1
|
Vecchiola A, Uslar T, Friedrich I, Aguirre J, Sandoval A, Carvajal CA, Tapia-Castillo A, Martínez-García A, Fardella CE. The role of sex hormones in aldosterone biosynthesis and their potential impact on its mineralocorticoid receptor. Cardiovasc Endocrinol Metab 2024; 13:e0305. [PMID: 38846628 PMCID: PMC11155591 DOI: 10.1097/xce.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Blood pressure (BP) regulation is a complex process involving various hormones, including aldosterone and its mineralocorticoid receptor. Mineralocorticoid receptor is expressed in several tissues, including the kidney, and plays a crucial role in regulating BP by controlling the sodium and water balance. During different stages of life, hormonal changes can affect mineralocorticoid receptor activity and aldosterone levels, leading to changes in BP. Increasing evidence suggests that sex steroids modulate aldosterone levels. Estrogens, particularly estradiol, mediate aldosterone biosynthesis by activating classical estrogen receptors and the G protein-coupled receptor. Progesterone acts as an anti-mineralocorticoid by inhibiting the binding of aldosterone to the mineralocorticoid receptor. Moreover, progesterone inhibits aldosterone synthase enzymes. The effect of testosterone on aldosterone synthesis is still a subject of debate. However, certain studies show that testosterone downregulates the mRNA levels of aldosterone synthase, leading to decreased plasma aldosterone levels.
Collapse
Affiliation(s)
- Andrea Vecchiola
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Thomas Uslar
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Isidora Friedrich
- Departamento de Endocrinologìa, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago
| | - Joaquin Aguirre
- Departamento de Endocrinologìa, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago
| | - Alejandra Sandoval
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristian A. Carvajal
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Alejandra Tapia-Castillo
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Alejandra Martínez-García
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Carlos E. Fardella
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| |
Collapse
|
2
|
Ong HTM, Ates E, Kwon OS, Kang MJ. Screening of Natural Compounds for CYP11A1 Stimulation Against Cell Renal Cell Carcinoma. Biol Proced Online 2023; 25:31. [PMID: 38036976 PMCID: PMC10687993 DOI: 10.1186/s12575-023-00225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Renal cancer therapies are challenging owing to the extensive spreading of this cancer to other organs and its ability to pose resistance to current medications. Therefore, drugs targeting novel targets are urgently required to overcome these challenges. The cholesterol side-chain cleavage enzyme (CYP11A1) is closely associated with steroidogenesis, and its downregulation is linked to adrenal dysfunction and several types of carcinoma. We previously found that overexpression of CYP11A1 inhibited epithelial-mesenchymal transition and induced G2/M arrest in the kidney cancer Caki-1 cell line. In this context, natural compounds that exhibit potent CYP11A1 stimulation activity can be promising therpaeutic agents for kidney cancer. METHODS We screened a panel of 1374 natural compounds in a wound-healing assay using CYP11A1-transfected Caki-1 cells. Of these, 167 promising biologically active compounds that inhibited cancer cell migration by more than 75% were selected, and their half-maximal inhibitory concentrations (IC50) were determined. The IC50 of 159 compounds was determined and 38 compounds with IC50 values less than 50 µM were selected for further analysis. Steroid hormones (cholesterol and pregnenolone) levels in cells treated with the selected compounds were quantitated using LC-MS/MS to determine their effect on CYP11A1 activity. Western blotting for CYP11A1, autophagy signaling proteins, and ferroptosis regulators were performed to ivestigate the mechanisms underlying the action of the selected compounds. RESULTS We screened five promising natural lead compounds that inhibited cancer cell proliferation after three screening steps. The IC50 of these compounds was determined to be between 5.9 and 14.6 μM. These candidate compounds increased the expression of CYP11A1 and suppressed cholesterol levels while increasing pregnenolone levels, which is consistent with the activation of CYP11A1. Our results showed that CYP11A1 activation inhibited the migration of cancer cells, promoted ferroptosis, and triggered autophagy signaling. CONCLUSIONS This study indicates that the CYP11A1-overexpressing Caki-1 cell line is useful for screening drugs against kidney cancer. The two selected compounds could be utilized as lead compounds for anticancer drug discovery, and specifically for the development of antirenal cancer medication.
