1
|
Zhang N, Li Z. WITHDRAWN: Effects of Deinorgestrel Treatment of Endometriosis on Ovarian Function, Inflammatory Factors, and Pregnancy Rate in Patients. Eur J Pharmacol 2025:177440. [PMID: 40032175 DOI: 10.1016/j.ejphar.2025.177440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor due to an error in the publishing process. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies-and-standards/article-withdrawal.
Collapse
Affiliation(s)
- Na Zhang
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong province, 261000, China
| | - Zeming Li
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong province, 261000, China
| |
Collapse
|
2
|
Watanabe M, Kobayashi Y, Ishida M, Tajima A, Tanigaki S, Morisada T. Azurocidin is Associated with Dienogest-resistance in Ovarian Endometriotic Cysts. Reprod Sci 2025; 32:702-715. [PMID: 39909972 DOI: 10.1007/s43032-025-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Endometriosis and ovarian endometrioma (OMA) cause dysmenorrhea and infertility. Current hormonal therapies for OMA treatment, may exhibit limited effectiveness. Hormonal treatments function by downregulate estrogen receptors (ERs) via progesterone receptor (PR) signaling; therefore, progestins are used for the treatment of endometriosis. Dienogest (DNG), an oral progestin, is highly selective for PRs. Previously we identified the association of azurocidin with DNG resistance. Herein, we aimed to examine the effect of azurocidin on OMAs and its clinical significance. We examined the effect of azurocidin on PR or ER and the action of DNG on the inflammatory cytokines IL-6 and IL-8 in OMAs used the human immortalized endometriotic epithelial Emosis-CC/TERT1 cell line, and measured azurocidin levels in human biological samples. DNG inhibited IL-6 and IL-8 production in vitro, which was suppressed in the presence of azurocidin. Additionally, the inflammatory cytokines IL-6 and IL-8 enhanced azurocidin production. Furthermore, azurocidin induced ER expression; the proliferation of EMosis-CC/TERT1 cells increased significantly upon incubation with 17β-estradiol and azurocidin. Overall, azurocidin inhibits the action of DNG by increasing estrogen sensitivity via promoting ER expression and endometriosis. Azurocidin concentrations in the blood and urine were higher in patients resistant to DNG therapy than in other patients. Thus, azurocidin may be associated with DNG resistance in OMAs.
Collapse
Affiliation(s)
- Momoe Watanabe
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan.
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Manami Ishida
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Atsushi Tajima
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Shinji Tanigaki
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Tohru Morisada
- Department of Obstetrics and Gynecology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| |
Collapse
|
3
|
Amidifar S, Jafari D, Mansourabadi AH, Sadaghian S, Esmaeilzadeh A. Immunopathology of Endometriosis, Molecular Approaches. Am J Reprod Immunol 2025; 93:e70056. [PMID: 40132064 DOI: 10.1111/aji.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 03/27/2025] Open
Abstract
Endometriosis (EMS) is a common chronic gynecological disorder affecting 5%-10% of reproductive-age women, often causing infertility, dyspareunia, pain, and limitations in physical and sexual activities. This condition is defined by the presence of endometrial tissue outside the uterus, commonly explained by Sampson's theory of retrograde menstruation. Although its etiology remains unclear, genetic, epigenetic, hormonal imbalances, oxidative stress, and immune factors play critical roles. Immune dysregulation, involving inflammatory factors, cytokines, and immune cells facilitates the implantation, proliferation, angiogenesis, and development of ectopic endometrial stromal cells (ESCs). Research indicates that the implantation of ESCs in the peritoneum triggers an inflammatory response, recruiting various immune cells and leading to a cycle of inflammation characterized by elevated growth factors and cytokines. In this review, we discuss the immune system's role in EMS pathogenesis, emphasizing the contributions of immune cells, inflammatory mediators, oxidative stress, and so forth. This review also highlights that while current treatments, including hormonal therapies and surgical interventions, aim to alleviate symptoms and improve fertility, emerging evidence suggests that advancements in immunotherapies targeting specific immune cell activities hold promise as innovative future treatment strategies enhancing healthcare management for affected women.
