1
|
Cai H, Wu Y, Zhang X. A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities. Chin J Nat Med 2025; 23:169-181. [PMID: 39986693 DOI: 10.1016/s1875-5364(25)60821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 02/24/2025]
Abstract
Plant-derived natural products have long been a vital source for developing therapeutic drugs. Wedelolactone (WDL), a coumestan isolated from Eclipta prostrata, Wedelia calendulacea, Wedelia chinensis, and Sphagneticola trilobata, demonstrates a broad spectrum of therapeutic potential, including anticancer, anti-inflammatory, anti-obesity, anti-myotoxic, antimicrobial, anti-diabetic, and tissue-protective activities. This review synthesizes information on the isolation, total synthesis, pharmacological activity, underlying mechanisms, and pharmacokinetic properties of WDL. Additionally, it offers insights into potential clinical applications and future drug discovery avenues utilizing WDL or its derivatives, either independently or in combination with other pharmaceuticals.
Collapse
Affiliation(s)
- Haiping Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Peinado RDS, Martins LG, Pacca CC, Saivish MV, Borsatto KC, Nogueira ML, Tasic L, Arni RK, Eberle RJ, Coronado MA. HR-MAS NMR Metabolomics Profile of Vero Cells under the Influence of Virus Infection and nsP2 Inhibitor: A Chikungunya Case Study. Int J Mol Sci 2024; 25:1414. [PMID: 38338694 PMCID: PMC10855909 DOI: 10.3390/ijms25031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Carolina C. Pacca
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Marielena V. Saivish
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Kelly C. Borsatto
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Maurício L. Nogueira
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Raphael J. Eberle
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mônika A. Coronado
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
3
|
Gou Y, Wang Z, Zhou L, Du J, Huang J, Li J, Zhang X, Guan S. UPLC-QTOF-MS-based lipidomic study of wedelolactone in acute colitis mice induced by dextran sulfate sodium. Heliyon 2023; 9:e20162. [PMID: 37809775 PMCID: PMC10559927 DOI: 10.1016/j.heliyon.2023.e20162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammatory bowel disease is a relapsing inflammatory disease seriously endanger human health. Wedelolactone (WED) is a major active ingredient from Eclipta prostrata (L.) L. and has shown anti-inflammatory effects. However, the mechanism of WED in treating inflammatory colitis remains unknown. We aimed to investigate the mechanisms of WED in treating ulcerative colitis through lipidomic study. Sixty male C57BL/6 mice were exposed to DSS to induce acute colitis. Disease progression was judged by the disease activity index (DAI) and pathological changes of colon tissue. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was performed for colon and plasma lipidomics analyses. Differential metabolites in the three groups were distinguished by univariate and multivariate analysis. WED exerted anti-inflammatory effects representing by body weight and DAI score. Three metabolites were identified in plasma and 20 in colon. According to pathway analysis, the effects of WED on colitis were associated with seven pathways. The glycerophospholipid metabolism and ether lipid metabolism were the primary pathways. The findings provide important insight of the mechanism of WED in treating DSS induced colitis through lipidomic perspective.
