1
|
HDAC3-ERα Selectively Regulates TNF-α-Induced Apoptotic Cell Death in MCF-7 Human Breast Cancer Cells via the p53 Signaling Pathway. Cells 2020; 9:cells9051280. [PMID: 32455774 PMCID: PMC7290399 DOI: 10.3390/cells9051280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) plays a significant role in inflammation and cancer-related apoptosis. We identified a TNF-α-mediated epigenetic mechanism of apoptotic cell death regulation in estrogen receptor-α (ERα)-positive human breast cancer cells. To assess the apoptotic effect of TNF-α, annexin V/ propidium iodide (PI) double staining, cell viability assays, and Western blotting were performed. To elucidate this mechanism, histone deacetylase (HDAC) activity assay and immunoprecipitation (IP) were conducted; the mechanism was subsequently confirmed through chromatin IP (ChIP) assays. Finally, we assessed HDAC3-ERα-mediated apoptotic cell death after TNF-α treatment in ERα-positive human breast cancer (MCF-7) cells via the transcriptional activation of p53 target genes using luciferase assay and quantitative reverse transcription PCR. The TNF-α-induced selective apoptosis in MCF-7 cells was negatively regulated by the HDAC3-ERα complex in a caspase-7-dependent manner. HDAC3 possessed a p53-binding element, thus suppressing the transcriptional activity of its target genes. In contrast, MCF-7 cell treatment with TNF-α led to dissociation of the HDAC3-ERα complex and substitution of the occupancy on the promoter by the p53-p300 complex, thus accelerating p53 target gene expression. In this process, p53 stabilization was accompanied by its acetylation. This study showed that p53-mediated apoptosis in ERα-positive human breast cancer cells was negatively regulated by HDAC3-ERα in a caspase-7-dependent manner. Therefore, these proteins have potential application in therapeutic strategies.
Collapse
|
2
|
Takagi K, Miki Y, Ishida T, Sasano H, Suzuki T. The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Mol Cell Endocrinol 2018; 466:31-37. [PMID: 28918115 DOI: 10.1016/j.mce.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
A great majority of breast carcinomas expresses estrogen receptor (ER) and estrogens have crucial roles in the progress of breast carcinomas. Endocrine therapy targeting ER and/or intratumoral estrogen production significantly improved clinical outcomes of the patients with ER-positive breast carcinomas. However, resistance to endocrine therapy is often observed and significant number of patients will recur after the treatment. In addition, treatment for the patients with triple-negative breast carcinomas (negative for all ER, progesterone receptor (PR) and HER2) are limited to cytotoxic chemotherapy and novel therapeutic targets need to be identified. In breast carcinoma tissues, not only ER but androgen receptor (AR) is frequently expressed, suggesting pivotal roles of androgens in the progress of breast carcinomas. Growing interest on androgen action as possible therapeutic target has been taken, but androgen action seems quite complicated in breast carcinomas and inconsistent findings has been also proposed. In this review, we will summarize recent studies regarding intratumoral androgen production and its regulation as well as distinct subset of breast carcinomas characterized by activated AR signaling and recent clinical trial targeting AR in the patients with either ER-positive and ER-negative breast carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Cheng Y, Monteiro C, Matos A, You J, Fraga A, Pereira C, Catalán V, Rodríguez A, Gómez-Ambrosi J, Frühbeck G, Ribeiro R, Hu P. Epigenome-wide DNA methylation profiling of periprostatic adipose tissue in prostate cancer patients with excess adiposity-a pilot study. Clin Epigenetics 2018; 10:54. [PMID: 29692867 PMCID: PMC5904983 DOI: 10.1186/s13148-018-0490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background Periprostatic adipose tissue (PPAT) has been recognized to associate with prostate cancer (PCa) aggressiveness and progression. Here, we sought to investigate whether excess adiposity modulates the methylome of PPAT in PCa patients. DNA methylation profiling was performed in PPAT from obese/overweight (OB/OW, BMI > 25 kg m−2) and normal weight (NW, BMI < 25 kg m−2) PCa patients. Significant differences in methylated CpGs between OB/OW and NW groups were inferred by statistical modeling. Results Five thousand five hundred twenty-six differentially methylated CpGs were identified between OB/OW and NW PCa patients with 90.2% hypermethylated. Four hundred eighty-three of these CpGs were found to be located at