1
|
Muro BB, Carnevale RF, Leal DF, Almond GW, Monteiro MS, Poor AP, Schinckel AP, Garbossa CA. The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutr Res Rev 2023; 36:351-371. [PMID: 35748154 DOI: 10.1017/s0954422422000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overnutrition or undernutrition during all or part of the reproductive cycle predisposes sows to metabolic consequences and poor reproductive health which contributes to a decrease in sow longevity and an increase in perinatal mortality. This represents not only an economic problem for the pig industry but also results in poor animal welfare. To maximise profitability and increase sustainability in pig production, it is pivotal to provide researchers and practitioners with synthesised information about the repercussions of maternal obesity or malnutrition on reproductive health and perinatal outcomes, and to pinpoint currently available nutritional managements to keep sows' body condition in an optimal range. Thus, the present review summarises recent work on the consequences of maternal malnutrition and highlights new findings.
Collapse
Affiliation(s)
- Bruno Bd Muro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Rafaella F Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| | - Diego F Leal
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga, SP, Brazil
| | - Glen W Almond
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Matheus S Monteiro
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - André P Poor
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus São Paulo, São Paulo, SP, Brazil
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Cesar Ap Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, SP, Brazil
| |
Collapse
|
2
|
Owuor TO, Reid M, Reschke L, Hagemann I, Greco S, Modi Z, Moley KH. Maternal obesogenic diet induces endometrial hyperplasia, an early hallmark of endometrial cancer, in a diethylstilbestrol mouse model. PLoS One 2018; 13:e0186390. [PMID: 29775456 PMCID: PMC5959064 DOI: 10.1371/journal.pone.0186390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023] Open
Abstract
Thirty-eight percent of US adult women are obese, meaning that more children are now born of overweight and obese mothers, leading to an increase in predisposition to several adult onset diseases. To explore this phenomenon, we developed a maternal obesity animal model by feeding mice a diet composed of high fat/ high sugar (HF/HS) and assessed both maternal diet and offspring diet on the development of endometrial cancer (ECa). We show that maternal diet by itself did not lead to ECa initiation in wildtype offspring of the C57Bl/6J mouse strain. While offspring fed a HF/HS post-weaning diet resulted in poor metabolic health and decreased uterine weight (regardless of maternal diet), it did not lead to ECa. We also investigated the effects of the maternal obesogenic diet on ECa development in a Diethylstilbestrol (DES) carcinogenesis mouse model. All mice injected with DES had reproductive tract lesions including decreased number of glands, condensed and hyalinized endometrial stroma, and fibrosis and increased collagen deposition that in some mice extended into the myometrium resulting in extensive disruption and loss of the inner and outer muscular layers. Fifty percent of DES mice that were exposed to maternal HF/HS diet developed several features indicative of the initial stages of carcinogenesis including focal glandular and atypical endometrial hyperplasia versus 0% of their Chow counterparts. There was an increase in phospho-Akt expression in DES mice exposed to maternal HF/HS diet, a regulator of persistent proliferation in the endometrium, and no difference in total Akt, phospho-PTEN and total PTEN expression. In summary, maternal HF/HS diet exposure induces endometrial hyperplasia and other precancerous phenotypes in mice treated with DES. This study suggests that maternal obesity alone is not sufficient for the development of ECa, but has an additive effect in the presence of a secondary insult such as DES.
Collapse
Affiliation(s)
- Theresa O. Owuor
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Michaela Reid
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lauren Reschke
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ian Hagemann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Zeel Modi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
3
|
Association between Maternal and Foetal Erythrocyte Fatty Acid Profiles and Birth Weight. Nutrients 2018; 10:nu10040402. [PMID: 29570689 PMCID: PMC5946187 DOI: 10.3390/nu10040402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
Regular foetal development is crucial for assuring good health status in the offspring. The quality and quantity of maternal dietary fatty acids (FAs) can affect growth. The study aimed to: (1) investigate the association of maternal/foetal lipid profiles with birth weight (BW); and (2) compare these profiles in small, appropriate, and large for gestational age (SGA, AGA, and LGA) infants. FAs were measured in erythrocyte membranes using gas chromatography analysis in 607 mother–infant pairs (316 males, 52.1%). In the quantile regression, a significant association between BW and levels of maternal linoleic acid (LA; C18:2, n-6; coefficient: 18.66; p = 0.010), arachidonic acid (AA; C20:4, n-6; coefficient: 11.35; p = 0.007), docosahexaenoic acid (DHA; C22:6, n-3; coefficient: 29.73; p = 0.007), polyunsaturated FAs (coefficient: 8.55; p = 0.001), foetal DHA (coefficient: −22.82; p = 0.037), and saturated FAs (coefficient: −65.41; p = 0.002) was found. Myristic (C14:0) and pentadecanoic acids (C15:0), both maternal (p = 0.000; p = 0.017) and foetal (p = 0.009; p = 0.002), and maternal erucic acid (C22:1, n-9; p = 0.026) were found at higher levels in SGA infants as compared to AGA ones. Conversely, maternal LA, AA, and omega 6 FAs levels were higher in AGA infants (p = 0.037; p = 0.003; p = 0.026, respectively). Maternal and foetal polyunsaturated and omega 6 FAs levels are positively related to BW, while a lipid profile rich in saturated FAs and erucic acid may influence the risk of SGA.