Collapse
Affiliation(s)
- Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eda Ates
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oh-Seung Kwon
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
- Doping Control Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Synthesis, Optimization, Antifungal Activity, Selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals (Basel) 2020; 13:ph13080186. [PMID: 32784450 PMCID: PMC7464559 DOI: 10.3390/ph13080186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
A series of 2-aryl-3-azolyl-1-indolyl-propan-2-ols was designed as new analogs of fluconazole (FLC) by replacing one of its two triazole moieties by an indole scaffold. Two different chemical approaches were then developed. The first one, in seven steps, involved the synthesis of the key intermediate 1-(1H-benzotriazol-1-yl)methyl-1H-indole and the final opening of oxiranes by imidazole or 1H-1,2,4-triazole. The second route allowed access to the target compounds in only three steps, this time with the ring opening by indole and analogs. Twenty azole derivatives were tested against Candida albicans and other Candida species. The enantiomers of the best anti-Candida compound, 2-(2,4-dichlorophenyl)-3-(1H-indol-1-yl)-1-(1H-1,2,4-triazol-1-yl)-propan-2-ol (8g), were analyzed by X-ray diffraction to determine their absolute configuration. The (−)-8g enantiomer (Minimum inhibitory concentration (MIC) = IC80 = 0.000256 µg/mL on C. albicans CA98001) was found with the S-absolute configuration. In contrast the (+)-8g enantiomer was found with the R-absolute configuration (MIC = 0.023 µg/mL on C. albicans CA98001). By comparison, the MIC value for FLC was determined as 0.020 µg/mL for the same clinical isolate. Additionally, molecular docking calculations and molecular dynamics simulations were carried out using a crystal structure of Candida albicans lanosterol 14α-demethylase (CaCYP51). The (−)-(S)-8g enantiomer aligned with the positioning of posaconazole within both the heme and access channel binding sites, which was consistent with its biological results. All target compounds have been also studied against human fetal lung fibroblast (MRC-5) cells. Finally, the selectivity of four compounds on a panel of human P450-dependent enzymes (CYP19, CYP17, CYP26A1, CYP11B1, and CYP11B2) was investigated.
Collapse
|
4
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
5
|
Abstract
The mineralocorticoid aldosterone is an important regulator of blood pressure and electrolyte balance. However, excess aldosterone can be deleterious as a driver of inflammation, vascular remodeling and tissue fibrosis associated with cardiometabolic diseases. Mineralocorticoid receptor antagonists (MRA) and renin-angiotensin-aldosterone system (RAAS) antagonists are current clinical therapies used to antagonize deleterious effects of aldosterone in patients. MRAs compete with aldosterone for binding at its cognate receptor thereby limiting its effect while RAS antagonists reduce aldosterone levels indirectly by blocking the stimulatory effect of angiotensin. Both MRAs and RAS antagonists can result in incomplete inhibition of the harmful effects of excess aldosterone. Aldosterone synthase (AS) inhibitors (ASI) attenuate the production of aldosterone directly and have been proposed as an alternative to MRAs and RAS blockers. Cortisol synthase (CS) is an enzyme closely related to AS and responsible for generating the important glucocorticoid cortisol, required for maintaining critical metabolic and immune responses. The importance of selectivity against CS is shown by early examples of ASIs that were only modestly selective and as such, attenuated cortisol responses when evaluated in patients. Recently, next-generation, highly selective ASIs have been described and are presently being evaluated in the clinic as an alternative to angiotensin and MR antagonists for cardiometabolic disease. Herein we provide a brief review of the challenges associated with discovery of selective ASIs and the transition from the early compounds that paved the way toward the next-generation of highly selective ASIs currently under development.
