1
|
Liu L, Karim Z, Schlörer N, de la Torre X, Botrè F, Zoschke C, Parr MK. Biotransformation of anabolic androgenic steroids in human skin cells. J Steroid Biochem Mol Biol 2024; 237:106444. [PMID: 38092130 DOI: 10.1016/j.jsbmb.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 02/04/2024]
Abstract
In comparison to well-known drug-metabolizing organs such as the liver, the metabolic capacity of human skin is still not well elucidated despite the widespread use of topical drug application. To gain a comprehensive insight into anabolic steroid metabolism in the skin, six structurally related anabolic androgenic steroids, testosterone, metandienone, methyltestosterone, clostebol, dehydrochloromethyltestosterone, and methylclostebol, were applied to human keratinocytes and fibroblasts derived from the juvenile foreskin. Phase I metabolites obtained from incubation media were analyzed by gas chromatography-mass spectrometry. The 5α-reductase activity was predominant in the metabolic pathways as supported by the detection of 5α-reduced metabolites after incubation of testosterone, methyltestosterone, clostebol, and methylclostebol. Additionally, the stereochemistry structures of fully reduced metabolites (4α,5α-isomers) of clostebol and methylclostebol were newly confirmed in this study by the help of inhouse synthesized reference materials. The results provide insights into the steroid metabolism in human skin cells with respect to the characteristics of the chemical structures.
Collapse
Affiliation(s)
- Lingyu Liu
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Ziaul Karim
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Nils Schlörer
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; REDs - Research and Expertise on Antidoping sciences, ISSUL - Institute de sciences du sport, Université de Lausanne, Synathlon 3224 - Quartier Centre, 1015 Lausanne, Switzerland
| | - Christian Zoschke
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany; Federal Office of Consumer Protection and Food Safety, Department of Veterinary Drugs, Gerichtstr. 49, 13347 Berlin, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
3
|
Pascali JP, Piva E, Ioime P, Forcato M, Boscolo-Berto R, Rondinelli R, Fais P. Multiple prohibited ingredients detected in nutritional supplements in a case of adverse analytical finding (AAF). Drug Test Anal 2022; 14:1791-1794. [PMID: 35867601 DOI: 10.1002/dta.3345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer P Pascali
- Unit of Legal Medicine and Toxicology, University of Padova, Padova, Italy
| | | | | | - Mattia Forcato
- Unit of Legal Medicine and Toxicology, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- Section of Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Paolo Fais
- Unit of Legal Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Aamer M, Siddiqui M, Jabeen A, Irshad R, Khan FA, Atia-Tul-Wahab, Choudhary MI, Wang Y. Structural transformation of methasterone with Cunninghamella blakesleeana and Macrophomina phaseolina. RSC Adv 2022; 12:9494-9500. [PMID: 35424863 PMCID: PMC8985176 DOI: 10.1039/d2ra01396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
An anabolic-androgenic synthetic steroidal drug, methasterone (1) was transformed by two fungi, Cunninghamella blakesleeana and Macrophimina phaseclina. A total of six transformed products, 6β,7β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (2), 6β,7α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (3), 6α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3,7-dione (4), 3β,6β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-7-one (5), 7α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3-one (6), and 6β,9α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (7) were synthesized. Among those, compounds 2-5, and 7 were identified as new transformed products. MS, NMR, and other spectroscopic techniques were performed for the characterization of all compounds. Substrate 1 (IC50 = 23.9 ± 0.2 μg mL-1) showed a remarkable anti-inflammatory activity against nitric oxide (NO) production, in comparison to standard LNMMA (IC50 = 24.2 ± 0.8 μg mL-1). Whereas, its metabolites 2, and 7 showed moderate inhibition with IC50 values of 38.1 ± 0.5 μg mL-1, and 40.2 ± 3.3 μg mL-1, respectively. Moreover, substrate 1 was found to be cytotoxic for the human normal cell line (BJ) with an IC50 of 8.01 ± 0.52 μg mL-1, while metabolites 2-7 were identified as non-cytotoxic. Compounds 1-7 showed no cytotoxicity against MCF-7 (breast cancer), NCI-H460 (lung cancer), and HeLa (cervical cancer) cell lines.