Collapse
Affiliation(s)
- Sima Amidifar
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Mansourabadi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sara Sadaghian
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Kanno K, Nakayama K, Razia S, Islam SH, Farzana ZU, Sonia SB, Yamashita H, Ishikawa M, Ishibashi T, Imamura K, Kiyono T, Kyo S. Association between KRAS and PIK3CA Mutations and Progesterone Resistance in Endometriotic Epithelial Cell Line. Curr Issues Mol Biol 2024; 46:3579-3594. [PMID: 38666954 PMCID: PMC11049223 DOI: 10.3390/cimb46040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although endometriosis is a benign disease, it is associated with cancer-related gene mutations, such as KRAS or PIK3CA. Endometriosis is associated with elevated levels of inflammatory factors that cause severe pain. In a previous study, we demonstrated that KRAS or PIK3CA mutations are associated with the activation of cell proliferation, migration, and invasion in a patient-derived immortalized endometriotic cell line, HMOsisEC10. In this study, we investigated the effects of these mutations on progesterone resistance. Since the HMOsisEC10 had suppressed progesterone receptor (PR) expression, we transduced PR-B to HMOsisEc10 cell lines including KRAS mutant and PIK3CA mutant cell lines. We conducted a migration assay, invasion assay, and MTT assay using dienogest and medroxyprogestrone acetate. All cell lines showed progesterone sensitivity with or without mutations. Regarding inflammatory factors, real-time quantitative RT-PCR revealed that the KRAS mutation cell line exhibited no suppression of Cox-2 and mPGES-1 on progesterone treatment, whereas IL-6, MCP-1, VEGF, and CYP19A1 were significantly suppressed by progesterone in both mutated cell lines. Our results suggest that KRAS mutation and PIK3CA mutation in endometriotic cells may not be associated with progesterone resistance in terms of aggressiveness. However, KRAS mutations may be associated with progesterone resistance in the context of pain.
Collapse
Affiliation(s)
- Kosuke Kanno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan;
| | - Sultana Razia
- Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan;
| | - Sohel Hasibul Islam
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Zahan Umme Farzana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Shahataj Begum Sonia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan;
| | - Kayo Imamura
- Department of Obstetrics and Gynecology, Unnan City Hospital, Unnan 699-1221, Japan;
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, National Cancer Center, Exploratory Oncology Research and Clinical Trial Center (EPOC), Kashiwa 277-8577, Japan;
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-0021, Japan; (K.K.); (S.H.I.); (Z.U.F.); (S.B.S.); (H.Y.); (M.I.)
| |
Collapse
|
5
|
Tan Z, Gong X, Wang CC, Zhang T, Huang J. Diminished Ovarian Reserve in Endometriosis: Insights from In Vitro, In Vivo, and Human Studies-A Systematic Review. Int J Mol Sci 2023; 24:15967. [PMID: 37958954 PMCID: PMC10647261 DOI: 10.3390/ijms242115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Endometriosis, a prevalent disorder in women of reproductive age, is often associated with undesired infertility. Ovarian reserve, an essential measure of ovarian function that is crucial for maintaining fecundity, is frequently diminished in women with endometriosis. Though the causative relationship between endometriosis and reduced ovarian reserve is not fully understood due to the lack of standardized and precise measurements of ovarian reserve, there is ongoing discussion regarding the impact of interventions for endometriosis on ovarian reserve. Therefore, in this review, we investigate articles that have related keywords and which were also published in recent years. Thereafter, we provide a comprehensive summary of evidence from in vitro, in vivo, and human studies, thereby shedding light on the decreased ovarian reserve in endometriosis. This research consolidates evidence from in vitro, in vivo, and human studies on the diminished ovarian reserve associated with endometriosis, as well as enhances our understanding of whether and how endometriosis, as well as its interventions, contribute to reductions in ovarian reserve. Furthermore, we explore potential strategies to modify existing therapy options that could help prevent diminished ovarian reserve in patients with endometriosis.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Xue Gong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Jin Huang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
6
|
Yu J, Berga SL, Zou E, Schrepf AD, Clauw DJ, As-Sanie S, Taylor RN. Neurotrophins and Their Receptors, Novel Therapeutic Targets for Pelvic Pain in Endometriosis, Are Coordinately Regulated by IL-1β via the JNK Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1046-1058. [PMID: 37164275 PMCID: PMC10433690 DOI: 10.1016/j.ajpath.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Pelvic pain in women with endometriosis is attributed to neuroinflammation and afferent nociceptor nerves in ectopic and eutopic endometrium. The hypothesis that uterine nociception is activated by IL-1β, a prominent cytokine in endometriosis, was tested herein. Immunofluorescence histochemistry confirmed the presence of neurons in human endometrial tissue. Expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors in endometrial tissue and cells was validated by immunohistochemistry and Western blotting. Isolated endometrial stromal cells (ESCs) were subjected to dose-response and time-course experiments with IL-1β and kinase inhibitors to characterize in vitro biomarkers. Neural biomarkers were co-localized in endometrial nerve fibers. NGF, BDNF, and their receptors tropomyosin receptor kinase (Trk) A, TrkB, and p75 neurotrophin receptor were all expressed in primary ESCs. IL-1β stimulated higher TrkA/B expression in ESCs derived from endometriosis cases (2.8- ± 0.2-fold) than cells from controls (1.5- ± 0.3-fold, t-test, P < 0.01), effects that were mediated via the c-Jun N-terminal kinase (JNK) pathway. BDNF concentrations trended higher in peritoneal fluid of endometriosis cases but were not statistically different from controls (P = 0.16). The results support the hypothesis that NGF and BDNF and their corresponding receptors orchestrate innervation of the endometrium, which is augmented by IL-1β. We postulate that JNK inhibitors, such as SP600125, have the potential to reduce neuroinflammation in women with endometriosis.