Collapse
Affiliation(s)
- Yuanyuan Gou
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Zichen Wang
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Liping Zhou
- Evaluation and Monitoring Center of Occupational Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, PR China
| | - Jinpan Du
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jiaxin Huang
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Jing Li
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510089, PR China
| | - Su Guan
- MOE Joint International Research Laboratory of Synthetic Biology and Medicine, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Qin W, Yang L, Chen X, Ye S, Liu A, Chen D, Hu K. Wedelolactone Promotes the Chondrogenic Differentiation of Mesenchymal Stem Cells by Suppressing EZH2. Int J Stem Cells 2023; 16:326-341. [PMID: 36310024 PMCID: PMC10465333 DOI: 10.15283/ijsc22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 08/31/2023] Open
Abstract
Background and Objectives Osteoarthritis (OA) is a degenerative disease that leads to the progressive destruction of articular cartilage. Current clinical therapeutic strategies are moderately effective at relieving OA-associated pain but cannot induce chondrocyte differentiation or achieve cartilage regeneration. We investigated the ability of wedelolactone, a biologically active natural product that occurs in Eclipta alba (false daisy), to promote chondrogenic differentiation. Methods and Results Real-time reverse transcription-polymerase chain reaction, immunohistochemical staining, and immunofluorescence staining assays were used to evaluate the effects of wedelolactone on the chondrogenic differentiation of mesenchymal stem cells (MSCs). RNA sequencing, microRNA (miRNA) sequencing, and isobaric tags for relative and absolute quantitation analyses were performed to explore the mechanism by which wedelolactone promotes the chondrogenic differentiation of MSCs. We found that wedelolactone facilitates the chondrogenic differentiation of human induced pluripotent stem cell-derived MSCs and rat bone-marrow MSCs. Moreover, the forkhead box O (FOXO) signaling pathway was upregulated by wedelolactone during chondrogenic differentiation, and a FOXO1 inhibitor attenuated the effect of wedelolactone on chondrocyte differentiation. We determined that wedelolactone reduces enhancer of zeste homolog 2 (EZH2)-mediated histone H3 lysine 27 trimethylation of the promoter region of FOXO1 to upregulate its transcription. Additionally, we found that wedelolactone represses miR-1271-5p expression, and that miR-1271-5p post-transcriptionally suppresses the expression of FOXO1 that is dependent on the binding of miR-1271-5p to the FOXO1 3'-untranscribed region. Conclusions These results indicate that wedelolactone suppresses the activity of EZH2 to facilitate the chondrogenic differentiation of MSCs by activating the FOXO1 signaling pathway. Wedelolactone may therefore improve cartilage regeneration in diseases characterized by inflammatory tissue destruction, such as OA.
Collapse
Affiliation(s)
- Wei Qin
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaotong Chen
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shanyu Ye
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunhua Hu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Tian S, Li YL, Wang J, Dong RC, Wei J, Ma Y, Liu YQ. Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116433. [PMID: 37004744 DOI: 10.1016/j.jep.2023.116433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Ecliptae herba (Eclipta prostrata (L.) L.) is an ethnomedicinal herb, which is used mainly to nourish kidney and thus strengthen bones according to traditional Chinese medicine theory. Pharmacological studies have supported the ethnomedicine use, showing that Ecliptae herba extract has an anti-osteoporotic effect in vivo and promoted osteoblast proliferation and activity in vitro. However, the molecular mechanism of Ecliptae herba on osteoblast differentiation from bone marrow mesenchymal stem cells (BMSC), the progenitors of osteoblasts, is still unclear. AIM OF THE STUDY N6-methyladenosine (m6A) mRNA epigenetic modification may play a key role in promoting osteoblastic differentiation, and thus treating osteoporosis. This study sought to assess the mechanism through which Eclipate herba and its component wedelolactone influence m6A modification during the process of osteoblastogenesis from BMSC. MATERIAL AND METHODS The alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were applied to determine osteoblastogenesis from BMSC. Western blot and quantitative real-time PCR were performed. RNA sequencing analysis was used to determine the characteristics of m6A methylation. Stable knocking down of METTL3 using lentiviral-based shRNA was performed. RESULTS Upon 9 d treatment of BMSC with ethyl acetate extract of Ecliptae herba (MHL), ALP activity and ossification level increased in comparison with osteogenic medium (OS)-treated control. The expression of methyltransferase METTL3 and METTL14 was significantly increased, but WTAP expression had no change in response to MHL treatment. Knocking down of METTL3 resulted in a decrease in MHL-induced ALP activity, ossification level as well as mRNA expression of Osterix and Osteocalcin, two bone formation-related markers. The level of m6A increased when BMSC was treated with MHL for 9 d. RNA sequencing analysis indicated that MHL treatment altered mRNA m6A modification of genes associated with osteoblastogenesis. By kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, HIF-1α, PI3K/Akt, and Hippo signaling pathways were enriched and associated with m6A modification. The expression of m6A-modified genes including HIF-1α, VEGF-A, and RASSF1, was upregulated by MHL, but the upregulation was reversed after METTL3 knockdown. Additionally, the enhanced expression of METTL3 was also observed after treatment with wedelolactone, a component from MHL. CONCLUSIONS These results suggested a previously uncharacterized mechanism of MHL and wedelolactone on osteoblastogenesis, by which METTL3-mediated m6A methylation is involved and thus contributes to the enhancement of osteoblastogenesis.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yi-Lin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Ren-Chao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
6
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
7
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
8
|
Ha NM, Hop NQ, Son NT. Wedelolactone: A molecule of interests. Fitoterapia 2023; 164:105355. [PMID: 36410612 DOI: 10.1016/j.fitote.2022.105355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
9
|
Transcription factor c-Myb: novel prognostic factor in osteosarcoma. Clin Exp Metastasis 2022; 39:375-390. [PMID: 34994868 DOI: 10.1007/s10585-021-10145-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development. However, the relevance of c-Myb in control of osteosarcoma progression remains unknown. A retrospective clinical study was carried out to assess a relationship between c-Myb expression in archival osteosarcoma tissues and prognosis in a cohort of high-grade osteosarcoma patients. In addition, MYB was depleted in metastatic osteosarcoma cell lines SAOS-2 LM5 and 143B and their growth, chemosensitivity, migration and metastatic activity were determined. Immunohistochemical analysis revealed that high c-Myb expression was significantly associated with poor overall survival in the cohort and metastatic progression in young patients. Increased level of c-Myb was detected in metastatic osteosarcoma cell lines and its depletion suppressed their growth, colony-forming capacity, migration and chemoresistance in vitro in a cell line-dependent manner. MYB knock-out resulted in reduced metastatic activity of both SAOS-2 LM5 and 143B cell lines in immunodeficient mice. Transcriptomic analysis revealed the c-Myb-driven functional programs enriched for genes involved in the regulation of cell growth, stress response, cell adhesion and cell differentiation/morphogenesis. Wnt signaling pathway was identified as c-Myb target in osteosarcoma cells. Taken together, we identified c-Myb as a negative prognostic factor in osteosarcoma and showed its involvement in the regulation of osteosarcoma cell growth, chemosensitivity, migration and metastatic activity.
Collapse
|
10
|
Synthesis and Spectral Characterisation of (E)-3-(3-(4 (Dimethylamino)Phenyl)Acrylo-yl)-4-Hydroxy-2H-Chromen-2-One and Their Antibacterial Activity and Acetylcholinesterase Inhibition. J CHEM-NY 2021. [DOI: 10.1155/2021/6101359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new coumarin derivative, (E)-3-(3-(4-(dimethylamino) phenyl) acrylo-yl)-4-hydroxy-2H-chromen-2-one (3), was synthesized by the condensation of 3-acetyl-4-hydroxycoumarin (1) with 4-N,N-dimethylaminobenzaldehyde (2) in the presence of piperidine in ethanol. The structure of the synthesized compound was characterized using spectroscopic data (IR and 1H NMR) and elemental analysis. The antimicrobial properties and acetylcholinesterase inhibition activity (AChEI) of coumarin 3 were investigated, with the highest observed AChEI activity providing 48.25% inhibition. The electronic absorption and emission spectra revealed that 3 exists as two, main keto-enol tautomers. The ratios of these tautomers in both protic and aprotic solvents with different polarities and dielectric constants were calculated. The fluorescence of coumarin 3 was enhanced upon increasing the medium viscosity, which was due to the resultant molecular rigidity. This criterion was further investigated using DNA, whereby 3 showed enhanced fluorescence upon its uptake in DNA grooves and was therefore tested as a novel DNA fluorescent stain.