Collapse
Affiliation(s)
- Muhammad Aamer
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Mahwish Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Almas Jabeen
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Rimsha Irshad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Farooq-Ahmad Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- Third World Center (TWC) for Chemical Sciences, International Center for Chemical & Biological Sciences, University of Karachi 75270 Pakistan
| | - Atia-Tul-Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-21589 Saudi Arabia
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
5
|
Thevis M, Piper T, Thomas A. Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. J Pharm Biomed Anal 2021; 205:114312. [PMID: 34391136 DOI: 10.1016/j.jpba.2021.114312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
Probing for evidence of the administration of prohibited therapeutics, drugs and/or drug candidates as well as the use of methods of doping in doping control samples is a central assignment of anti-doping laboratories. In order to accomplish the desired analytical sensitivity, retrospectivity, and comprehensiveness, a considerable portion of anti-doping research has been invested into studying metabolic biotransformation and elimination profiles of doping agents. As these doping agents include lower molecular mass drugs such as e.g. stimulants and anabolic androgenic steroids, some of which further necessitate the differentiation of their natural/endogenous or xenobiotic origin, but also higher molecular mass substances such as e.g. insulins, growth hormone, or siRNA/anti-sense oligonucleotides, a variety of different strategies towards the identification of employable and informative metabolites have been developed. In this review, approaches supporting the identification, characterization, and implementation of metabolites exemplified by means of selected doping agents into routine doping controls are presented, and challenges as well as solutions reported and published between 2010 and 2020 are discussed.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Bonn, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
6
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 PMCID: PMC6199624 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
7
|
Abstract
Mice with humanized chimeric liver are promising in vivo tools to evaluate the efficacy of novel compounds or vaccine induced antibodies directed against pathogens that infect the human liver. In addition they can be used to study the human-type metabolism of medicinal compounds and hepatotoxicity.
Collapse
|
8
|
Ahmad MS, Yousuf S, Atia-Tul-Wahab, Jabeen A, Atta-Ur-Rahman, Choudhary MI. Biotransformation of anabolic compound methasterone with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini, and TNF-α inhibitory effect of transformed products. Steroids 2017; 128:75-84. [PMID: 28404456 DOI: 10.1016/j.steroids.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/21/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022]
Abstract
Microbial transformation of methasterone (1) was investigated with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini. Biotransformation of 1 with M. phaseolina yielded metabolite 2, while metabolites 3-7 were obtained from the incubation of 1 with C. blakesleeana. Metabolites 8-13 were obtained through biotransformation with F. lini. All metabolites, except 13, were found to be new. Methasterone (1) and its metabolites 2-6, 9, 10, and 13 were then evaluated for their immunomodulatory effects against TNF-α, NO, and ROS production. Among all tested compounds, metabolite 6 showed a potent inhibition of proinflammatory cytokine TNF-α (IC50=8.1±0.9μg/mL), as compared to pentoxifylline used as a standard (IC50=94.8±2.1μg/mL). All metabolites were also evaluated for the inhibition of NO production at concentration of 25μg/mL. Metabolites 6 (86.7±2.3%) and 13 (62.5±1.5%) were found to be the most potent inhibitors of NO as compared to the standard NG-monomethyl-l-arginine acetate (65.6±1.1%). All metabolites were found to be non-toxic against PC3, HeLa, and 3T3 cell lines. Observed inhibitory potential of metabolites 6 and 13 against pro-inflammatory cytokine TNF-α, as well as NO production makes them interesting leads for further studies.