Collapse
Affiliation(s)
- Jie Yu
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah L Berga
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Eric Zou
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Andrew D Schrepf
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Clauw
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Sawsan As-Sanie
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Robert N Taylor
- Departments of Obstetrics and Gynecology and Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York; Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
7
|
Kim HJ, Kim SH, Oh YS, Lee SR, Chae HD. Dienogest May Reduce Estradiol- and Inflammatory Cytokine-Induced Cell Viability and Proliferation and Inhibit the Pathogenesis of Endometriosis: A Cell Culture- and Mouse Model-Based Study. Biomedicines 2022; 10:biomedicines10112992. [PMID: 36428561 PMCID: PMC9687141 DOI: 10.3390/biomedicines10112992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Dienogest (DNG) is a therapeutic medication used in endometriosis treatment. Limited data are available regarding its mechanism of action on endometrial cells. Using in vivo and in vitro models, we investigated whether DNG treatment causes significant biological changes in human endometrial stromal cells (ESCs). The markers related to the pathogenesis of endometriosis in ESCs were evaluated using estradiol, tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-32, administered alone or in combination with DNG. Implanted endometrial tissues were compared between C57BL/6 mice that did or did not receive DNG treatment by using size measurements and immunohistochemistry. A significant decrease in cell viability, protein kinase B (AKT) phosphorylation, and the expression of p21-activated kinase 4 and vascular endothelial growth factor were observed in ESCs treated with estradiol plus DNG. Cell viability, AKT phosphorylation, and proliferating cell nuclear antigen (PCNA) expression also decreased significantly after TNF-α plus DNG treatment. Treatment with IL-1β or IL-32 plus DNG significantly decreased cell viability or PCNA expression, respectively. The size of the implanted endometrial tissue significantly decreased in mice treated with DNG, accompanied by decreased PCNA expression. Thus, DNG may reduce cell viability and proliferation induced by estradiol, TNF-α, IL-1β, and IL-32, and inhibit the endometriosis pathogenesis by decreasing PCNA expression.
Collapse
|
8
|
Muraoka A, Osuka S, Yabuki A, Yoshihara M, Tanaka H, Sonehara R, Miyake N, Murakami M, Yoshita S, Nakanishi N, Nakamura T, Goto M, Iwase A, Kajiyama H. Impact of perioperative use of GnRH agonist or dienogest on ovarian reserve after cystectomy for endometriomas: a randomized controlled trial. Reprod Biol Endocrinol 2021; 19:179. [PMID: 34872568 PMCID: PMC8647468 DOI: 10.1186/s12958-021-00866-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian endometrioma is a common gynecological disease that is often treated with surgery or hormonal treatment. Ovarian cystectomy, a surgical procedure for ovarian endometrioma, can result in impaired ovarian reserve. METHODS We conducted a randomized controlled trial to evaluate the efficacy of hormonal treatment [gonadotropin-releasing hormone agonist (GnRHa) or dienogest (DNG)] for preserving ovarian reserve after cystectomy for ovarian endometrioma. The primary endpoint was the level of serum Anti-Müllerian hormone (AMH) as a marker of ovarian reserve. RESULTS Before and after laparoscopic surgery, 22 patients in the GnRHa group and 27 patients in the DNG group were administered hormonal treatment for a total of 4 months. After 1-year follow-up, >60% of the patients in the DNG group retained over 70% of their pretreatment AMH levels, whereas no patient in the GnRHa group retained their AMH levels after cystectomy (P < 0.01). Interleukin-6 (IL-6) is a key cytokine involved in inflammation. Compared with the GnRHa group, patients in the DNG group had lower IL-6 levels at the end of treatment. CONCLUSIONS Our data revealed that DNG is more effective than GnRHa in preserving ovarian reserve after cystectomy of ovarian endometrioma. This is achieved through the reduction of the inflammatory response during the perioperative period and other endometriosis-related inflammatory reactions. TRIAL REGISTRATION The registration number of this trial is UMIN-CTR, UMIN000018569, registered 6 August 2015, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000021492 , and Japan Registry of Clinical Trials, jRCTs041180140, registered 29 March 2019, https://jrct.niph.go.jp/en-latest-detail/jRCTs041180140 . This randomized controlled trial was conducted in accordance with the CONSORT guidelines.