Collapse
|
11
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
12
|
Facile green preparation of PLGA nanoparticles using wedelolactone: Its cytotoxicity and antimicrobial activities. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Tu Y, Yang Y, Li Y, He C. Naturally occurring coumestans from plants, their biological activities and therapeutic effects on human diseases. Pharmacol Res 2021; 169:105615. [PMID: 33872808 DOI: 10.1016/j.phrs.2021.105615] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Naturally occurring coumestans are known as a collection of plant-derived polycyclic aromatic secondary metabolites which are characterized by the presence of an oxygen heterocyclic four-ring system comprising a coumarin moiety and a benzofuran moiety sharing a C˭C bond. Recently, there is an increasing attention in excavating the medicinal potential of coumestans, particularly coumestrol, wedelolactone, psoralidin and glycyrol, in a variety of diseases. This review is a comprehensive inventory of the chemical structures of coumestans isolated from various plant sources during the period of 1956-2020, together with their reported biological activities. 120 molecules were collected and further classified as coumestans containing core skeleton, dimethylpyranocoumestans, furanocoumestans, O-glycosylated coumestans and others, which showed a wide range of pharmacological activities including estrogenic, anti-cancer, anti-inflammatory, anti-osteoporotic, organ protective, neuroprotective, anti-diabetic and anti-obesity, antimicrobial, immunosuppressive, antioxidant and skin-protective activities. Furthermore, this review focuses on the counteraction of coumestans against bone diseases and organ damages, and the involved molecular mechanisms, which could provide important information to better understand the medicinal values of these compounds. This review is intended to be instructive for the rational design and development of less toxic and more effective drugs with a coumestan scaffold.
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
14
|
Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders. Neurochem Res 2019; 45:204-214. [PMID: 31828497 DOI: 10.1007/s11064-019-02925-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders present a broad group of neurological diseases and remain one of the greatest challenges and burdens to mankind. Maladies like amyotrophic lateral sclerosis, Alzheimer's disease, stroke or spinal cord injury commonly features astroglia involvement (astrogliosis) with signs of inflammation. Regenerative, paracrine and immunomodulatory properties of human mesenchymal stromal cells (hMSCs) could target the above components, thus opening new therapeutic possibilities for regenerative medicine. A special interest should be given to hMSCs derived from the umbilical cord (UC) tissue, due to their origin, properties and lack of ethical paradigms. The aim of this study was to establish standard operating and scale-up good manufacturing practice (GMP) protocols of UC-hMSCs isolation, characterization, expansion and comparison of cells' properties when harvested on T-flasks versus using a large-scale bioreactor system. Human UC-hMSCs, isolated by tissue explant culture technique from Wharton's jelly, were harvested after reaching 75% confluence and cultured using tissue culture flasks. Obtained UC-hMSCs prior/after the cryopreservation and after harvesting in a bioreactor, were fully characterized for "mesenchymness" immunomodulatory, tumorigenicity and genetic stability, senescence and cell-doubling properties, as well as gene expression features. Our study demonstrates an efficient and simple technique for large scale UC-hMSCs expansion. Harvesting of UC-hMSCs' using classic and large scale methods did not alter UC-hMSCs' senescence, genetic stability or in vitro tumorigenicity features. We observed comparable growth and immunomodulatory capacities of fresh, frozen and expanded UC-hMSCs. We found no difference in the ability to differentiate toward adipogenic, osteogenic and chondrogenic lineages between classic and large scale UC-hMSCs expansion methods. Both, methods enabled derivation of genetically stabile cells with typical mesenchymal features. Interestingly, we found significantly increased mRNA expression levels of neural growth factor (NGF) and downregulated insulin growth factor (IGF) in UC-hMSCs cultured in bioreactor, while IL4, IL6, IL8, TGFb and VEGF expression levels remained at the similar levels. A culturing of UC-hMSCs using a large-scale automated closed bioreactor expansion system under the GMP conditions does not alter basic "mesenchymal" features and quality of the cells. Our study has been designed to pave a road toward translation of basic research data known about human UC-MSCs for the future clinical testing in patients with neurological and immunocompromised disorders. An industrial manufacturing of UC-hMSCs next will undergo regulatory approval following advanced therapy medicinal products (ATMP) criteria prior to clinical application and approval to be used in patients.