both promoters and CpG islands, whereas the representing 412 genes were found to be involved in pluripotency of stem cells, fatty acid metabolism, and many other biological processes; 14 of these genes, particularly FADS1, MOGAT1, and PCYT2, with promoter hypermethylation presented with significantly decreased gene expression in matched samples. Additionally, 38 genes were correlated with antigen processing and presentation of endogenous antigen via MHC class I, which might result in fatty acid accumulation in PPAT and tumor immune evasion. Conclusions Results showed that the whole epigenome methylation profiles of PPAT were significantly different in OB/OW compared to normal weight PCa patients. The epigenetic variation associated with excess adiposity likely resulted in altered lipid metabolism and immune dysregulation, contributing towards unfavorable PCa microenvironment, thus warranting further validation studies in larger samples. Electronic supplementary material The online version of this article (10.1186/s13148-018-0490-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Cheng
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada.,2Experimental Center, Northwest University for Nationalities, Lanzhou, People's Republic of China
| | - Cátia Monteiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,Research Department, Portuguese League Against Cancer-North, Porto, Portugal
| | - Andreia Matos
- 5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Jiaying You
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| | - Avelino Fraga
- 6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,7Department of Urology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Carina Pereira
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,8CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, e, University of Porto, Porto, Portugal
| | - Victoria Catalán
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- 9Metabolic Research Laboratory, Universidad de Navarra, Pamplona, Spain.,10CIBER Fisiopatología de la Obesidad y Nutricion, Instituto de Salud Carlos III, Madrid, Spain.,11Department of Endocrinology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ricardo Ribeiro
- 3Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal.,5Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisboa, Lisbon, Portugal.,6Tumor & Microenvironment Interactions, i3S/INEB, Institute for Research and Innovation in Health, and Institute of Biomedical Engineering, University of Porto, Porto, Portugal.,12Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,13i3S/INEB, Instituto de Investigação e Inovação em Saúde/Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Tumor & Microenvironment Interactions, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Pingzhao Hu
- 1Department of Biochemistry and Medical Genetics & Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Tan W, Zhu Z, Ye L, Leung LK. Methylation dictates PI.f-specific CYP19 transcription in human glial cells. Mol Cell Endocrinol 2017; 452:131-137. [PMID: 28559115 DOI: 10.1016/j.mce.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
CYP19 is the single copy gene encoding for the estrogen synthetic enzyme aromatase. Alternate splicing of the promoter is the regulatory mechanism of this gene. In the brain, estrogen is synthesized in neuronal and glial cells and the gene is mainly regulated by the alternate promoter PI.f. The hormone produced in this vicinity has been associated with maintaining normal brain functions. Previously, epigenetic regulation has been shown in the promoters PII and I.3 of CYP19 in adipocytes. In the present study, the methylation of PI.f in CYP19 was examined in glial cells. Treatment of the hypomethylating agent 5-aza-2'deoxycytidine increased CYP19 mRNA species in U87 MG cells while little changes were observed in the other glia cell lines. As PI.f is also chiefly used in T98G cells with high expression of CYP19, the methylation statuses of the promoter in these two cell models were compared. Our results showed that treating U87 MG cells with 10 μM 5-aza-2'deoxycytidine significantly induced a ∼10-fold increase in CYP19 transcription and ∼80% increase in aromatase activity. In contrast, the same treatment did not change either endpoint in T98G cells. Further investigation illustrated the CpGs in PI.f were differentially methylated in the two cell lines; 63% and 37% of the 14 CpG sites were methylated in U87 MG and T98G cells respectively. In conclusion, this study illustrated that the brain-specific PI.f derived CYP19 expression can be regulated by DNA methylation.