Collapse
Affiliation(s)
- Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan.
| | - Atsushi Yabuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Hideaki Tanaka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Reina Sonehara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Mayuko Murakami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Sayako Yoshita
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, 371-8511, Maebashi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan
| |
Collapse
|
9
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
10
|
Wendel JRH, Wang X, Smith LJ, Hawkins SM. Three-Dimensional Biofabrication Models of Endometriosis and the Endometriotic Microenvironment. Biomedicines 2020; 8:biomedicines8110525. [PMID: 33233463 PMCID: PMC7700676 DOI: 10.3390/biomedicines8110525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Endometriosis occurs when endometrial-like tissue grows outside the uterine cavity, leading to pelvic pain, infertility, and increased risk of ovarian cancer. The present study describes the optimization and characterization of cellular spheroids as building blocks for Kenzan scaffold-free method biofabrication and proof-of-concept models of endometriosis and the endometriotic microenvironment. The spheroid building blocks must be of a specific diameter (~500 μm), compact, round, and smooth to withstand Kenzan biofabrication. Under optimized spheroid conditions for biofabrication, the endometriotic epithelial-like cell line, 12Z, expressed high levels of estrogen-related genes and secreted high amounts of endometriotic inflammatory factors that were independent of TNFα stimulation. Heterotypic spheroids, composed of 12Z and T-HESC, an immortalized endometrial stromal cell line, self-assembled into a biologically relevant pattern, consisting of epithelial cells on the outside of the spheroids and stromal cells in the core. 12Z spheroids were biofabricated into large three-dimensional constructs alone, with HEYA8 spheroids, or as heterotypic spheroids with T-HESC. These three-dimensional biofabricated constructs containing multiple monotypic or heterotypic spheroids represent the first scaffold-free biofabricated in vitro models of endometriosis and the endometriotic microenvironment. These efficient and innovative models will allow us to study the complex interactions of multiple cell types within a biologically relevant microenvironment.
Collapse
Affiliation(s)
- Jillian R. H. Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.R.H.W.); (X.W.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-274-8225
| |
Collapse
|
11
|
Kitajima M, Matsumoto K, Murakami N, Harada A, Kitajima Y, Masuzaki H, Miura K. Ovarian reserve after three-step laparoscopic surgery for endometriomas utilizing dienogest: A pilot study. Reprod Med Biol 2020; 19:425-431. [PMID: 33071645 PMCID: PMC7542007 DOI: 10.1002/rmb2.12349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Surgery for endometriomas may cause detrimental effects on ovarian reserve. We evaluated the safety of three‐step laparoscopic surgery for endometriomas utilizing dienogest in terms of post‐surgical ovarian reserve. Methods Twelve women received first look laparoscopy (FLL) with fenestration and drainage. Immediately after the surgery, they took oral dienogest 2 mg for three months; then, they received second look laparoscopy (SLL) with cystectomy. We compared serum AMH levels between women had three‐step management with dienogest, and another twelve women had conventional one‐step surgery without medications. In women had three‐step procedures, the changes in concentration of proinflammatory cytokines and chemokines in peritoneal fluids were evaluated. Results Serum AMH levels were significantly decreased after three months of dienogest following FLL. AMH levels were also significantly decreased 3‐6 months both after SLL and after one‐step surgery; however, recovery of serum AMH levels at 9‐12 months after surgery was evident in women had three‐step surgery comparing to those of one‐step surgery. Proinflammatory cytokines and chemokines in peritoneal fluids were downregulated at the time of SLL comparing to those of FLL. Conclusions Three‐step surgery with dienogest may be a beneficial approach to protect ovarian reserve. Dienogest may exert its effects in part by lowering proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Michio Kitajima
- Department of Obstetrics and Gynecology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan.,Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Kanako Matsumoto
- Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Naoko Murakami
- Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Ayumi Harada
- Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Yuriko Kitajima
- Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan.,Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology Nagasaki University Graduate School of Biomedical Sciences Nagasaki Japan.,Department of Obstetrics and Gynecology Nagasaki University Hospital Nagasaki Japan
| |
Collapse
|
12
|