Collapse
Affiliation(s)
- Malik Shoaib Ahmad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sammer Yousuf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atta-Ur-Rahman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21412, Saudi Arabia.
| |
Collapse
|
9
|
Souza Anselmo C, Sardela VF, Matias BF, Carvalho AR, Sousa VP, Pereira HMG, Aquino Neto FR. Is zebrafish
(
Danio rerio
)
a tool for human‐like metabolism study? Drug Test Anal 2017; 9:1685-1694. [DOI: 10.1002/dta.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Bernardo Fonseca Matias
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Amanda Reis Carvalho
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Valeria Pereira Sousa
- Federal University of Rio de Janeiro, Faculty of PharmacyDepartment of Drugs and Pharmaceutics Av. Carlos Chagas Filho, 373, bloco Bss, 36 ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐170 Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Francisco Radler Aquino Neto
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| |
Collapse
|
10
|
Weththasinghe SA, Waller CC, Fam HL, Stevenson BJ, Cawley AT, McLeod MD. Replacing PAPS: In vitro phase II sulfation of steroids with the liver S9 fraction employing ATP and sodium sulfate. Drug Test Anal 2017. [PMID: 28635171 DOI: 10.1002/dta.2224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vitro technologies provide the capacity to study drug metabolism where in vivo studies are precluded due to ethical or financial constraints. The metabolites generated by in vitro studies can assist anti-doping laboratories to develop protocols for the detection of novel substances that would otherwise evade routine screening efforts. In addition, professional bodies such as the Association of Official Racing Chemists (AORC) currently permit the use of in-vitro-derived reference materials for confirmation purposes providing additional impetus for the development of cost effective in vitro metabolism platforms. In this work, alternative conditions for in vitro phase II sulfation using human, equine or canine liver S9 fraction were developed, with adenosine triphosphate (ATP) and sodium sulfate in place of the expensive and unstable co-factor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), and employed for the generation of six representative steroidal sulfates. Using these conditions, the equine in vitro phase II metabolism of the synthetic or so-called designer steroid furazadrol ([1',2']isoxazolo[4',5':2,3]-5α-androstan-17β-ol) was investigated, with ATP and Na2 SO4 providing comparable metabolism to reactions using PAPS. The major in vitro metabolites of furazadrol matched those observed in a previously reported equine in vivo study. Finally, the equine in vitro phase II metabolism of the synthetic steroid superdrol (methasterone, 17β-hydroxy-2α,17α-dimethyl-5α-androstan-3-one) was performed as a prediction of the in vivo metabolic profile.
Collapse
Affiliation(s)
- Sumudu A Weththasinghe
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher C Waller
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Han Ling Fam
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bradley J Stevenson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Adam T Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, New South Wales, Australia
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
11
|
New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry. Int J Mol Sci 2016; 17:ijms17101628. [PMID: 27669235 PMCID: PMC5085661 DOI: 10.3390/ijms17101628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.
Collapse
|
12
|
Souza LDCM, da Cruz LA, Cerqueira EDMM, Meireles J. Micronucleus as biomarkers of cancer risk in anabolic androgenic steroids users. Hum Exp Toxicol 2016; 36:302-310. [PMID: 27198677 DOI: 10.1177/0960327116650005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of anabolic androgenic steroids (AAS) has grown among practitioners of recreational bodybuilding, with significant contributions of designer steroids, aiming muscle hypertrophy in healthy subjects. The abusive use of AAS in general is associated with adverse effects; one of the most worrisome is cancer development. The aim of this study was to evaluate the effectiveness of the cytokinesis block micronucleus (CBMN) test in human lymphocytes in identifying risk groups for cancer development in users of AAS. Blood was collected from 15 AAS users bodybuilders (G1), 20 non-users bodybuilders (G2) and 20 non-users sedentary (G3). MN analysis was performed on a minimum of 1000 binucleated lymphocytes. The occurrence of MN was significantly higher ( p < 0.05) in individuals of G1 compared to G2 and G3. The results indicate the sensitivity of CBMN in human lymphocytes in the identification of chromosomal damage in consequence of AAS.
