- Elisa Gaucci
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Domenico Raimondo
- Stem Cell Lab - Department of Molecular Medicine - Sapienza Università di Roma, Viale Regina Elena 324, 00161, Rome, Italy
| | - Caterina Grillo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Laura Cervoni
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giulio Nittari
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
6
|
Díaz L, Díaz-Muñoz M, García-Gaytán AC, Méndez I. Mechanistic Effects of Calcitriol in Cancer Biology. Nutrients 2015; 7:5020-5050. [PMID: 26102214 PMCID: PMC4488829 DOI: 10.3390/nu7065020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023] Open
Abstract
Besides its classical biological effects on calcium and phosphorus homeostasis, calcitriol, the active vitamin D metabolite, has a broad variety of actions including anticancer effects that are mediated either transcriptionally and/or via non-genomic pathways. In the context of cancer, calcitriol regulates the cell cycle, induces apoptosis, promotes cell differentiation and acts as anti-inflammatory factor within the tumor microenvironment. In this review, we address the different mechanisms of action involved in the antineoplastic effects of calcitriol.
Collapse
Affiliation(s)
- Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, Mexico City 14000, Mexico.
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| | - Ana Cristina García-Gaytán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Blvd. Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
7
|
Chandler PD, Giovannucci EL, Scott JB, Bennett GG, Ng K, Chan AT, Hollis BW, Emmons KM, Fuchs CS, Drake BF. Null association between vitamin D and PSA levels among black men in a vitamin D supplementation trial. Cancer Epidemiol Biomarkers Prev 2014; 23:1944-7. [PMID: 24974387 DOI: 10.1158/1055-9965.epi-14-0522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Black men exhibit a high prevalence of vitamin D deficiency as well as a higher incidence of prostate cancer and higher mortality rates from prostate cancer than Whites. There are few data about the effect of vitamin D3 (cholecalciferol) supplementation on prostate-specific antigen (PSA) in healthy Black men. METHODS During three winters from 2007 to 2010, 105 Black men (median age, 48.9 years) of Boston, MA were randomized into a four-arm, double-blind trial for 3 months of placebo, 1,000, 2,000, or 4,000 U of vitamin D3. At baseline and 3 months, free and total PSA was measured. RESULTS With vitamin D supplementation, no significant differences in free and total PSA were observed; free PSA, -0.0004 ng/mL (P = 0.94) and total PSA, -0.004 ng/mL (P = 0.92) for each additional 1,000 U/d of vitamin D3. CONCLUSION Within an unselected population of healthy Black men without a cancer diagnosis, we found no effect of vitamin D supplementation on free or total PSA. IMPACT These findings support prior findings of no change in PSA with vitamin D supplementation and emphasize the need for new methods to assess the influence of vitamin D supplementation on prostate cancer prevention.
Collapse
Affiliation(s)
- Paulette D Chandler
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Edward L Giovannucci
- Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts. Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Jamil B Scott
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Gary G Bennett
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - Kimmie Ng
- Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew T Chan
- Harvard Medical School, Boston, Massachusetts. Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruce W Hollis
- Division of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Karen M Emmons
- Harvard Medical School, Boston, Massachusetts. Center for Community-Based Research, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charles S Fuchs
- Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bettina F Drake
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Abstract
Vitamin D deficiency is increasing worldwide. Ultraviolet rays are supposed to provide humans over 80% of our vitamin D requirement; the rest is received through diet and supplements. In addition to enhancing calcium absorption from the intestine and mineralization of the osteoid tissue, vitamin D has many other physiological effects, including neuromodulation, improving muscle strength and coordination, insulin release, immunity and prevention of infections, and curtailing cancer. Whether the increased incidence of vitamin D deficiency is related to increased incidences of nonskeletal disorders remains to be determined. Serum levels of 25-hydroxyvitamin [25(OH)D] above 30 ng/mL indicate vitamin D sufficiency. An additional 1,000 IU of vitamin D/day is sufficient for most lighter-skinned individuals, whereas an extra 2,000 IU/day is needed by the elderly and dark-skinned individuals to maintain normal 25(OH)D levels. Additional research is needed to clarify the relationship between vitamin D and the nonskeletal systems, nonclassic functions, and targets of vitamin D.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, and UMDNJ, Robert Wood Johnson Medical School, Physiology and Integrative Biology, Graduate School of Biomedical Sciences, New Brunswick, New Jersey 08903-0019, USA.
