1
|
Yan Q, Wang Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int J Mol Sci 2025; 26:1128. [PMID: 39940895 PMCID: PMC11817410 DOI: 10.3390/ijms26031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Infertility is a widespread clinical problem that affects human reproduction and species persistence worldwide. Around 40-70% of cases are due to male reproductive defects. Functional spermatogenesis (sperm production through several coordinated events) is at the heart of male fertility. Non-coding RNAs (ncRNAs) are the primary regulators of gene expression, controlling extensive critical cellular processes, for example proliferation, differentiation, apoptosis, and reproduction. Due to advancements in high-throughput sequencing tools, many studies have revealed that ncRNAs are widely expressed in germ cells, meiosis, spermatogenesis, sperm fertility, early post-fertilization development, and male infertility. The present review examines the biology and function of ncRNAs, including microRNAs, circular RNAs, and long ncRNAs, in spermatogenesis, their correlation with infertility, and their potential as biomarkers for sperm quality and fertility. The function of ncRNA in Sertoli cells (SCs) and Leydig cells (LCs) is also outlined throughout this study, because spermatogenesis requires testicular somatic cells to be involved in testicular development and male fertility. Meanwhile, the future development of ncRNAs for the clinical treatment of male infertility is also anticipated and discussed.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
2
|
Li X, Jin H, Lv Y, Liu C, Luo X, Liu J, Zhang Q, Yu Y, Zhao Z. Analysis of microRNA expression profiles during the differentiation of chicken embryonic stem cells into male germ cells. Anim Biotechnol 2023; 34:1120-1131. [PMID: 35020556 DOI: 10.1080/10495398.2021.2013858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The differentiation of embryonic stem cells (ESCs) into germ cells in vitro could have very promising applications for infertility treatment and could provide an excellent model for uncovering the molecular mechanisms of germline generation. This study aimed to investigate the differentially expressed miRNAs (DEMs) during the differentiation of chicken ESCs (cESCs) into male germ cells and to establish a profile of the DEMs. Cells before and after induction were subjected to miRNA sequencing (miRNA-seq). A total of 113 DEMs were obtained, including 61 upregulated and 52 downregulated DEMs. GO and KEGG enrichment analyses showed that the target genes were enriched mainly in the MAPK signaling pathway, HTLV infection signaling pathway, cell adhesion molecule (CAM)-related pathways, viral myocarditis, Wnt signaling pathway, ABC transporters, TGF-β signaling pathways, Notch signaling pathways and insulin signaling pathway. The target genes of the miRNAs were related to cell binding, cell parts and biological regulatory processes. Six DEMs, let-7k-5p, miR-132c-5p, miR-193a-5p, miR-202-5p, miR-383-5p and miR-6553-3p, were assessed by qRT-PCR, and the results were consistent with the results of miRNA-seq. Based on qRT-PCR and western blot verification, miR-383-5p and its putative target gene STRN3 were selected to construct an STRN3 3'-UTR dual-luciferase gene reporter vector and its mutant vector. The double luciferase reporter activity of the cotransfected STRN3-WT + miR-383-5p mimics group was significantly lower (by approximately 46%) than that of the other five groups (p < 0.01). There was no significant difference in luciferase activity among the other 5 groups. This study establishes a DEM profile during the process of cESC differentiation into male germ cells; illustrates the mechanisms by which miRNAs regulate target genes; provides a theoretical basis for further research on the mechanisms of the formation and regulation of male germ cells; and provides an important strategy for gene editing, animal genetic resource protection and transgenic animal production.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yang Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Xiaotong Luo
- Agricultural College, Yanbian University, Yanji, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Qi Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| |
Collapse
|
3
|
Li Z, Fan Y, Xie C, Liu J, Guan X, Li S, Huang Y, Zeng R, Chen H, Su Z. High-fidelity reprogramming into Leydig-like cells by CRISPR activation and paracrine factors. PNAS NEXUS 2022; 1:pgac179. [PMID: 36714877 PMCID: PMC9802085 DOI: 10.1093/pnasnexus/pgac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
Androgen deficiency is a common medical conditions that affects males of all ages. Transplantation of testosterone-producing cells is a promising treatment for male hypogonadism. However, getting a cell source with the characteristics of Leydig cells (LCs) is still a challenge. Here, a high-efficiency reprogramming of skin-derived fibroblasts into functional Leydig-like cells (LLCs) based on epigenetic mechanism was described. By performing an integrated analysis of genome-wide DNA methylation and transcriptome profiling in LCs and fibroblasts, the potentially epigenetic-regulating steroidogenic genes and signaling pathways were identified. Then by using CRISPR/dCas9 activation system and signaling pathway regulators, the male- or female-derived fibroblasts were reprogrammed into LLCs with main LC-specific traits. Transcriptomic analysis further indicated that the correlation coefficients of global genes and transcription factors between LLCs and LCs were higher than 0.81 and 0.96, respectively. After transplantation in the testes of hypogonadal rodent models, LLCs increased serum testosterone concentration significantly. In type 2 diabetic rats model, LLCs which were transplanted in armpit, have the capability to restore the serum testosterone level and improve the hyperglycemia status. In conclusion, our approach enables skin-derived fibroblasts reprogramming into LLCs with high fidelity, providing a potential cell source for the therapeutics of male hypogonadism and metabolic-related comorbidities.