Collapse
Affiliation(s)
| | - L A da Cruz
- Department of Biological Sciences, Feira de Santana State University, Bahia, Brazil
| | | | - Jrc Meireles
- Department of Biological Sciences, Feira de Santana State University, Bahia, Brazil
| |
Collapse
|
13
|
Cooper ER, McGrath KC, Li X, Akram O, Kasz R, Kazlauskas R, McLeod MD, Handelsman DJ, Heather AK. The use of tandem yeast and mammalian cellin vitroandrogen bioassays to detect androgens in internet-sourced sport supplements. Drug Test Anal 2016; 9:545-552. [DOI: 10.1002/dta.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elliot R. Cooper
- School of Life Sciences; Faculty of Science, University of Technology; Broadway NSW Australia
| | - Kristine C.Y. McGrath
- School of Life Sciences; Faculty of Science, University of Technology; Broadway NSW Australia
| | - Xiaohong Li
- School of Life Sciences; Faculty of Science, University of Technology; Broadway NSW Australia
- Department of Endocrinology; Dezhou People's Hospital; China
| | - Omar Akram
- ANZAC Research Institute; University of Sydney, Concord Hospital; NSW Australia
| | - Robert Kasz
- School of Life Sciences; Faculty of Science, University of Technology; Broadway NSW Australia
| | | | - Malcolm D. McLeod
- Research School of Chemistry; Australian National University; Canberra ACT Australia
| | - David J. Handelsman
- ANZAC Research Institute; University of Sydney, Concord Hospital; NSW Australia
| | - Alison K. Heather
- Department of Physiology; Otago School of Medical Sciences., University of Otago; Dunedin New Zealand
| |
Collapse
|
14
|
Geldof L, Tudela E, Lootens L, van Lysebeth J, Meuleman P, Leroux-Roels G, van Eenoo P, Deventer K. In vitroandin vivometabolism studies of dimethazine. Biomed Chromatogr 2016; 30:1202-9. [DOI: 10.1002/bmc.3668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/20/2015] [Accepted: 12/04/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Lore Geldof
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| | - Eva Tudela
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| | - Leen Lootens
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| | - Jasper van Lysebeth
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| | - Phillip Meuleman
- Center for Vaccinology; Ghent University and Hospital; De Pintelaan 185 B-9000 Ghent Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology; Ghent University and Hospital; De Pintelaan 185 B-9000 Ghent Belgium
| | - Peter van Eenoo
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| | - Koen Deventer
- Doping Control Laboratory; Ghent University; Technologiepark 30 B B-9052 Zwijnaarde Belgium
| |
Collapse
|
15
|
Rahnema CD, Crosnoe LE, Kim ED. Designer steroids - over-the-counter supplements and their androgenic component: review of an increasing problem. Andrology 2015; 3:150-5. [DOI: 10.1111/andr.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 10/19/2014] [Accepted: 10/31/2014] [Indexed: 12/26/2022]
Affiliation(s)
- C. D. Rahnema
- Division of Urology; Department of Surgery; University of Tennessee Graduate School of Medicine; Knoxville TN USA
| | - L. E. Crosnoe
- Division of Urology; Department of Surgery; University of Tennessee Graduate School of Medicine; Knoxville TN USA
| | - E. D. Kim
- Division of Urology; Department of Surgery; University of Tennessee Graduate School of Medicine; Knoxville TN USA
| |
Collapse
|
16
|
Abstract
The abuse of unknown designer androgenic anabolic steroids (AAS) is considered to be an issue of significant importance, as AAS are the choice of doping preference according to World Anti-doping Agency statistics. In addition, unknown designer AAS are preferred since the World Anti-doping Agency mass spectrometric identification criteria cannot be applied to unknown molecules. Consequently, cheating athletes have a strong motive to use designer AAS in order to both achieve performance enhancement and to escape from testing positive in anti-doping tests. To face the problem, a synergy is required between the anti-doping analytical science and sports anti-doping regulations. This Review examines various aspects of the designer AAS. First, the structural modifications of the already known AAS to create new designer molecules are explained. A list of the designer synthetic and endogenous AAS is then presented. Second, we discuss progress in the detection of designer AAS using: mass spectrometry and bioassays; analytical data processing of the unknown designer AAS; metabolite synthesis; and, long-term storage of urine and blood samples. Finally, the introduction of regulations from sports authorities as preventive measures for long-term storage and reprocessing of samples, initially reported as negatives, is discussed.