Collapse
|
4
|
Rodríguez M, García-García RM, Arias-Álvarez M, Formoso-Rafferty N, Millán P, López-Tello J, Lorenzo PL, González-Bulnes A, Rebollar PG. A diet supplemented with n-3 polyunsaturated fatty acids influences the metabomscic and endocrine response of rabbit does and their offspring. J Anim Sci 2018; 95:2690-2700. [PMID: 28727047 DOI: 10.2527/jas.2017.1429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to evaluate the productive, endocrine, and metabomscic responses as well as oxidative stress of rabbit does and their offspring when fed a diet supplemented with -3 PUFA during their first productive cycle. To this aim, a total of 105 rabbit does were fed ad mscibitum from d 60 to 172 of age 2 isoenergetic and isoproteic diets differing in fatty acid composition. The control diet ( = 52 does) contained 45.9 g/kg of -3 of the total fatty acids and the enriched diet ( = 53 does) contained 149.2 g/kg of -3 of the total fatty acids. Both experimental groups had similar feed intake during rearing, pregnancy, and lactation. The enrichment of diet had no effect on ultrasonographic assessment of does on d 9 and 16 of pregnancy, with an embryonic vesicle number and fetus and placenta size similar between groups ( > 0.05). Even though there were no major effects ( > 0.05) on fertimscity, duration of gestation, and number born amscive and stillborn kits at parturition, mscive kits from enriched does were longer (71.6 ± 2.42 vs. 79.5 ± 2.13 mm; < 0.05) and tended to be heavier (42.5 ± 3.94 vs. 50.8 ± 3.47 g; = 0.07) than those from control does ( < 0.05). The 2 groups had similar milk production and mortamscity values during lactation; consequently, there were no differences between diets in ADG, mscitter weight, and number of weaned kits ( > 0.05). In enriched does, higher plasma leptin and estradiol concentrations than in control does ( < 0.05) were observed. In addition, enriched females also had lower total and high-density mscipoprotein cholesterol (HDL-c) than control females during lactation ( < 0.05). Regarding offspring, the enrichment of diet with PUFA caused a hypermscipidemic status (greater values of plasma triglycerides, total cholesterol, and HDL-c; < 0.05) at 1 d postpartum (dpp), compared with the control group, that disappeared at 32 dpp. Supplemented does before parturition and their offspring at 1 dpp had greater oxidative stress than those in the control group. In conclusion, an increase of -3 PUFA concentration in the diet of rabbit does and, consequently, of their offspring during a productive cycle alters their mscipid profile and the indicators of oxidative stress, without major endocrine modifications or improvements in the productive variables.
Collapse
|
5
|
Gonzalez-Bulnes A, Astiz S, Ovilo C, Lopez-Bote CJ, Torres-Rovira L, Barbero A, Ayuso M, Garcia-Contreras C, Vazquez-Gomez M. Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research. Theriogenology 2016; 86:110-9. [PMID: 27238437 DOI: 10.1016/j.theriogenology.2016.03.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/02/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
The concept of Developmental Origins of Health and Disease (DOHaD) addresses, from a large set of epidemiological evidences in human beings and translational studies in animal models, both the importance of genetic predisposition and the determinant role of maternal nutrition during pregnancy on adult morphomics and homeostasis. Compelling evidences suggest that both overnutrition and undernutrition may modify the intrauterine environment of the conceptus and may alter the expression of its genome and therefore its phenotype during prenatal and postnatal life. In fact, the DOHaD concept is an extreme shift in the vision of the factors conditioning adult phenotype and supposes a drastic change from a gene-centric perspective, only modified by lifestyle and nutritional strategies during juvenile development and adulthood, to a more holistic approach in which environmental, parental, and prenatal conditions are strongly determining postnatal development and homeostasis. The implications of DOHaD are profound in all the mammalian species and the present review summarizes current knowledge on causes and consequences of DOHaD in pigs, both for meat production and as a well-recognized model for biomedicine research.
Collapse
Affiliation(s)
- A Gonzalez-Bulnes
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain; Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | - S Astiz
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain
| | - C Ovilo
- Department of Animal Genetics, SGIT-INIA, Madrid, Spain
| | | | - L Torres-Rovira
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain; INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - A Barbero
- Faculty of Veterinary, UCM, Madrid, Spain
| | - M Ayuso
- Faculty of Veterinary, UCM, Madrid, Spain
| | | | | |
Collapse
|
6
|
Gonzalez-Bulnes A, Astiz S, Vazquez-Gomez M, Garcia-Contreras C. Developmental origins of metabolic disorders: The need for biomarker candidates and therapeutic targets from adequate preclinical models. EUPA OPEN PROTEOMICS 2016; 10:50-55. [PMID: 29900100 PMCID: PMC5988611 DOI: 10.1016/j.euprot.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/20/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
The research on obesity and associated disorders should rely on contrasted biomarkers. The discovery of biomarkers is flawed by inherent variability of human data. Hence, preclinical studies in animal models are essential.
The investigation on obesity and associated disorders have changed from an scenario in which genome drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are determinant. However, research in human beings is difficult due to confounding factors (lifestyle and socioeconomic heterogeneity) plus ethical issues. Hence, there is currently an intensive effort for developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent models and specific preclinical studies in large animals. The results of these research strategies may increase the identification and development of contrasted biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Antonio Gonzalez-Bulnes
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain.,Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Susana Astiz
- Comparative Physiology Lab-RA, SGIT-INIA, Madrid, Spain
| | | | | |
Collapse
|
7
|
Heerwagen MJR, Stewart MS, de la Houssaye BA, Janssen RC, Friedman JE. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLoS One 2013; 8:e67791. [PMID: 23825686 PMCID: PMC3692451 DOI: 10.1371/journal.pone.0067791] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023] Open
Abstract
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
Collapse
Affiliation(s)
- Margaret J. R. Heerwagen
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael S. Stewart
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Becky A. de la Houssaye
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Rachel C. Janssen
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jacob E. Friedman
- Division of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|