Collapse
Affiliation(s)
| | | | | | - Jierong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- To whom correspondence should be addressed:
| | | | - Zhijian Su
- To whom correspondence should be addressed:
| |
Collapse
|
4
|
Guo H, Luo X, Sun L, Li J, Cui S. Cyclin-dependent kinase inhibitor 1B acts as a novel molecule to mediate testosterone synthesis and secretion in mouse Leydig cells by luteinizing hormone (LH) signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:742-752. [PMID: 34355300 DOI: 10.1007/s11626-021-00545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase inhibitor 1B (Cdkn1b, p27) plays important regulatory roles in many cellular processes. p27 is highly expressed in the mouse testis, but its roles and underlying mechanisms for testosterone synthesis and secretion remain not well understood. In the current study, we found that p27 located in Leydig cells and Sertoli cells of adult mouse testis. To explore the function of p27 in Leydig cells, p27 inhibitor and activator were injected into the adult mice, primary Leydig cells and TM3 cells. Our in vivo and in vitro results showed that change in the expression of p27 significantly alters the testosterone in both globe serum and culture medium. Meanwhile, the steroidogenesis-related gene expression was significantly regulated too. Moreover, our in vitro study showed that luteinizing hormone (LH) significantly increased p27 mRNA levels. Furthermore, our results proved that altering the mRNA expression of p27 leads to the synchronized changes of Lhcgr, Star, Cyp11a1, Hsd3b6, Cyp11a1, and Hsd17b3. Alterations of p27 also result in synchronously changes of RAF1 and ERK1/2 phosphorylation. These findings indicate that p27 plays vital roles in LH-induced testosterone production, providing a novel mechanism that p27 acts as an upstream molecule to elevate ERK1/2 phosphorylation to promote the expression of StAR and other cholesterol-metabolizing enzymes.
Collapse
Affiliation(s)
- Hongzhou Guo
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Xuan Luo
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China
| | - Jianhua Li
- Department of Reproductive Medicine and Genetics, The Seventh Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnolpgy, College of Biological Sciences, China Agricultural University, Beijing, 10021, People's Republic of China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Rapid Differentiation of Human Embryonic Stem Cells into Testosterone-Producing Leydig Cell-Like Cells In vitro. Tissue Eng Regen Med 2021; 18:651-662. [PMID: 34165777 PMCID: PMC8325741 DOI: 10.1007/s13770-021-00359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.
Collapse
|
6
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Zhang R, Wesevich V, Chen Z, Zhang D, Kallen AN. Emerging roles for noncoding RNAs in female sex steroids and reproductive disease. Mol Cell Endocrinol 2020; 518:110875. [PMID: 32668269 PMCID: PMC7609472 DOI: 10.1016/j.mce.2020.110875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
The "central dogma" of molecular biology, that is, that DNA blueprints encode messenger RNAs which are destined for translation into protein, has been challenged in recent decades. In actuality, a significant portion of the genome encodes transcripts that are transcribed into functional RNA. These noncoding RNAs (ncRNAs), which are not transcribed into protein, play critical roles in a wide variety of biological processes. A growing body of evidence derived from mouse models and human data demonstrates that ncRNAs are dysregulated in various reproductive pathologies, and that their expression is essential for female gametogenesis and fertility. Yet in many instances it is unclear how dysregulation of ncRNA expression leads to a disease process. In this review, we highlight new observations regarding the roles of ncRNAs in the pathogenesis of disordered female steroid hormone production and disease, with an emphasis on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). We will focus our discussion in the context of three ovarian disorders which are characterized in part by altered steroid hormone biology - diminished ovarian reserve, premature ovarian insufficiency, and polycystic ovary syndrome. We will also discuss the limitations and challenges faced in studying noncoding RNAs and sex steroid hormone production. An enhanced understanding of the role of ncRNAs in sex hormone regulatory networks is essential in order to advance the development of potential diagnostic markers and therapeutic targets for diseases, including those in reproductive health. Our deepened understanding of ncRNAs has the potential to uncover new applications and therapies; however, in many cases, the next steps will involve distinguishing critical ncRNAs from those which are merely changing in response to a particular disease state, or which are altogether unrelated to disease pathophysiology.
Collapse
Affiliation(s)
- Runju Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1st Xueshi Road, Hangzhou, Zhejiang, China
| | - Victoria Wesevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zhaojuan Chen
- Department of Gynecology. Beijing Haidian Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1st Xueshi Road, Hangzhou, Zhejiang, China.
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Opuwari CS, Matshipi MN, Phaahla MK, Setumo MA, Moraswi RT, Zitha AA, Offor U, Choma SSR. Androgenic effect of aqueous leaf extract of
Moringa oleifera
on Leydig TM3 cells in vitro. Andrologia 2020; 52:e13825. [DOI: 10.1111/and.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chinyerum S. Opuwari
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Matome N. Matshipi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mantaneng K. Phaahla
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Mmaphulane A. Setumo
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Rantobeng T. Moraswi
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Amukelani A. Zitha
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| | - Ugochukwu Offor
- Department of Pre‐Clinical Sciences University of Limpopo Polokwane South Africa
| | - Solomon S. R. Choma
- Department of Pathology and Medical Sciences University of Limpopo Polokwane South Africa
| |
Collapse
|
10
|
Li Y, Yu F, Liu Y, Liang Q, Huang Y, Xiang Q, Zhang Q, Su Z, Yang Y, Zhao Y. Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells. J Periodontol 2020; 91:975-985. [PMID: 31573683 DOI: 10.1002/jper.19-0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) play an essential role in periodontal tissue repair. Basic fibroblast growth factor (bFGF) has been used in the clinical treatment of periodontal disease. However, studies have shown that bFGF inhibits the osteogenic differentiation of PDLSCs, which is not conducive to alveolar bone repair. Sulfonated chitosan oligosaccharide (SCOS), a heparan-like compound, can maintain the conformation of bFGF and promote its proliferation activity. This study investigated the effects of bFGF in combination with SCOS on the osteogenic differentiation of hPDLSCs. METHODS hPDLSCs were isolated from healthy human periodontal ligament and identified by flow cytometry and immunofluorescence. The affinity between SCOS and bFGF was analyzed by surface plasmon resonance. Changes in osteogenic differentiation by combination of bFGF with SCOS were analyzed by alkaline phosphatase activity assay, Sirius Red staining, and Alizarin Red staining. Expression of genes and proteins was investigated by western blotting and reverse transcription-quantitative PCR. RESULTS Extracted hPDLSCs were mesenchymal stem cells with pluripotent differentiation potential. SCOS exhibited an affinity for bFGF. bFGF (20 ng/mL) promoted the proliferation of hPDLSCs, but inhibited their osteogenic differentiation. SCOS alleviated the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. CONCLUSIONS SCOS can reduce the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. This study provides evidence for the clinical use of bFGF to repair periodontal tissue.