| |
Collapse
|
9
|
Abstract
The incidence of vitamin D deficiency is rising worldwide, yet in the vast majority of patients, the condition remains undiagnosed and untreated. Current evidence overwhelmingly indicates that supplemental doses greater than 800 IU/day have beneficial effects on the musculoskeletal system, improving skeletal homeostasis, thus leading to fewer falls and fractures. Evidence is also accumulating on the beneficial effects of vitamin D on extraskeletal systems, such as improving immune health, autoimmune disorders, cancer, neuromodulation, diabetes, and metabolic syndrome. The cause-effect relationship of vitamin D deficiency with increasing incidences of nonskeletal disorders is being investigated. Published reports support the definition of sufficiency, serum levels of 25-hydroxyvitamin D [25(OH)D] greater than 30 ng/mL (75 nmol/L). To achieve this, most people need vitamin D supplementation ranging from 600 to 2000 IU/day; consumption up to of 5000 international units (IU) per day of vitamin D is reported as safe. Although light-skinned individuals need 1000 IU/day of vitamin D, elderly and dark-skinned individuals are likely to need approximately 2000 IU/day to maintain serum 25(OH)D levels greater than 30 ng/mL. Other vulnerable patients, such as the obese, those who have undergone bariatric surgery, and those with gastrointestinal malabsorption syndromes, may require higher doses of vitamin D to maintain normal serum levels and be healthy.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Physiology & Integrative Biology, Endocrinology, Metabolism & Nutrition, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
10
|
Hasan E, Olusi S, Al-Awadhi A, Mokaddem K, Sharma P, George S. Effects of rituximab treatment on the serum concentrations of vitamin D and interleukins 2, 6, 7, and 10 in patients with rheumatoid arthritis. Biologics 2012; 6:31-5. [PMID: 22355257 PMCID: PMC3280863 DOI: 10.2147/btt.s27840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Rituximab, a monoclonal antibody that selectively targets CD20-positive B-lymphocytes, is used for the treatment of patients with rheumatoid arthritis (RA) with an inadequate response or tolerance to tumor necrosis factor inhibitors. The objective of this study was to investigate the effects of rituximab treatment on the serum concentrations of vitamin D, interleukin (IL) 2, IL-6, IL-7, and IL-10 in patients with rheumatoid arthritis (RA). Methods Forty-five patients, aged 25–78 years, were enrolled into a cohort prospective study. All patients were treated with intravenous rituximab. Disease activity score-28 (DAS-28) and serum concentrations of rheumatoid factor (RF), C-reactive protein (CRP), anticyclic citrullinated peptide (anti-CCP), erythrocyte sedimentation rate (ESR), health assessment questionnaire (HAQ), vitamin D, ILs 2, 6, 7, and 10 were estimated in the patients before and after treatment with rituximab. Results DAS-28, HAQ score, and serum concentrations of CRP, RF, anti-CCP, IL-2, IL-6, IL-7, IL-10, and ESR significantly decreased after treatment. All 45 patients had vitamin D deficiency before treatment and this did not significantly change after treatment. However no significant association was found among serum vitamin D concentration and any of the ILs. Conclusion We concluded from this study that although rituximab treatment of patients with RA significantly reduced their disease activity and serum concentrations of IL-2, IL-6, IL-7, and IL-10, it did not significantly alter their vitamin D status. Furthermore, no significant association was found among serum vitamin D concentration and any of the ILs.
Collapse
Affiliation(s)
- Eman Hasan
- Rheumatic Disease Unit, Al-Amiri Hospital, Ministry of Health, Kuwait
| | | | | | | | | | | |
Collapse
|
11
|
Donkena KV, Young CYF. Vitamin d, sunlight and prostate cancer risk. Adv Prev Med 2011; 2011:281863. [PMID: 21991434 PMCID: PMC3170721 DOI: 10.4061/2011/281863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.
Collapse
Affiliation(s)
- Krishna Vanaja Donkena
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Charles Y. F. Young
- Departments of Urology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Kerr GS, Sabahi I, Richards JS, Caplan L, Cannon GW, Reimold A, Thiele GM, Johnson D, Mikuls TR. Prevalence of vitamin D insufficiency/deficiency in rheumatoid arthritis and associations with disease severity and activity. J Rheumatol 2010; 38:53-9. [PMID: 20952475 DOI: 10.3899/jrheum.100516] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE 25-hydroxy-vitamin D (25-OH-D) insufficiency/deficiency is increasingly prevalent and has been associated with many chronic diseases, including rheumatoid arthritis (RA). Our purpose was to define the prevalence and associations of 25-OH-D insufficiency/deficiency in a cohort of US veterans with RA. METHODS vitamin D status (25-OH-D) was assessed in patients with RA using radioimmunoassay on banked plasma collected at enrollment. Insufficiency was defined as concentrations < 30 ng/ml and deficiency as < 20 ng/ml. Associations of 25-OH-D insufficiency/deficiency with patient characteristics obtained at enrollment were examined using multivariate logistic regression, adjusting for age, sex, season of enrollment, and race. RESULTS patients (850 men, 76% Caucasian) had a mean (SD) age of 64 (SD 11.3) years. The prevalences of 25-OH-D insufficiency and deficiency were 84% and 43%, respectively. After multivariate adjustment, both insufficiency and deficiency were more common with anti-cyclic citrullinated peptide antibody positivity and non-Caucasian race, and in the absence of vitamin D supplementation. 25-OH-D deficiency, but not insufficiency, was independently associated with higher tender joint counts and highly sensitive C-reactive protein levels. CONCLUSION in a predominantly elderly, male RA population, 25-OH-D insufficiency was highly prevalent. With the increasing adverse health outcomes associated with hypovitaminosis D, screening and supplementation, particularly among minority, seropositive patients with RA, should be performed routinely.
Collapse
Affiliation(s)
- Gail S Kerr
- Veterans Affairs Medical Center, Georgetown, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|