Malvezzi H, Marengo EB, Podgaec S, Piccinato CDA. Endometriosis: current challenges in modeling a multifactorial disease of unknown etiology. J Transl Med 2020; 18:311. [PMID: 32787880 PMCID: PMC7425005 DOI: 10.1186/s12967-020-02471-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic inflammatory hormone-dependent condition associated with pelvic pain and infertility, characterized by the growth of ectopic endometrium outside the uterus. Given its still unknown etiology, treatments usually aim at diminishing pain and/or achieving pregnancy. Despite some progress in defining mode-of-action for drug development, the lack of reliable animal models indicates that novel approaches are required. The difficulties inherent to modeling endometriosis are related to its multifactorial nature, a condition that hinders the recreation of its pathology and the identification of clinically relevant metrics to assess drug efficacy. In this review, we report and comment endometriosis models and how they have led to new therapies. We envision a roadmap for endometriosis research, integrating Artificial Intelligence, three-dimensional cultures and organ-on-chip models as ways to achieve better understanding of physiopathological features and better tailored effective treatments.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900 Brazil
| | - Eliana Blini Marengo
- Instituto Butanta- EstabilidadeBiotech Quality Control, São Paulo, SP 05503-900 Brazil
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900 Brazil
| | | |
Collapse
|
13
|
Oettel M, Zentel HJ, Nickisch K. A progestin isn't a progestin: dienogest for endometriosis as a blueprint for future research - Review as a contribution for discussion. Horm Mol Biol Clin Investig 2020; 42:133-142. [PMID: 32663169 DOI: 10.1515/hmbci-2020-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 11/15/2022]
Abstract
The different etiopathogenetic mechanisms and the diversity of clinical features of endometriosis has not yet allowed to identify a causal pharmacological monotherapy satisfying the unresolved medical needs in this important female disease. Therefore, despite the search for new therapeutic principles for the indication, the strategy of gradual optimization of established therapeutic principles should not be disregarded.In the case of progestins, the fact that each compound has its own, specific profile may allow to study the therapeutic relevance of the various signal cascades influenced by their receptors.Using the example of the progestin dienogest, the different genomic and non-genomic mechanisms of action are discussed. It is pharmacodynamic profile is unique compared to other progestins.In light of the emerging multitude of pathomechanisms in endometriosis, a monotherapy may not be possible, and then the search for broad spectrum compounds or combination therapies with dual or multiple mode of action in a clinically relevant dose range might be considered. The progestogenic action may greatly benefit from, by way of example, additional anti-inflammatory and/or anti-fibrotic and/or pro-apoptotic activities. Such a strategy could lead to new drug classes.
Collapse
|
14
|
Reis FM, Coutinho LM, Vannuccini S, Batteux F, Chapron C, Petraglia F. Progesterone receptor ligands for the treatment of endometriosis: the mechanisms behind therapeutic success and failure. Hum Reprod Update 2020; 26:565-585. [PMID: 32412587 PMCID: PMC7317284 DOI: 10.1093/humupd/dmaa009] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite intense research, it remains intriguing why hormonal therapies in general and progestins in particular sometimes fail in endometriosis. OBJECTIVE AND RATIONALE We review here the action mechanisms of progesterone receptor ligands in endometriosis, identify critical differences between the effects of progestins on normal endometrium and endometriosis and envisage pathways to escape drug resistance and improve the therapeutic response of endometriotic lesions to such treatments. SEARCH METHODS We performed a systematic Pubmed search covering articles published since 1958 about the use of progestins, estro-progestins and selective progesterone receptor modulators, to treat endometriosis and its related symptoms. Two reviewers screened the titles and abstracts to select articles for full-text assessment. OUTCOMES Progesterone receptor signalling leads to down-regulation of estrogen receptors and restrains local estradiol production through interference with aromatase and 17 beta-hydroxysteroid dehydrogenase type 1. Progestins inhibit cell proliferation, inflammation, neovascularisation and neurogenesis in endometriosis. However, progesterone receptor expression is reduced and disrupted in endometriotic lesions, with predominance of the less active isoform (PRA) over the full-length, active isoform (PRB), due to epigenetic abnormalities affecting the PGR gene transcription. Oxidative stress is another mechanism involved in progesterone resistance in endometriosis. Among the molecular targets of progesterone in the normal endometrium that resist progestin action in endometriotic cells are the nuclear transcription factor FOXO1, matrix metalloproteinases, the transmembrane gap junction protein connexin 43 and paracrine regulators of estradiol metabolism. Compared to other phenotypes, deep endometriosis appears to be more resistant to size regression upon medical treatments. Individual genetic characteristics can affect the bioavailability and pharmacodynamics of hormonal drugs used to treat endometriosis and, hence, explain part of the variability in the therapeutic response. WIDER IMPLICATIONS Medical treatment of endometriosis needs urgent innovation, which should start by deeper understanding of the disease core features and diverse phenotypes and idiosyncrasies, while moving from pure hormonal treatments to drug combinations or novel molecules capable of restoring the various homeostatic mechanisms disrupted by endometriotic lesions.