Collapse
Affiliation(s)
- Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| |
Collapse
|
11
|
Abstract
ncRNAs are involved in numerous biological processes by regulating gene expression and cell stability. Studies have shown that ncRNAs also contribute to spermatogenesis. Leydig cells (LCs) and Sertoli cells (SCs) are somatic cells of the testis that support spermatogenesis and are vital to male fertility. In this review, we summarized the findings from studies on ncRNAs in SCs and LCs. In SCs, ncRNAs play key roles in phagocytosis, immunoprotection and development of SCs. In LCs, ncRNAs are involved in steroidogenesis, in particular production of testosterone as well as development of LCs. Here, we discuss the possible target genes and functions of ncRNAs in both types of cells. These ncRNAs regulate the expression of target genes or mRNA coding sequence regions, resulting in a chain reaction that influences cell function. In addition, microRNAs, lncRNAs, piRNA-like RNAs (pilRNAs) and natural antisense transcripts (NATs) are discussed in this review. In summary, we suggest that these ncRNAs might act in coordination to control spermatogenesis and maintain the environmental homeostasis of the testis.
Collapse
|
12
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Milon A, Knapczyk-Stwora K, Pawlicki P, Duliban M, Gorowska-Wojtowicz E, Kotula-Balak M, Bilinska B. Effect of estrogen-related receptor silencing on miRNA protein machinery expression, global methylation, and deacetylation in bank vole (Myodes glareolus) and mouse tumor Leydig cells. Theriogenology 2019; 139:178-190. [PMID: 31421412 DOI: 10.1016/j.theriogenology.2019.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
The function of estrogen-related receptor (ERR) in testicular cells is at the beginning of exploration. Our previous findings showed that expression pattern of estrogen-related receptor (ERR) in mouse Leydig cell depends on physiological status of the cell. Exogenous hormones/hormonally active chemicals affect ERR expression. In Leydig cells in vitro, ERRα and ERRγ show opposing regulatory properties. The aim of this study was to examine the role of ERR in epigenetic processes in cells with altered level of secreted estrogens; mouse tumor Leydig cells and bank vole Leydig cells, respectively. In Leydig cells, ERRα and ERRγ were silenced via siRNA. mRNA and protein expression and protein localization of molecules required for miRNA biogenesis and function (Exportin 5, Dicer, Drosha and Argonaute 2; Ago2) were studied with the use of qRT-PCR, Western blotting, and immunohistochemistry. Global DNA methylation and histone deacetylation status together with estradiol secretion were determined with fluorometric, and immunoenzymatic assays. Regardless of ERR type knockdown in tumor Leydig cells, downregulation (P < 0.05; P < 0.01; P < 0.001) of Exportin5, Dicer, Drosha but not Ago2 was revealed while at protein level only Drosha was downregulated (P < 0.01) by both ERRα and ERRγ. Oppositely, Exportin5, Dicer and Ago2 showed ERR type-dependent regulation (downregulation; P < 0.01 by ERRα and upregulation; P < 0.01; P < 0.001 by ERRγ). In ERR-silenced vole Leydig cells, expression of Exportin5, endonucleases and Ago2 was not changed. Immunolocalization of Dicer and Ago2 was independent of the cell origin in contrast to localization of Exportin5 and Drosha which was dependent on the cell origin and ERR type knockdown. Absence of ERR effected on cell methylation status (ERRα increased it; P < 0.01 while ERRγ decreased it; P < 0.01, P < 0.001) but it not changed histone deacetylates activity. ERRα and ERRγ silencing decreased (P < 0.01, P < 0.001) estradiol secretion in both tumor and vole Leydig cells. In mouse and bank vole Leydig cell, Exportin5, Dicer, Drosha and Ago2 expression as well as methylation status are regulated by ERR in a manner related to receptor type, molecule type, cell origin and level of secreted estrogen.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland; University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
14
|
Chen H, Guo X, Xiao X, Ye L, Huang Y, Lu C, Su Z. Identification and functional characterization of microRNAs in rat Leydig cells during development from the progenitor to the adult stage. Mol Cell Endocrinol 2019; 493:110453. [PMID: 31129276 DOI: 10.1016/j.mce.2019.110453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to identify microRNAs (miRNAs) that regulate the proliferation and differentiation of Leydig cells (LCs) of rat. Three small RNA libraries derived from progenitor LCs (PLCs), immature LCs (ILCs) and adult LCs (ALCs) were analyzed by microarrays. In total, 68 differentially expressed miRNAs (DEMs) were identified. Based on the trend of DEM expression from PLCs to ALCs, primary LCs were transfected with miRNA mimics or inhibitors. Five miRNAs (miR-30a-5p, miR-3585-5p, miR-212-3p, miR-369-5p and miR-434-3p) promoted PLC proliferation, and 3 miRNAs (miR-17-5p, miR-532-3p and miR-329-3p) activated caspase-3, which triggered LC apoptosis. For steroidogenesis, 18 miRNAs could elevate or inhibit androsterone release at the PLC stage. Eleven and 9 miRNAs inhibited the production of 5α-androstane-3α,17β-diol in ILCs and testosterone in ALCs, respectively. miR-17-5p, miR-29a-3p and miR-299a-5p decreased androgen production by LCs at all developmental stages. Furthermore, the miR-299a-5p-mediated decrease in androgen production by the LC lineage was primarily achieved by downregulating the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1). These findings provide insights into the regulatory roles of miRNAs during the postnatal development of LCs and suggest potential strategies for the treatment of steroid-related disorders.