Collapse
|
17
|
Geldof L, Lootens L, Polet M, Eichner D, Campbell T, Nair V, Botrè F, Meuleman P, Leroux-Roels G, Deventer K, Eenoo PV. Metabolism of methylstenbolone studied with human liver microsomes and the uPA+/+-SCID chimeric mouse model. Biomed Chromatogr 2014; 28:974-85. [DOI: 10.1002/bmc.3105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Lore Geldof
- Doping Control Laboratory; Ghent University; Technologiepark 30 B Zwijnaarde B-9052 Belgium
| | - Leen Lootens
- Doping Control Laboratory; Ghent University; Technologiepark 30 B Zwijnaarde B-9052 Belgium
| | - Michael Polet
- Doping Control Laboratory; Ghent University; Technologiepark 30 B Zwijnaarde B-9052 Belgium
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory; Arapeen drive 560 Salt Lake City UT 84108 USA
| | - Thane Campbell
- Sports Medicine Research and Testing Laboratory; Arapeen drive 560 Salt Lake City UT 84108 USA
| | - Vinod Nair
- Sports Medicine Research and Testing Laboratory; Arapeen drive 560 Salt Lake City UT 84108 USA
| | - Francesco Botrè
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 Rome I-00197 Italy
| | - Philip Meuleman
- Center for Vaccinology; Ghent University and Hospital; De Pintelaan 185 B-9000 Ghent Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology; Ghent University and Hospital; De Pintelaan 185 B-9000 Ghent Belgium
| | - Koen Deventer
- Doping Control Laboratory; Ghent University; Technologiepark 30 B Zwijnaarde B-9052 Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory; Ghent University; Technologiepark 30 B Zwijnaarde B-9052 Belgium
| |
Collapse
|
18
|
Gomez C, Fabregat A, Pozo ÓJ, Marcos J, Segura J, Ventura R. Analytical strategies based on mass spectrometric techniques for the study of steroid metabolism. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Thevis M, Thomas A, Piper T, Krug O, Delahaut P, Schänzer W. Liquid chromatography-high resolution/ high accuracy (tandem) mass spectrometry-based identification of in vivo generated metabolites of the selective androgen receptor modulator ACP-105 for doping control purposes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:73-83. [PMID: 24881457 DOI: 10.1255/ejms.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics which have been prohibited in sport as anabolic agents according to the regulations of the World Anti-Doping Agency (WADA) since 2008. Within the past three years, numerous adverse analytical findings with SARMs in routine doping control samples have been reported despite missing clinical approval of these substances. Hence, preventive doping research concerning the metabolism and elimination of new therapeutic entities of the class of SARMs are vital for efficient and timely sports drug testing programs as banned compounds are most efficiently screened when viable targets (for example, characteristic metabolites) are identified. In the present study, the metabolism of ACP-105, a novel SARM drug candidate, was studied in vivo in rats. Following oral administration, urine samples were collected over a period of seven days and analyzed for metabolic products by Liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry. Samples were subjected to enzymatic hydrolysis prior to liquid-liquid extraction and a total of seven major phase-I metabolites were detected, three of which were attributed to monohydroxylated and four to bishydroxylated ACP-105. The hydroxylation sites were assigned by means of diagnostic product ions and respective dissociation pathways of the analytes following positive or negative ionization and collisional activation as well as selective chemical derivatization. The identified metabolites were used as target compounds to investigate their traceability in a rat elimination urine samples study and monohydroxylated and bishydroxylated species were detectable for up to four and six days post-administration, respectively.