Collapse
Affiliation(s)
- Fernando M Reis
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Larissa M Coutinho
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
| | - Silvia Vannuccini
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Felice Petraglia
- Division of Obstetrics and Gynecology, Department of Biomedical, Experimental and Clinical Sciences, Careggi University Hospital University of Florence, Florence, Italy
| |
Collapse
|
15
|
Pluchino N, Mamillapalli R, Wenger JM, Ramyead L, Drakopoulos P, Tille JC, Taylor HS. Estrogen receptor-α immunoreactivity predicts symptom severity and pain recurrence in deep endometriosis. Fertil Steril 2020; 113:1224-1231.e1. [PMID: 32416979 DOI: 10.1016/j.fertnstert.2020.01.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To determine the relationship between steroid receptor expression and pain symptoms in endometriosis. DESIGN Cross-sectional SETTING: University Hospital PATIENT(S): Women with endometriosis (N = 92). INTERVENTION(S) Tissue samples were obtained from patients with surgically diagnosed endometriosis. MAIN OUTCOME MEASURE(S) A tissue microarray (TMA) was generated from patients with endometriosis. Data were collected on the presence and severity of dysmenorrhea, deep dyspareunia, dyschezia, and nonmenstrual pain by use of a numerical rating scale (NRS) at the time of surgery and after 1 year. The intensity of receptor expression was evaluated through immunohistochemistry and measured according to an immunoreactive score (IRS). Clinical variables were correlated to IRS by multivariate logistic regression analysis. RESULTS Estrogen receptor-α (ER-α), progesterone receptor (PR), androgen receptor (AR), and aromatase expression differed among study participants. ER-α expression was reduced by progestin therapy, whereas of expressions of PR, AR, and aromatase were unchanged. Higher ER-α expression increased the likelihood of moderate to severe dysmenorrhea and deep dyspareunia in women not receiving hormonal treatment. In women receiving progestin therapy, persistently higher ER-α expression was correlated with greater likelihood of deep dyspareunia, severe dyschezia, and endometriosis-associated pain persistence at 1 year. CONCLUSION(S) ER-α, PR, AR, and aromatase were all expressed in deep endometriosis. ER-α levels best correlated with severity of symptoms, which suggests that ER is a key driver of deep endometriosis. Progestin treatment was associated with a reduction of ER-α expression; however, failure of ER suppression by progestins was also a predictor of pain severity and recurrence at 1 year.
Collapse
Affiliation(s)
- Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA; Division of Obstetrics and Gynecology, University Hospital of Geneva, Switzerland
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Jean-Marie Wenger
- Division of Obstetrics and Gynecology, University Hospital of Geneva, Switzerland
| | - Lauriane Ramyead
- Division of Obstetrics and Gynecology, University Hospital of Geneva, Switzerland
| | | | | | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
The clinical outcome of Dienogest treatment followed by in vitro fertilization and embryo transfer in infertile women with endometriosis. J Ovarian Res 2019; 12:123. [PMID: 31831028 PMCID: PMC6909621 DOI: 10.1186/s13048-019-0597-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Endometriosis is considered to be the most intractable cause of female infertility. Administering any type of treatment for endometriosis before in vitro fertilization and embryo transfer (IVF-ET) is an important strategy for improving the IVF-ET outcomes for infertile women with endometriosis. In fact, treatment with a gonadotropin-releasing hormone (GnRH) agonist just before IVF-ET has been reported to improve the clinical outcome in endometriosis patients. However, the benefit of Dienogest (DNG), a synthetic progestin, treatment just before IVF-ET remains unclear. METHODS Sixty-eight infertile women with Stage III or IV endometriosis (ovarian endometrial cyst < 4 cm) were recruited for this study. The subjects were divided into 2 groups: a DNG group (n = 33) and a control group (n = 35). DNG was administered orally every day for 12 weeks prior to the conventional IVF-ET cycle in the DNG group. Standard controlled ovarian hyperstimulation with the GnRH agonist long protocol was performed in the control group. The numbers of mature follicles and retrieved oocytes, fertilization rates, implantation rates, and clinical pregnancy rate were compared between the two groups. In addition, the concentrations of inflammatory cytokines, oxidative stress markers, and antioxidants in follicular fluids were also measured. RESULTS The numbers of growing follicles, retrieved oocytes, fertilized oocytes, and blastocysts were significantly lower in the DNG group than in the control group. The fertilization and blastocyst rates were also lower in the DNG group than in the control group. Although there was no significant difference in the implantation rate between the groups, the cumulative pregnancy rate and live birth rate were lower in the DNG group than in the control group. There was no significant difference in the abortion rate. Our results failed to show that DNG reduces the inflammatory cytokine levels and oxidative stress in follicular fluids. CONCLUSIONS Administering DNG treatment just before IVF-ET did not provide any benefits to improve the clinical outcomes for infertile women with endometriosis.