Collapse
Affiliation(s)
- Hongxia Chen
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xiaoping Guo
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xue Xiao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China; Biopharmaceutical Research and Development Center, Jinan University, Guangzhou, China
| | - Chunbin Lu
- Department of Developmental Biology and Regenerative Medicine, Jinan University, Guangzhou, China.
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China; Biopharmaceutical Research and Development Center, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Mo J, Chen X, Ni C, Wu K, Li X, Zhu Q, Ma L, Chen Y, Zhang S, Wang Y, Lian Q, Ge RS. Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats. J Cell Mol Med 2019; 23:5618-5631. [PMID: 31222931 PMCID: PMC6653537 DOI: 10.1111/jcmm.14461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up‐regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post‐EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle‐stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA‐labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS‐treated testis.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leika Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
An SY, Zhang GM, Liu ZF, Zhou C, Yang PC, Wang F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene 2019; 710:131-139. [PMID: 31158446 DOI: 10.1016/j.gene.2019.05.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
As a fundamental regulator of mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to steroidogenesis, while the regulatory mechanism remains unclear. In the present study, testosterone secretion of goat Leydig cells (LCs) mediated by miR-1197-3p via PPARGC1A was investigated. We found PPARGC1A protein was diversely localized in testis, and the expression of PPARGC1A in testis of 9-month-old goat was significantly higher than that in 3-month-old goat. In addition, suppression of PPARGC1A significantly decreased the testosterone secretion in goat LCs, as well as reduced the expressions of key steroidogenesis related genes [steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3 beta-hydroxysteroid dehydrogenase (3BHSD)], and overexpression of PPARGC1A showed the opposite effects. Moreover, we observed suppression of miR-1197-3p increased the synthesis of testosterone and promoted the expressions of PPARGC1A, StAR, CYP11A1, and 3BHSD by directly targeting PPARGC1A in the LCs. Furthermore, overexpression of PPARGC1A could alleviate miR-1197-3p induced aberrant steroidogenesis related gene expressions and testosterone synthesis. Taken together, miR-1197-3p could act as an essential regulator of LC testosterone secretion in goat testis by targeting PPARGC1A. These results provide a novel view of the regulatory mechanisms involved in male sexual maturation and help us to understand the molecular role of PPARGC1A in testosterone synthesis.
Collapse
Affiliation(s)
- Shi-Yu An
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi-Fei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuang Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng-Cheng Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Nagaraja MR, Gubbala SP, Delphine Silvia CRW, Amanchy R. Molecular diagnostics of disorders of sexual development: an Indian survey and systems biology perspective. Syst Biol Reprod Med 2018; 65:105-120. [PMID: 30550360 DOI: 10.1080/19396368.2018.1549619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We aimed to survey the monogenic causes of disorders of sex development (DSD) and thereby its prevalence in India. This study revealed mutations resulting in androgen insensitivity syndrome, 5α-reductase type 2 deficiency, and gonadal dysgenesis were commonly reported. Intriguingly, AR deficits were the most prevalent (32 mutations) and of 11/26 missense mutations were in exons 4-8 (encoding ligand binding domain). The unique features of SRD5A2 defects were p.R246Q (most prevalent) and p.G196S could be mutational hotspots, dual gene defects (p.A596T in AR and p.G196S in SRD5A2) in a patient with hypospadias and novel 8 nucleotide deletion (exon 1) found in a patient with perineal hypospadias. Deficits in SRY, WT1, DHH, NR5A1, and DMRT1 caused 46,XY gonadal dysgenesis. Notably, mutations in AR, SRD5A2, MAMLD1, WT1, and MAP3K1 have led to hypospadias and only one CYP19A1 mutation caused aromatase deficiency was reported to date. Data mining from various databases has not only reinforced the role of well-established genes (e.g., SRY, WT1, DHH, NR5A1, DMRT1, AR, SRD5A2, MAMLD1) involved in DSD but also provided us 12 more potential candidate genes (ACVR1, AMHR2, CTNNB1, CYP11A1, CYP19A1, FGFR2, FGF9, PRKACA, PRKACG, SMAD9, TERT, ZFPM2), which benefit from a close association with the well-established genes involved in DSD and might be useful to screen owing to their direct gene-phenotype relationship or through direct functional interaction. As more genes have been revealed in relation to DSD, we believe ultimately it holds a better scenario for therapeutic regimen. Despite the advances in translational medicine, hospitals are yet to adopt genetic testing and counseling facilities in India that shall have potential impact on clinical diagnosis. Abbreviations: 5α-RD2: 5α-Reductase type 2; AIS: androgen insensitivity syndrome; AMH: antimullerian hormone; AMHR: antimullerian hormone receptor; AR: androgen receptor gene; CAH: congenital adrenal hyperplasia; CAIS: complete AIS; CAH: congenital adrenal hyperplasia; CHH: congenital hypogonadotropic hypogonadism; CXORF6: chromosome X open reading frame 6 gene; CYP19A1: cytochrome P450 family 19 subfamily A member 1 gene; DHT: dihydrotestosterone; DMRT1: double sex and mab-3 related transcription factor 1 gene; DSD: disorders of sexual development; GD: gonadal dysgenesis; HGMD: human gene mutation database; IH: isolated hypospadias; MAMLD1: mastermind like domain containing 1 gene; MIS: mullerian inhibiting substance; NTD: N-terminal domain; OT DSD: ovotesticular DSD; PAIS: partial AIS; SOX9: SRY-related HMG-box 9 gene; SRY: sex-determining region Y gene; STAR: steroidogenic acute regulatory protein gene; SRD5A2: steroid 5 alpha-reductase 2 gene; T DSD: testicular DSD; T: testosterone; WNT4: Wnt family member 4 gene; WT1: Wilms tumor 1 gene; Δ4: androstenedione.