Collapse
Affiliation(s)
- Steven M Weldon
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States.
| | - Nicholas F Brown
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
6
|
Simultaneous profiling of 17 steroid hormones for the evaluation of endocrine-disrupting chemicals in H295R cells. Bioanalysis 2017; 9:67-69. [DOI: 10.4155/bio-2016-0149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: There is urgent need to develop a new protocol for the evaluation of chemical substances to potentially interact with the endocrine system and induce numerous pathological issues. The recently validated in vitro screening assay is limited on monitoring two steroid hormones. Methodology & results: The H295R model cell was exposed to seven endocrine disrupting chemicals (EDCs). The levels of 17 steroid hormones in cell extracts were subsequently determined by a quantitative targeted GC/MS/MS method. Through wide coverage, this system managed to capture the effects of exposure to increasing EDCs concentrations in the entire steroidogenic pathways. Conclusion: The developed approach could be beneficial for the mechanistic investigation of EDCs.
Collapse
|
7
|
Gromotowicz-Poplawska A, Szoka P, Kolodziejczyk P, Kramkowski K, Wojewodzka-Zelezniakowicz M, Chabielska E. New agents modulating the renin-angiotensin-aldosterone system-Will there be a new therapeutic option? Exp Biol Med (Maywood) 2016; 241:1888-1899. [PMID: 27439538 DOI: 10.1177/1535370216660211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is more complex than it was originally regarded. According to the current subject knowledge, there are two main axes of the RAAS: (1) angiotensin-converting enzyme (ACE)-angiotensin II-AT1 receptor axis and (2) ACE2-angiotensin-(1-7)-Mas receptor axis. The activation of the first axis leads to deleterious effects, including vasoconstriction, endothelial dysfunction, thrombosis, inflammation, and fibrosis; therefore, blocking the components of this axis is a highly rational and commonly used therapeutic procedure. The ACE2-Ang-(1-7)-Mas receptor axis has a different role, since it often opposes the effects induced by the classical ACE-Ang II-AT1 axis. Once the positive effects of the ACE2-Ang-(1-7)-Mas axis were discovered, the alternative ways of pharmacotherapy activating this axis of RAAS appeared. This article briefly describes new molecules affecting the RAAS, namely: recombinant human ACE2, ACE2 activators, angiotensin-(1-7) peptide and non-peptide analogs, aldosterone synthase inhibitors, and the third and fourth generation of mineralocorticoid receptor antagonists. The results of the experimental and clinical studies are encouraging, which leads us to believe that these new molecules can support the treatment of cardiovascular diseases as well as cardiometabolic disorders.
Collapse
Affiliation(s)
| | - Piotr Szoka
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Patrycjusz Kolodziejczyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, 15-522 Bialystok, Poland
| | - Karol Kramkowski
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Affiliation(s)
- Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
9
|
Schiffer L, Anderko S, Hannemann F, Eiden-Plach A, Bernhardt R. The CYP11B subfamily. J Steroid Biochem Mol Biol 2015; 151:38-51. [PMID: 25465475 DOI: 10.1016/j.jsbmb.2014.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11β-hydroxylase or P45011β) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Simone Anderko
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Antje Eiden-Plach
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Yurek D, Yu L, Schrementi J, Bell MG, McGee J, Kowala M, Kuo MS, Wang J. Development of a high-throughput assay for aldosterone synthase inhibitors using high-performance liquid chromatography–tandem mass spectrometry. Anal Biochem 2014; 462:44-50. [DOI: 10.1016/j.ab.2014.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
11
|
Hobler A, Kagawa N, Hutter MC, Hartmann MF, Wudy SA, Hannemann F, Bernhardt R. Human aldosterone synthase: recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level. J Steroid Biochem Mol Biol 2012; 132:57-65. [PMID: 22446688 DOI: 10.1016/j.jsbmb.2012.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