Collapse
Affiliation(s)
- Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhiping Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Lai K Leung
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
5
|
Perez-Janices N, Blanco-Luquin I, Torrea N, Liechtenstein T, Escors D, Cordoba A, Vicente-Garcia F, Jauregui I, De La Cruz S, Illarramendi JJ, Coca V, Berdasco M, Kochan G, Ibañez B, Lera JM, Guerrero-Setas D. Differential involvement of RASSF2 hypermethylation in breast cancer subtypes and their prognosis. Oncotarget 2015; 6:23944-58. [PMID: 26284587 PMCID: PMC4695163 DOI: 10.18632/oncotarget.4062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease that can be subdivided into clinical, histopathological and molecular subtypes (luminal A-like, luminal B-like/HER2-negative, luminal B-like/HER2-positive, HER2-positive, and triple-negative). The study of new molecular factors is essential to obtain further insights into the mechanisms involved in the tumorigenesis of each tumor subtype. RASSF2 is a gene that is hypermethylated in breast cancer and whose clinical value has not been previously studied. The hypermethylation of RASSF1 and RASSF2 genes was analyzed in 198 breast tumors of different subtypes. The effect of the demethylating agent 5-aza-2'-deoxycytidine in the re-expression of these genes was examined in triple-negative (BT-549), HER2 (SK-BR-3), and luminal cells (T-47D). Different patterns of RASSF2 expression for distinct tumor subtypes were detected by immunohistochemistry. RASSF2 hypermethylation was much more frequent in luminal subtypes than in non-luminal tumors (p = 0.001). The re-expression of this gene by lentiviral transduction contributed to the differential cell proliferation and response to antineoplastic drugs observed in luminal compared with triple-negative cell lines. RASSF2 hypermethylation is associated with better prognosis in multivariate statistical analysis (P = 0.039). In conclusion, RASSF2 gene is differently methylated in luminal and non-luminal tumors and is a promising suppressor gene with clinical involvement in breast cancer.
Collapse
Affiliation(s)
- Noemi Perez-Janices
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet (FMS), Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Navarra, Spain
- Division of Infection and Immunity, Rayne Institute, University College London (UCL), London, United Kingdom
| | - Idoia Blanco-Luquin
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet (FMS), Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Navarra, Spain
- Division of Infection and Immunity, Rayne Institute, University College London (UCL), London, United Kingdom
- Cancer Immunomodulation Group, Navarrabiomed-Fundacion Miguel Servet, IdiSNA, Navarra, Spain
| | - Natalia Torrea
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London (UCL), London, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Escors
- Division of Infection and Immunity, Rayne Institute, University College London (UCL), London, United Kingdom
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alicia Cordoba
- Department of Pathology, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Navarra, Spain
| | | | - Isabel Jauregui
- Department of Pathology, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Navarra, Spain
| | - Susana De La Cruz
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - José Juan Illarramendi
- Department of Medical Oncology, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - Valle Coca
- Biobank Unit, Navarrabiomed-Fundacion Miguel Servet, IdiSNA, Navarra, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Grazyna Kochan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Berta Ibañez
- Red de Evaluación en Servicios Sanitarios y Enfermedades Cronicas (REDISSEC), Navarrabiomed-Fundación Miguel Servet, IdiSNA, Navarra, Spain
| | - José Miguel Lera
- Department of Surgery, Complejo Hospitalario de Navarra, Navarra Health Service, Navarra, Spain
| | - David Guerrero-Setas
- Cancer Epigenetics Group, Navarrabiomed-Fundación Miguel Servet (FMS), Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Navarra, Spain
| |
Collapse
|
6
|
Expression of prostaglandin E2 prostanoid receptor EP2 and interleukin-1β in laryngeal carcinoma - preliminary study. Contemp Oncol (Pozn) 2015; 19:113-9. [PMID: 26034388 PMCID: PMC4444445 DOI: 10.5114/wo.2015.51417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/03/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Expression of EP2 protein, the prostaglandin E2 (PGE2) receptor, produced by tumour microenvironment inflammatory cells as well as tumour cells, may promote cellular proliferation and growth in an autocrine and paracrine fashion. The phenomenon involving these proteins is regulated by interleukin 1β (IL-1β). Many researchers indicate a connection of EP2 and IL-1β in various types of neoplasms with higher tumour progression and poor prognosis. The aim of this study was to analyse the EP2 expression within laryngeal carcinoma tissue and IL-1β levels in peripheral blood mononuclear cell supernatants and to find relationships between clinicomorphological features. Material and methods A group of 50 patients with verified squamous cell laryngeal carcinoma was analysed in this study. The pathological evaluation included pTNM depth of invasion according to tumour front grading criteria. Immunohistochemical analysis for membranous staining of EP2 in tumour tissues was used. The IL-1β expression was determined by enzyme-linked immunosorbent assay (ELISA). Results Increased EP2 expression in carcinoma cells was confirmed for more advanced tumours (pT3-pT4 vs. pT1-pT2, p < 0.0001 and pN1-3 vs. pN0, p = 0.02). Tumours with the highest aggressiveness identified by deeper invasion of submucosa or cartilage were characterised by the highest expression of EP2 (p < 0.0001). In laryngeal carcinomas characterised by a lower differentiation the highest EP2 expression in tumour cells was noted (p = 0.009). A positive relationship between IL-1β expression and the presence of lymph node metastases was also confirmed (p = 0.04). Conclusions The study indicates the potential effect of EP2 receptor and IL-1β on tumour progression in laryngeal carcinoma.