Collapse
Affiliation(s)
- M R Nagaraja
- a Department of Biochemistry , Akash Institute of Medical Sciences & Research Centre , Bangalore , India
| | - Satya Prakash Gubbala
- b Division of Pharmacology and Toxicology , CSIR- Indian Institute of Chemical Technology , Hyderabad , India
| | - C R Wilma Delphine Silvia
- a Department of Biochemistry , Akash Institute of Medical Sciences & Research Centre , Bangalore , India
| | - Ramars Amanchy
- b Division of Pharmacology and Toxicology , CSIR- Indian Institute of Chemical Technology , Hyderabad , India
| |
Collapse
|
18
|
Su DM, Feng Y, Wang L, Wu YL, Ge RS, Ma X. Influence of fetal Leydig cells on the development of adult Leydig cell population in rats. J Reprod Dev 2018. [PMID: 29515056 PMCID: PMC6021611 DOI: 10.1262/jrd.2017-102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leydig cells are the main endogenous testosterone synthesis cells in the body. Testosterone is an essential hormone in males that affects metabolism, emotion, and pubertal development.
However, little is known about the development of Leydig cells and relationship between fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). The aims of this study were to investigate
the effect of (FLCs) on ALC development. Our study showed that FLCs in neonatal rat testis can be eliminated by 100 mg/kg ethane dimethane sulfonate (EDS) treatment without affecting the
health of newborn rats. Immunohistological results showed that eliminating FLCs led to early re-generation of the ALC population (progenitor Leydig cells [PLCs] and ALCs) accompanied at
first by increased and then by decreased serum testosterone, indicating that ALCs which appeared after neonatal EDS treatment were degenerated or had attenuated functions. Our results showed
that FLCs were eliminated 4 days after EDS treatment, the ALC population regenerated by 21 days, and serum testosterone levels dramatically decreased at 56 days. Collectively, our results
indicate that the ablation of FLCs in neonatal rat results in abnormal development of ALCs. Our study further indicates that abnormal development of Leydig cells in the fetal stage leads to
steroid hormone disorders, such as testosterone deficiency, in the adult stage. Therefore, studies of Leydig cell development are important for understanding the pathogenesis of testosterone
deficiency or pubertas praecox.
Collapse
Affiliation(s)
- Dong-Mei Su
- West China Hospital, West China School of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lin Wang
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Lun Wu
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ren-Shan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin-inhibin signaling? Andrology 2018; 6:262-271. [PMID: 29409132 DOI: 10.1111/andr.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Clinical findings and a variety of experimental models indicate that Leydig cell dysfunction accompanies damage to the seminiferous tubules with increasing severity. Most studies support the idea that intratesticular signaling from the seminiferous tubules to Leydig cells regulates steroidogenesis, which is disrupted when hypospermatogenesis occurs. Sertoli cells seem to play a pivotal role in this process. In this review, we summarize relevant clinical and experimental observations and present evidence to support the hypothesis that testicular activin signaling and its regulation by testicular inhibin may link seminiferous tubular dysfunction to reduced testosterone biosynthesis.
Collapse
Affiliation(s)
- S J Winters
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - J P Moore
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - B J Clark
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Gao S, Li C, Xu Y, Chen S, Zhao Y, Chen L, Jiang Y, Liu Z, Fan R, Sun L, Wang F, Zhu X, Zhang J, Zhou X. Differential expression of microRNAs in TM3 Leydig cells of mice treated with brain-derived neurotrophic factor. Cell Biochem Funct 2017; 35:364-371. [DOI: 10.1002/cbf.3283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 07/07/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Shan Gao
- College of Animal Sciences; Jilin University; Jilin China
| | - Chunjin Li
- College of Animal Sciences; Jilin University; Jilin China
| | - Ying Xu
- Reproductive Medical Center; The Second Hospital of Jilin University; Changchun China
| | - Shuxiong Chen
- College of Animal Sciences; Jilin University; Jilin China
| | - Yun Zhao
- College of Animal Sciences; Jilin University; Jilin China
| | - Lu Chen
- College of Animal Sciences; Jilin University; Jilin China
| | - Yanwen Jiang
- College of Animal Sciences; Jilin University; Jilin China
| | - Zhuo Liu
- College of Animal Sciences; Jilin University; Jilin China
| | - Rong Fan
- College of Animal Sciences; Jilin University; Jilin China
| | - Liting Sun
- College of Animal Sciences; Jilin University; Jilin China
| | - Fengge Wang
- College of Animal Sciences; Jilin University; Jilin China
| | - Xiaoling Zhu
- College of Animal Sciences; Jilin University; Jilin China
| | - Jing Zhang
- College of Animal Sciences; Jilin University; Jilin China
| | - Xu Zhou
- College of Animal Sciences; Jilin University; Jilin China
| |
Collapse
|
21
|
Pelloni M, Coltrinari G, Paoli D, Pallotti F, Lombardo F, Lenzi A, Gandini L. Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine 2017; 57:518-527. [PMID: 27796811 DOI: 10.1007/s12020-016-1150-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Various microRNAs from the miR-371-3 and miR-302a-d clusters have recently been proposed as markers for testicular germ cell tumours. Upregulation of these miRNAs has been found in both the tissue and serum of testicular cancer patients, but they have never been studied in human seminal plasma. The aim of this study was, therefore, to assess the differences in the expression of miR-371-3 and miR-302a-d between the seminal plasma and serum of testicular cancer patients, and to identify new potential testicular cancer markers in seminal plasma. We investigated the serum and seminal plasma of 28 pre-orchiectomy patients subsequently diagnosed with testicular cancer, the seminal plasma of another 20 patients 30 days post-orchiectomy and a control group consisting of 28 cancer-free subjects attending our centre for an andrological check-up. Serum microRNA expression was analysed using RT-qPCR. TaqMan Array Card 3.0 platform was used for microRNA profiling in the seminal plasma of cancer patients. Results for both miR-371-3 and the miR-302 cluster in the serum of testicular cancer patients were in line with literature reports, while miR-371and miR-372 expression in seminal plasma showed the opposite trend to serum. On array analysis, 37 miRNAs were differentially expressed in the seminal plasma of cancer patients, and the upregulated miR-142 and the downregulated miR-34b were validated using RT-qPCR. Our study investigated the expression of miRNAs in the seminal plasma of patients with testicular cancer for the first time. Unlike in serum, miR-371-3 cannot be considered as markers in seminal plasma, whereas miR-142 levels in seminal plasma may be a potential marker for testicular cancer.