Aldosterone, the most important human mineralocorticoid, is involved in the regulation of the blood pressure and has been reported to play a key role in the formation of arterial hypertension, heart failure and myocardial fibrosis. Aldosterone synthase (CYP11B2) catalyzes the biosynthesis of aldosterone by successive 11β- and 18-hydroxylation followed by an 18-oxidation of 11-deoxycorticosterone and thus comprises an important drug target. For more than 20 years, all attempts to purify recombinant human CYP11B2 in significant amounts for detailed analysis failed due to its hydrophobic nature as a membrane protein. Here, we present the successful expression of the protein in E. coli yielding approx. 90 nmol/l culture, its purification and detailed enzymatic characterization. Biochemical analyses have been performed using in vitro conversion assays which revelead a V(max) of 238±8 nmol products/nmol hCYP11B2/min and a K(m) of 103±8 μM 11-deoxycorticosterone. Furthermore, binding analyses indicated a very loose binding of the first intermediate of the reaction, corticosterone with a K(d) value of 115±6 μM whereas for 11-deoxycorticosterone a K(d) of 1.34±0.13 μM was estimated. Upon substrate conversion of 11-deoxycorticosterone, new intermediates have been identified as 19- and 18-hydroxylated products not described before for the human enzyme. To understand the differences in substrate conversion, we constructed a new homology model based on the 3D structure of CYP11A1, performed docking studies and calculated the activation energy for hydrogen abstraction of the different ligands. The data demonstrated that the 11β-hydroxylation requires much less abstraction energy than hydroxylation at C18 and C19. However, the C18 and C19 hydroxylated products might be of clinical importance. Finally, purified CYP11B2 represents a suitable tool for the investigation of potential inhibitors of this protein for the development of novel drugs against hypertension and heart failure as was shown using ketoconazole.
Collapse
Affiliation(s)
- Anna Hobler
- Department of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Ewen KM, Ringle M, Bernhardt R. Adrenodoxin-A versatile ferredoxin. IUBMB Life 2012; 64:506-12. [DOI: 10.1002/iub.1029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 11/07/2022]
|
13
|
Schmitz D, Zapp J, Bernhardt R. Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J 2012; 279:1663-74. [DOI: 10.1111/j.1742-4658.2012.08503.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Tin MK, Hakki T, Bernhardt R. Fission yeast Schizosaccharomyces pombe as a new system for the investigation of corticosterone methyloxidase deficiency-causing mutations. J Steroid Biochem Mol Biol 2011; 124:31-7. [PMID: 21237269 DOI: 10.1016/j.jsbmb.2011.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 11/19/2022]
Abstract
The aldosterone synthase, CYP11B2, catalyses the conversion of 11-deoxycorticosterone to aldosterone, a process that requires three steps: a hydroxylation at position 11β to form corticosterone, another one at position 18 to produce 18-hydroxycorticosterone, and, finally, an oxidation at position 18 to form aldosterone. Aldosterone synthase deficiency usually finds its expression in infancy as a life-threatening electrolyte imbalance, caused by mutations in the CYP11B2 gene. Therefore, in depth studies of mutations and their enzymatic activities will provide information for the diagnosis and management of hypoaldosteronism caused by CYP11B2 deficiencies. Here, we report the development of a fast and cheap whole-cell technology for the enzymatic characterisation of CYP11B2 mutations. The principle of the new system is the heterologous expression of the mutants of CYP11B2 in fission yeast (Schizosaccharomyces pombe) followed by steroid bioconversion assays for the enzymatic characterisation of the investigated mutants. The new system was validated and 10 known mutations of CYP11B2 have been investigated, two of them for the first time concerning their effect on the CYP11B2 three-step reaction. The results of the fission yeast system were in good agreement with the cell culture results presenting this new system as an alternative non radioactive method that can be applied for the enzymatic characterisation of CYP11B2 mutations.
Collapse
Affiliation(s)
- Ming Kwai Tin
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | | | | |
Collapse
|