Collapse
|
15
|
Sarwar S, Amed T, Qazi NG, Yu JQ, Huq F. Prospects of Wedelolactone as a Chemotherapeutic Agent in Gynecological Cancers; Clue From its In Vitro and In Silico Investigation. Curr Comput Aided Drug Des 2019; 16:365-375. [PMID: 31749430 DOI: 10.2174/1573409915666191015113134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 07/29/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Identification and development of new drug candidates to be used singly or in combination therapy is critical in anticancer research. In recent years, accumulating evidence encouraged us to investigate the anti-proliferative effects of a small and emerging phytochemical Wedelolactone (WDL) in estrogen-dependent and independent multiple gynecological tumor models. OBJECTIVE The aim of this study was to investigate the growth inhibitory effect of WDL on estrogen- dependent and independent gynecological cell lines and to explore its inhibitory potential towards key targets through in silico study. METHODS Cytotoxicity of WDL was investigated in human breast and ovarian cancer cell lines (MCF-7 and SKOV3) through 3-(4,5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. Epigallocatechingallate (EGCG) was used as reference natural compound while cisplatin was taken as a standard clinical agent. Both WDL and EGCG in combination with cisplatin were also evaluated for their combined growth inhibitory potential in MCF-7 cells. WDL was also evaluated in silico against key factors including braf kinases, CDPK, ERα, aromatase, topoisomerase II and dihydrofolate reductase (DHFR) playing pivotal roles in driving multiple tumors. RESULTS AND DISCUSSION The IC50 value of WDL was 25.77 ± 4.82 μM and 33.64 ± 1.45 μM in MCF-7 and SKOV-3 respectively. The binding energy order was as follows; WDL: DHFR >Braf kinases > CDPK; aromatase > topoisomerase II> ERα > NFkB > alkaline phosphatase; EGCG dihydrofolatereductase (DHFR) > aromatase >CDPK > topoisomerase II > braf kinases > alkaline phosphatase > CDPK > ERα > NFkB. CONCLUSION We identified WDL as a cytotoxic agent in breast and ovarian tumor models with the potential to inhibit multiple targets in the oncogenic pathway including estrogen receptor ERα, as depicted through its in silico study. Based on our own research findings and from literature evidence, we conclude that further research should be encouraged to investigate different aspects of wedelolactone as an additional agent to be combined with antiestrogen/endocrine therapy.
Collapse
Affiliation(s)
- Sadia Sarwar
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| | - Tauqeer Amed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jun Qing Yu
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| | - Fazlul Huq
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, NSW, Australia
| |
Collapse
|
16
|
Song X, Luo X, Sheng J, Li J, Zhu Z, Du Z, Miao H, Yan M, Li M, Zou Y. Copper-catalyzed intramolecular cross dehydrogenative coupling approach to coumestans from 2'-hydroxyl-3-arylcoumarins. RSC Adv 2019; 9:17391-17398. [PMID: 35519854 PMCID: PMC9064580 DOI: 10.1039/c9ra01909j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
A copper-catalyzed intramolecular cross dehydrogenative C-O coupling reaction of 2'-hydroxyl-3-arylcoumarins was developed. This protocol provided a facile and efficient strategy for the construction of natural coumestans and derivatives in moderate to high yields. This transformation exhibited good functional group compatibility and was amenable to substrates with free phenolic hydroxyl groups.