Collapse
Affiliation(s)
- Marianna Pelloni
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| | - Giulia Coltrinari
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy.
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| | - Francesco Lombardo
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| | - Andrea Lenzi
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| | - Loredana Gandini
- Laboratory of Seminology-Sperm Bank, Department of Experimental Medicine, University of Rome "La Sapienza", Viale del Policlinico 155, 00161, Roma, Italy
| |
Collapse
|
22
|
Saddick SY. The impact of nandrolone decanoate administration on ovarian and uterine tissues in rat: Luteinizing hormone profile, histopathological and morphometric assessment. Saudi J Biol Sci 2017; 25:507-512. [PMID: 29692652 PMCID: PMC5911639 DOI: 10.1016/j.sjbs.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
The study had been conducted to evaluate the effects of nandrolone decanoate (abused repeated doses) on female rat's ovary and uterus during administration and withdrawal. The study included 18 rats that were divided into control group (n = 6) and treated group (n = 12). The treated group was injected intramuscular (IM) with nandrolone decanoate (7 mg/kg body weight) for three consecutive days, for two weeks. The study stated that nandrolone decanoate increases the weights of body, ovary, and uterus. Moreover, it has a tendency of bringing upon modifications in the biochemical, histopathological, and morphological makeup of the female reproductive aspects. In conclusion, nandrolone decanoate has been identified as deleterious element for the female rats, and it is suggested that keen observations must be made on the human abusers to control and manage the possible pathologies.
Collapse
Affiliation(s)
- Salina Y Saddick
- Faculty of Science, Department of Biology, King Abdulaziz University, Jeddah 23815, Saudi Arabia
| |
Collapse
|
23
|
Li C, Gao S, Chen S, Chen L, Zhao Y, Jiang Y, Zheng X, Zhou X. Differential expression of microRNAs in luteinising hormone-treated mouse TM3 Leydig cells. Andrologia 2017; 50. [PMID: 28762514 DOI: 10.1111/and.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Testosterone is primarily produced by Leydig cells of the mammalian male gonads. The cellular functions of Leydig cells are regulated by the hypothalamus-pituitary-gonad axis, whereas the microRNA (miRNA) changes of LH-treated Leydig cells are unknown. Mouse TM3 Leydig cells were treated with LH, and deep sequencing showed that 29 miRNAs were significantly different between two groups (fold change of >1.5 or <0.5, p < .05), of which 27 were upregulated and two were downregulated. The differential expression of miR-29b-3p, miR-378b, miR-193b and miR-3695 was confirmed by quantitative real-time polymerase chain reaction. Bioinformatic analysis revealed that miRNAs regulated a large number of genes with different functions. Pathway analysis indicated that miRNAs were involved in the Wingless and INT-1, adenosine 5'-monophosphate-activated protein kinase, NF-kappa B and Toll-like receptor signalling pathways. Results showed that miRNAs might be involved in the regulation of LH to Leydig cells.
Collapse
Affiliation(s)
- C Li
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - S Gao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - S Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - L Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - Y Zhao
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - Y Jiang
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - X Zheng
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| | - X Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
24
|
Ye L, Li X, Li L, Chen H, Ge RS. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol 2017; 8:430. [PMID: 28701961 PMCID: PMC5487449 DOI: 10.3389/fphys.2017.00430] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Collapse
Affiliation(s)
- Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
25
|
Geng XJ, Zhao DM, Mao GH, Tan L. MicroRNA-150 regulates steroidogenesis of mouse testicular Leydig cells by targeting STAR. Reproduction 2017; 154:229-236. [PMID: 28611112 DOI: 10.1530/rep-17-0234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/26/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022]
Abstract
Leydig cells are essential for male reproductive development throughout life. Production of androgens as well as intermediate steroids is tightly regulated. Although microRNAs (miRNAs) are suggested to play important roles in spermatogenesis, little is currently known regarding the regulation of steroidogenesis by miRNAs in Leydig cells. Here, we found that miR-150 was predominantly expressed in Leydig cells within mouse testis. Therefore, we determined steroidogenesis of the Leydig cells in which miR-150 was knocked down or overexpressed using miR-150 antagomir and agomir, respectively. Compared with negative control group, a significant increase of STAR expression was observed in miR-150 antagomir-treated Leydig cells. Conversely, STAR expression was significantly reduced in miR-150 agomir-transfected Leydig cells. Production of sex-steroid precursors and testosterone of Leydig cells was also negatively controlled by miR-150. We further identified Star as a target of miR-150 using luciferase reporter assay. Finally, we confirmed that miR-150 was necessary for steroidogenesis and spermatogenesis in vivo via intratesticular injection of miR-150 antagomir or agomir. Taken together, our studies suggest that miR-150 negatively regulates the expression of STAR and steroidogenesis of Leydig cells in mice.