Collapse
|
17
|
Lai ZZ, Yang HL, Ha SY, Chang KK, Mei J, Zhou WJ, Qiu XM, Wang XQ, Zhu R, Li DJ, Li MQ. Cyclooxygenase-2 in Endometriosis. Int J Biol Sci 2019; 15:2783-2797. [PMID: 31853218 PMCID: PMC6909960 DOI: 10.7150/ijbs.35128] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022] Open
Abstract
Endometriosis (EMS) is the most common gynecological disease in women of reproductive age, and it is associated with chronic pelvic pain, dyspareunia and infertility. As a consequence of genetic, immune and environmental factors, endometriotic lesions have high cyclooxygenase (COX)-2 and COX-2-derived prostaglandin E2 (PGE2) biosynthesis compared with the normal endometrium. The transcription of the PTGS2 gene for COX-2 is associated with multiple intracellular signals, which converge to cause the activation of mitogen-activated protein kinases (MAPKs). COX-2 expression can be regulated by several factors, such as estrogen, hypoxia, proinflammatory cytokines, environmental pollutants, metabolites and metabolic enzymes, and platelets. High concentrations of COX-2 lead to high cell proliferation, a low level of apoptosis, high invasion, angiogenesis, EMS-related pain and infertility. COX-2-derived PGE2 performs a crucial function in EMS development by binding to EP2 and EP4 receptors. These basic findings have contributed to COX-2-targeted treatment in EMS, including COX-2 inhibitors, hormone drugs and glycyrrhizin. In this review, we summarize the most recent basic research in detail and provide a short summary of COX-2-targeted treatment.
Collapse
Affiliation(s)
- Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Si-Yao Ha
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Kai-Kai Chang
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - We-Jie Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Xue-Min Qiu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Qiu Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou 215008, People's Republic of China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China
| |
Collapse
|
18
|
Yu P, Li S, Zhang Z, Wen X, Quan W, Tian Q, Gao C, Su W, Zhang J, Jiang R. Progesterone-mediated angiogenic activity of endothelial progenitor cell and angiogenesis in traumatic brain injury rats were antagonized by progesterone receptor antagonist. Cell Prolif 2017; 50. [PMID: 28752929 DOI: 10.1111/cpr.12362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/20/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Progesterone (P4) has the potential therapeutic effects for traumatic brain injury (TBI) whose recovery depended on the enhanced angiogenesis. Endothelial progenitor cell (EPC) plays an essential role in vascular biology. We previously demonstrated that P4 administration improved circulating EPC level and neurological recovery of rat with TBI. Here, we hypothesized that P4 augmented angiogenic potential of EPC and the angiogenesis-related neurorestoration after TBI through classical progesterone receptor (PR). MATERIALS AND METHODS EPC derived from rats were stimulated with graded concentrations (0, 10-10 , 10-9 , 5 × 10-9 , 10-8 , 10-7 mol/L) of P4 or 10-6 mol/L ulipristal acetate (UPA, a PR antagonist). Male rats were subjected to cortical impact injury and treated with (i) DMSO (dimethyl sulfoxide), (ii) P4 and (iii) P4 and UPA. RESULTS It showed that P4 improved the angiogenic potential of EPC, including tube formation, adhesion, migration and vascular endothelial growth factor secretion, in a dose-dependent fashion with the maximal effect achieved at 10-9 mol/L P4. High concentration (10-7 mol/L) of P4 impaired the angiogenic potential of EPC. Notably, 10-6 mol/L UPA antagonized the stimulatory effects of 10-9 mol/L P4. After administrating P4, a significant improvement of neurological function and the restoration of the leaked blood-brain barrier were observed as well as a reduction of the brain water content. Both vessel density and expression of occludin of vessels were increased. When UPA was administered with P4, the neural restoration and angiogenesis were all reversed. Western blot showed that 10-9 mol/L P4 increased the content of PRA and PRB of EPC, while 10-7 mol/L P4 reduced the content of both PR isoforms, but there was no change found in the TBI rats. CONCLUSIONS It may suggest that P4-mediated angiogenic activity of EPC and angiogenesis in TBI rats were antagonized by PR antagonist.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Shengjie Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhifei Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaolong Wen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qilong Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Wanqiang Su
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
19
|
Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells. Eur J Obstet Gynecol Reprod Biol 2017; 214:65-70. [DOI: 10.1016/j.ejogrb.2017.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
|
20
|
Drospirenone reduces inflammatory cytokines, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) expression in human endometriotic stromal cells. J Reprod Immunol 2017; 119:44-48. [DOI: 10.1016/j.jri.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 11/20/2022]