Collapse
|
7
|
To SQ, Knower KC, Cheung V, Simpson ER, Clyne CD. Transcriptional control of local estrogen formation by aromatase in the breast. J Steroid Biochem Mol Biol 2015; 145:179-86. [PMID: 24846828 DOI: 10.1016/j.jsbmb.2014.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022]
Abstract
Aromatase is the critical enzyme that converts androgens to estrogens. It is frequently highly expressed in the tumour bearing breast of women diagnosed with estrogen receptor positive tumours, resulting in dramatically increased local estrogen production to drive tumour progression. Expression of aromatase is regulated primarily at the transcriptional level of its encoding gene CYP19A1, located on chromosome 15 of the human genome. A characteristic feature of CYP19A1 expression is its use of alternative promoters to regulate transcription in a tissue-specific manner. In breast cancer, the increase in aromatase expression is mediated via higher expression of the distal adipose-specific promoter I.4 and a switch to the preferential use of proximal promoters I.3 and II. This results in a net increase of CYP19A1 transcripts in tumour-bearing breast up to 3-4-fold higher than normal breast. Current aromatase inhibitors - whilst efficacious - exhibit significant side effects that reduce patient compliance. Understanding the transcription factors and signalling pathways that control aromatase expression will lead to opportunities to develop breast-specific inhibitors with an improved side-effects profile. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Sarah Q To
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia.
| | - Kevin C Knower
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia.
| | - Vanessa Cheung
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| | - Evan R Simpson
- Metabolism and Cancer Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Cancer Drug Discovery Laboratory, MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
8
|
Oba K, Hosono K, Amano H, Okizaki SI, Ito Y, Shichiri M, Majima M. Downregulation of the proangiogenic prostaglandin E receptor EP3 and reduced angiogenesis in a mouse model of diabetes mellitus. Biomed Pharmacother 2014; 68:1125-33. [PMID: 25465154 DOI: 10.1016/j.biopha.2014.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/18/2014] [Indexed: 11/18/2022] Open
Abstract
Vascular complications such as foot ulcers are a hallmark of diabetes mellitus (DM), although the molecular mechanisms that underlie vascular dysfunction remain unclear. Herein, we show that angiogenesis, which is indispensable to the healing of ulcers, is suppressed in polyurethane sponge implants in mice with DM and reduced proangiogenic signaling. DM was induced in male C57BL/6 mice by intraperitoneal injection of streptozotocin (100mg/kg). Polyurethane sponge disks were implanted into subcutaneous tissues on the backs of mice, and angiogenesis and expression of related factors were analyzed in sponge granulation tissues. Densities of platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive vascular structures and PECAM-1 expression in sponge granulation tissues were increased over time in control mice and reduced in diabetic mice. The reductions in diabetic mice were accompanied by reduced expression of inducible cyclo-oxygenase-2 and microsomal prostaglandin E synthase-1. The prostaglandin E receptor subtype EP3 was downregulated in sponge granulation tissues in diabetic mice, whereas EP1, EP2, and EP4 were not. The expression of the proangiogenic growth factor vascular endothelial growth factor (VEGF)-A and the chemokine stromal cell-derived factor-1 (SDF-1) were both reduced in diabetic mice. Treatment of diabetic mice with a selective agonist of EP3, ONO-AE 248 (30 nmol/site/day, topical injection), reversed suppression of angiogenesis in diabetic mice. These results indicate that proangiogenic EP3 signaling is suppressed in diabetic mice with reduced expression of VEGF and SDF-1. Stimulation of EP3 signaling restored angiogenesis in a sponge implant model in mice with DM. This suggests that topical application of an EP3 agonist could be a novel strategy to treat foot ulcers in patients with DM.
Collapse
Affiliation(s)
- Kazuhito Oba
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Shin-Ichiro Okizaki
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan.
| |
Collapse
|