Collapse
Affiliation(s)
- Xu-Jing Geng
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong-Mei Zhao
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gen-Hong Mao
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Tan
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Miao N, Wang X, Feng Y, Gong Y. Male-biased miR-92 from early chicken embryonic gonads directly targets ATRX and DDX3X. Gene 2017; 626:326-336. [PMID: 28554548 DOI: 10.1016/j.gene.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
MiR-17-92 cluster consists of multifunctional miRNAs related to gonadal development in mammals. Our preliminary data showed that gga-miR-92 was male-biased in chicken embryonic gonads at E5.5 and E6.5. MiR-92(a-2) and two putative targets (ATRX and DDX3X) were highly conserved and located on mammalian Chromosome X but on autosomes in chicken. Here, we studied the expression and interaction of miR-92 and the targets (ATRX and DDX3X) in chicken embryonic gonads. What's more, male-biased miR-92 shows an opposite expression tendency with ATRX and DDX3X in eight embryonic stages and different tissues at E10.5 by qRT-PCR. To verify the regulation relationship between miR-92 and two targets, we performed dual-luciferase reporter assay in DF1, overexpression and inhibition of miR-92 in chicken embryonic fibroblasts (CEFs). The results show that miR-92 directly targets ATRX and DDX3X by binding the 3' un-translated region (3'-UTR), and the over-expression and inhibition of miR-92 negatively regulates ATRX and DDX3X. After the identification of the expression of their downstream genes (AMH and WNT4) in mRNA level, we found that there is no regulatory relationship between ATRX and DDX3X. The overall results indicate that miR-92 may perform roles in early chicken gonadogenesis by regulating the expressions of ATRX and DDX3X, respectively.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Institute of Genomics, College of Biomedical, Huaqiao University, 668 Jimei Road, Xiamen 361021, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
27
|
Chen X, Li X, Guo J, Zhang P, Zeng W. The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 2017; 8:35. [PMID: 28469844 PMCID: PMC5410700 DOI: 10.1186/s40104-017-0166-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis contains three continuous and organized processes, by which spermatogonia undergo mitosis and differentiate to spermatocytes, follow on meiosis to form haploid spermatids and ultimately transform into spermatozoa. These processes require an accurately, spatially and temporally regulated gene expression patterns. The microRNAs are a novel class of post-transcriptional regulators. Cumulating evidences have demonstrated that microRNAs are expressed in a cell-specific or stage-specific manner during spermatogenesis. In this review, we focus on the roles of microRNAs in spermatogenesis. We highlight that N6-methyladenosine (m6A) is involved in the biogenesis of microRNAs and miRNA regulates the m6A modification on mRNA, and that specific miRNAs have been exploited as potential biomarkers for the male factor infertility, which will provide insightful understanding of microRNA roles in spermatogenesis.
Collapse
Affiliation(s)
- Xiaoxu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xueliang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jiayin Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengfei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
28
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Rutin attenuates H 2O 2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways. Biomed Pharmacother 2017; 88:500-506. [PMID: 28126675 DOI: 10.1016/j.biopha.2017.01.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is a primary factor in the pathology of male infertility. The strong antioxidative capacity of rutin has been proven by numerous studies, but a protective role in the context of male reproduction remains to be elucidated. To explore the biological role of rutin in protecting male reproductive function and the potential underlying mechanism, H2O2-induced Leydig cells were used as a cell model of oxidation damage. Our findings showed that rutin at concentrations of 10, 20, and 40μmol/L remarkably increased cell survival rate of H2O2-induced Leydig cells to 70.1%, 86.8%, and 80.3% respectively. Next, rutin with concentrations of 10, 20, and 40μmol/L decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels but increased the levels of glutathione (GSH) and testosterone in H2O2-induced Leydig cells. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were remarkably increased by rutin treatment with concentrations of 20 and 40μmol/L, but glutathione peroxidase (GSH-Px) activity was notably decreased. Moreover, rutin with concentrations of 10, 20, and 40μmol/L increased Bcl-2 protein levels but decreased protein levels of Bax and caspase-3. Furthermore, 20μmol/L rutin significantly abrogated the decrease in levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT) induced by H2O2. Pretreatment with LY294002, a PI3K inhibitor, antagonized protective action of 20μmol/L rutin against H2O2-induced cell activities, intracellular oxidant, testosterone, antioxidant enzyme activities, and the apoptosis related protein expression. Taken together, these results suggest that rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways, providing a promising strategy to decrease oxidative stress associated with male infertility.
Collapse
|
30
|
Xu HF, Fang XY, Zhu SH, Xu XH, Zhang ZX, Wang ZF, Zhao ZQ, Ding YJ, Tao LY. Glucocorticoid treatment inhibits intracerebral hemorrhage‑induced inflammation by targeting the microRNA‑155/SOCS‑1 signaling pathway. Mol Med Rep 2016; 14:3798-804. [PMID: 27601160 DOI: 10.3892/mmr.2016.5716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 06/08/2016] [Indexed: 11/06/2022] Open
Abstract
Intracerebral hemorrhage (ICH) results in inflammation, and glucocorticoids have been proven to be effective inhibitors of ICH‑induced inflammation. However, the precise underlying mechanisms of ICH‑induced inflammation and glucocorticoid function remain largely undefined. Using a mouse ICH model, the present study demonstrated that the short non‑coding RNA molecule microRNA‑155 (miR‑155) is involved in the inflammatory process initiated by ICH in mice. Increased mRNA expression levels of miR‑155, as well as the pro‑inflammatory cytokines interferon‑β (IFN‑β), tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6), were observed in vivo following ICH. By contrast, the expression level of suppressor of cytokine signaling 1 (SOCS‑1) protein was reduced in the ICH group compared with control mice. Similar results were observed in vitro using astrocytes, the primary effector cells in ICH. Compared with wild type astrocytes, astrocytes overexpressing miR‑155 exhibited significant inhibition of SOCS‑1 protein expression levels. These results suggest that miR‑155 contributes to the development of ICH‑induced inflammation in mice by downregulating SOCS‑1 protein expression levels and promoting pro‑inflammatory cytokine (IFN‑β, TNF‑α and IL‑6) production. Expression levels of miR‑155 and pro‑inflammatory cytokines in the ICH group were significantly decreased following dexamethasone administration. This suggests that glucocorticoids attenuate ICH‑induced inflammation by targeting the miR‑155/SOCS‑1 signaling pathway in mice. In conclusion, the results of the present study demonstrated that the miR‑155/SOCS‑1 signaling pathway is required for ICH‑induced inflammation, and glucocorticoids inhibit this process by targeting the miR‑155/SOCS‑1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Fei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiao-Yun Fang
- Jiangsu Patent Examination Assistance Center Under State Intellectual Property Office of The People's Republic of China, Suzhou, Jiangsu 215163, P.R. China
| | - Shao-Hua Zhu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xue-Hua Xu
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-Xiang Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Jie Ding
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
31
|
Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein. Sci Rep 2016; 6:23716. [PMID: 27045906 PMCID: PMC4820694 DOI: 10.1038/srep23716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 03/11/2016] [Indexed: 12/15/2022] Open
Abstract
Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.