Collapse
|
20
|
Barnes AJ, Baker DR, Hobby K, Ashton S, Michopoulos F, Spagou K, Loftus NJ, Wilson ID. Endogenous and xenobiotic metabolite profiling of liver extracts from SCID and chimeric humanized mice following repeated oral administration of troglitazone. Xenobiotica 2013; 44:174-85. [DOI: 10.3109/00498254.2013.867463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Kitamura S, Sugihara K. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver. Xenobiotica 2013; 44:123-34. [PMID: 24329499 DOI: 10.3109/00498254.2013.868062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Department of Environmental Science, Nihon Pharmaceutical University , Saitama , Japan and
| | | |
Collapse
|
22
|
Foster JR, Lund G, Sapelnikova S, Tyrrell DL, Kneteman NM. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2013; 44:109-22. [DOI: 10.3109/00498254.2013.867553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Tanoue C, Sugihara K, Uramaru N, Tayama Y, Watanabe Y, Horie T, Ohta S, Kitamura S. Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes. Xenobiotica 2013; 43:956-62. [DOI: 10.3109/00498254.2013.788232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Cavalcanti GDA, Leal FD, Garrido BC, Padilha MC, de Aquino Neto FR. Detection of designer steroid methylstenbolone in "nutritional supplement" using gas chromatography and tandem mass spectrometry: elucidation of its urinary metabolites. Steroids 2013. [PMID: 23200734 DOI: 10.1016/j.steroids.2012.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of "nutritional supplements" containing unapproved substances has become a regular practice in amateur and professional athletes. This represents a dangerous habit for their health once no data about toxicological or pharmacological effects of these supplements are available. Most of them are freely commercialized online and any person can buy them without medical surveillance. Usually, the steroids intentionally added to the "nutritional supplements" are testosterone analogues with some structural modifications. In this study, the analyzed product was bought online and a new anabolic steroid known as methylstenbolone (2,17α-dimethyl-17β-hydroxy-5α-androst-1-en-3-one) was detected, as described on label. Generally, anabolic steroids are extensively metabolized, thus in-depth knowledge of their metabolism is mandatory for doping control purposes. For this reason, a human excretion study was carried out with four volunteers after a single oral dose to determine the urinary metabolites of the steroid. Urine samples were submitted to enzymatic hydrolysis of glucuconjugated metabolites followed by liquid-liquid extraction and analysis of the trimethylsilyl derivatives by gas chromatography coupled to tandem mass spectrometry. Mass spectrometric data allowed the proposal of two plausible metabolites: 2,17α-dimethyl-16ξ,17β-dihydroxy-5α-androst-1-en-3-one (S1), 2,17α-dimethyl-3α,16ξ,17β-trihydroxy-5α-androst-1-ene (S2). Their electron impact mass spectra are compatible with 16-hydroxylated steroids O-TMS derivatives presenting diagnostic ions such as m/z 231 and m/z 218. These metabolites were detectable after one week post administration while unchanged methylstenbolone was only detectable in a brief period of 45 h.
Collapse
|
25
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2012; 5:1-19. [DOI: 10.1002/dta.1441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories; Höyläämötie 14; 00380; Helsinki; Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| |
Collapse
|
26
|
Samuelsson K, Pickup K, Sarda S, Swales JG, Morikawa Y, Schulz-Utermoehl T, Hutchison M, Wilson ID. Pharmacokinetics and metabolism of midazolam in chimeric mice with humanised livers. Xenobiotica 2012; 42:1128-37. [DOI: 10.3109/00498254.2012.689888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Schulz-Utermoehl T, Sarda S, Foster JR, Jacobsen M, Kenna JG, Morikawa Y, Salmu J, Gross G, Wilson ID. Evaluation of the pharmacokinetics, biotransformation and hepatic transporter effects of troglitazone in mice with humanized livers. Xenobiotica 2011; 42:503-17. [DOI: 10.3109/00498254.2011.640716] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|