|
21
|
Dienogest reduces proliferation, NGF expression and nerve fiber density in human adenomyosis. Eur J Obstet Gynecol Reprod Biol 2016; 207:157-161. [PMID: 27865118 DOI: 10.1016/j.ejogrb.2016.10.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the in vivo effect of dienogest on proliferation, apoptosis, aromatase expression, vascular density, nerve growth factor (NGF) expression and nerve fiber density in human adenomyosis tissue. STUDY DESIGN Twelve women who underwent hysterectomy for adenomyosis were enrolled. Six patients received dienogest treatment prior to hysterectomy (dienogest group), and age-matched six patients who had not received any hormonal treatment for ≥3 months before surgery (control group). Cell proliferation, vascular and nerve fiber density in adenomyosis tissue were evaluated by staining for Ki67, von Willebrand factor and PGP9.5, respectively. Apoptosis was detected using the TUNEL assay. The expression aromatase and NGF were evaluated by staining for corresponding antibodies. RESULTS The proportion of Ki67 positive epithelial cells was significantly lower in samples from dienogest-treated patients in comparison with controls (p<0.05). The density of blood vessels in adenomyosis was marginally lower in the dienogest group in comparison with controls but statistical significance was not reached (p=0.07). The intensity of NGF expression and the density of nerve fibers were significantly lower in the dienogest group compared with controls (p<0.05 for both). CONCLUSION This study demonstrates that adenomyosis, taken from patients treated with dienogest, shows remarkable histological features, such as reductions in proliferation, NGF expression and nerve fiber density. These findings indicate the impact of dienogest on local histological events, and explains its therapeutic effect on adenomyosis.
Collapse
|
22
|
Grandi G, Mueller M, Bersinger NA, Cagnacci A, Volpe A, McKinnon B. Does dienogest influence the inflammatory response of endometriotic cells? A systematic review. Inflamm Res 2015; 65:183-92. [PMID: 26650031 DOI: 10.1007/s00011-015-0909-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE AND DESIGN A systematic review of all literature was done to assess the ability of the progestin dienogest (DNG) to influence the inflammatory response of endometriotic cells. MAIN OUTCOME MEASURES In vitro and in vivo studies report an influence of DNG on the inflammatory response in eutopic or ectopic endometrial tissue (animal or human). RESULTS After strict inclusion criteria were satisfied, 15 studies were identified that reported a DNG influence on the inflammatory response in endometrial tissue. These studies identified a modulation of prostaglandin (PG) production and metabolism (PGE2, PGE2 synthase, cyclo-oxygenase-2 and microsomal PGE synthase-1), pro-inflammatory cytokine and chemokine production [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, monocyte chemoattractant protein-1 and stromal cell-derived factor-1], growth factor biosynthesis (vascular endothelial growth factor and nerve growth factor) and signaling kinases, responsible for the control of inflammation. Evidence supports a progesterone receptor-mediated inhibition of the inflammatory response in PR-expressing epithelial cells. It also indicated that DNG inhibited the inflammatory response in stromal cells, however, whether this was via a PR-mediated mechanism is not clear. CONCLUSIONS DNG has a significant effect on the inflammatory microenvironment of endometriotic lesions that may contribute to its clinical efficacy. A better understanding of the specific anti-inflammatory activity of DNG and whether this contributes to its clinical efficacy can help develop treatments that focus on the inhibition of inflammation while minimizing hormonal modulation.
Collapse
Affiliation(s)
- Giovanni Grandi
- Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.,Department of Clinical Research, University of Berne, Murtenstrasse 35, 3010, Berne, Switzerland
| | - Michael Mueller
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, 3010, Berne, Switzerland.,Department of Clinical Research, University of Berne, Murtenstrasse 35, 3010, Berne, Switzerland
| | - Nick A Bersinger
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, 3010, Berne, Switzerland.,Department of Clinical Research, University of Berne, Murtenstrasse 35, 3010, Berne, Switzerland
| | - Angelo Cagnacci
- Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Annibale Volpe
- Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Brett McKinnon
- Department of Obstetrics and Gynaecology, Inselspital, Berne University Hospital, Effingerstrasse 102, 3010, Berne, Switzerland. .,Department of Clinical Research, University of Berne, Murtenstrasse 35, 3010, Berne, Switzerland.
| |
Collapse
|
23
|
Ferrero S, Alessandri F, Racca A, Leone Roberti Maggiore U. Treatment of pain associated with deep endometriosis: alternatives and evidence. Fertil Steril 2015; 104:771-792. [DOI: 10.1016/j.fertnstert.2015.08.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
|