Collapse
|
32
|
Chen YP, Wang J, Zhao K, Shang XJ, Wu HQ, Qing XR, Fang F, Zhang Y, Shang J, Li HG, Zhang HP, Guan HT, Zhou YZ, Gu YQ, Wu WX, Xiong CL. The plasma miR-125a, miR-361 and miR-133a are promising novel biomarkers for Late-Onset Hypogonadism. Sci Rep 2016; 6:23531. [PMID: 27000524 PMCID: PMC4802305 DOI: 10.1038/srep23531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/27/2022] Open
Abstract
Circulating miRNAs have been shown to serve as diagnostic/prognostic biomarkers in cancers and other diseases. However, the role of plasma miRNAs in Late-onset hypogonadism (LOH) diagnosis is still unknown. Using Illumina HiSeq2000 sequencing at discovery phase, and then two-step validated by reverse transcriptase polymerase chain reaction (RT-PCR) assays in verification phases. We verified that the expression levels of miR-125a-5p, miR-361-5p and miR-133a-3p were significantly altered in LOH group compared to the control group. The area under the receiver operating characteristic (ROC) curve (AUC) is 0.682, 0.698 and 0.765, respectively. The combination of three miRNAs showed a larger AUC (0.835) that was more efficient for the diagnosis of LOH. Among three miRNAs, miR-133a-3p had the best diagnostic value for LOH with 68.2% sensitivity and 77.3% specificity. Regression analyses show that miR-133a-3p level was negatively associated with the ageing males’ symptoms (AMS) scale. However, miR-361-5p level was positively associated with serum testosterone concentrations. In summary, plasma miRNAs are differentially expressed between LOH and healthy controls. We validated three miRNAs that could act as novel biomarkers for diagnosis of LOH. These miRNAs may be involved in the development of LOH. However, further large and functional studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yao-Ping Chen
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Center of Reproductive Medicine, General Hospital of Ningxia Medical University, Shengli South Street 804, Yinchuan, Ningxia 750004, China
| | - Ju Wang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Department of Histology and Embryology, School of Medicine, Shihezi University, North 2nd Road 59, Shihezi, Xinjiang 832002, China
| | - Kai Zhao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xue-Jun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, East Zhongshan Road 305, Nanjing 210002, China
| | - Hui-Qin Wu
- Emergency Department, General Hospital of Ningxia Medical University, Shengli South Street 804, Yinchuan, Ningxia 750004, China
| | - Xing-Rong Qing
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Fang Fang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yan Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Jin Shang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Hui-Ping Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Huang-Tao Guan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Dalian Road 201, Zunyi, Guizhou 563099, China
| | - Yi-Qun Gu
- Key Laboratory of Male Reproductive Health, National Health and Family Planning Commission, National Research Institute for Family Planning, Da Hui Si Rd 12, Hai Dian District, Beijing 100081, China
| | - Wei-Xiong Wu
- Guangzhou Institute for Population and Family Planning, Xin Shi Xin Da road 93, Baiyun District, Guangzhou 510410, China
| | - Cheng-Liang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| |
Collapse
|
33
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
34
|
Hu W, Zhou PH, Rao T, Zhang XB, Wang W, Zhang LJ. Adrenomedullin attenuates interleukin-1β-induced inflammation and apoptosis in rat Leydig cells via inhibition of NF-κB signaling pathway. Exp Cell Res 2015; 339:220-30. [PMID: 26511504 DOI: 10.1016/j.yexcr.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
The aim of this paper is to investigate the protective effects of adrenomedullin (ADM) on interleukin-1β (IL-1β)-induced inflammation and apoptosis in rat Leydig cells and its underlying molecular mechanisms. Leydig cells were isolated from adult Sprague-Dawley rats. The cell culture was established by adding ADM 2h prior to 24h treatment with IL-1β-induced cytotoxicity. We detected cell viability and concentrations of testosterone, reactive oxygen species (ROS), malondialdehyde (MDA), and reduced glutathione (GSH). Gene expression levels were measured for inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2). Concentrations were detected for nitric oxide (NO) and prostaglandin E2 (PGE2). Apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Levels of gene expression and protein were detected for Bcl-2, Bax, caspase-3, and poly adenosine diphosphate-ribose polymerase (PARP). Protein levels were measured for nuclear factor kappa B (NF-κB) p65 and IκBα. ADM reduced IL-1β-induced cytotoxicity. ADM pretreatment significantly increased testosterone concentrations and decreased ROS, MDA, and GSH concentrations. ADM pretreatment inhibited IL-1β-induced inflammation in Leydig cells by decreasing the gene expression levels of iNOS and COX-2, as well as the concentrations of NO and PGE2. ADM pretreatment further decreased the number of TUNEL-positive stained Leydig cells, as confirmed by the increase in gene expression and protein levels of Bcl-2 and the decrease of Bax, caspase-3, and PARP levels. Moreover, ADM pretreatment inhibited NF-κB p65 phosphorylation and IκBα phosphorylation and degradation. ADM has potential anti-inflammatory and anti-apoptotic properties in IL-1β-induced rat Leydig cells, which might be related to NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Hu
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China
| | - Pang-hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China.
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China
| | - Xiao-bin Zhang
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China
| | - Wei Wang
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China
| | - Li-jun Zhang
- Department of Urology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan 430060, Hubei Province, China
| |
Collapse
|