Collapse
Affiliation(s)
- Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Xiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Jianfei Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Zefeng Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Co., Ltd Zhongshan 528451 P. R. China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Meng Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Mingkang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510640 P. R. China
- Zhongshan WanHan Pharmceutical Co., Ltd Zhongshan 528451 P. R. China
| |
Collapse
|
17
|
Yang JY, Tao LJ, Liu B, You XY, Zhang CF, Xie HF, Li RS. Wedelolactone Attenuates Pulmonary Fibrosis Partly Through Activating AMPK and Regulating Raf-MAPKs Signaling Pathway. Front Pharmacol 2019; 10:151. [PMID: 30890932 PMCID: PMC6411994 DOI: 10.3389/fphar.2019.00151] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/08/2019] [Indexed: 12/18/2022] Open
Abstract
Pulmonary fibrosis is common in a variety of inflammatory lung diseases, there is currently no effective clinical drug treatment. It has been reported that the ethanol extract of Eclipta prostrata L. can improve the lung collagen deposition and fibrosis pathology induced by bleomycin (BLM) in mice. In the present study, we studied whether wedelolactone (WEL), a major coumarin ingredient of E. prostrata, provided protection against BLM-induced pulmonary fibrosis. ICR or C57/BL6 strain mice were treated with BLM to establish lung fibrosis model. WEL (2 or 10 mg/kg) was given daily via intragastric administration for 2 weeks starting at 7-day after intratracheal instillation. WEL at 10 mg/kg significantly reduced BLM-induced inflammatory cells infiltration, pro-inflammatory factors expression, and collagen deposition in lung tissues. Additionally, treatment with WEL also impaired BLM-induced increases in fibrotic marker expression (collagen I and α-SMA) and decrease in an anti-fibrotic marker (E-cadherin). Treatment with WEL significantly prevented BLM-induced increase in TGF-β1 and Smad2/3 phosphorylation in the lungs. WEL administration (10 mg/kg) also significantly promoted AMPK activation compared to model group in BLM-treated mice. Further investigation indicated that activation of AMPK by WEL can suppressed the transdifferentiation of primary lung fibroblasts and the epithelial mesenchymal transition (EMT) of alveolar epithelial cells, the inhibitive effects of WEL was significantly blocked by an AMPK inhibitor (compound C) in vitro. Together, these results suggest that activation of AMPK by WEL followed by reduction in TGFβ1/Raf-MAPK signaling pathways may have a therapeutic potential in pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin-Yu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Li-Jun Tao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Bei Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xin-Yi You
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Chao-Feng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Hai-Feng Xie
- Chengdu Biopurify Phytochemicals Ltd., Chengdu, China
| | - Ren-Shi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Yang J, Wen L, Jiang Y, Yang B. Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends Endocrinol Metab 2019; 30:66-76. [PMID: 30527917 DOI: 10.1016/j.tem.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022]
Abstract
Estrogen receptors (ERs) are transcription factors highly involved in physiological development and metabolism in the human body. They also play important roles in the treatment of cancer and metabolic diseases. Chemicals that interact with ERs can be used to treat diseases and maintain health. Phytoestrogens are natural chemicals that have been documented to possess significant ER modulatory activities. However, since phytoestrogens usually exist at low quantities in nature, heterologous biosynthesis techniques have quickly developed in recent years in order meet the demands for needed therapeutic amounts. In this review, the performance of phytoestrogens as ER modulators is described along with recent advances in biosynthesis techniques.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Trimodal synergistic antitumor drug delivery system based on graphene oxide. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:142-152. [PMID: 30300749 DOI: 10.1016/j.nano.2018.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
A multifunctional antitumor drug delivery system was synthesized based on graphene oxide (GO) for near-infrared (NIR) light controlling chemotherapeutic/photothermal (PTT) /photodynamic (PDT) trimodal synergistic therapy. The system named ICG-Wed-GO was formed by co-loading wedelolactone (Wed) and indocyanine green (ICG) on the surface of GO through π-π stacking interaction. Under NIR laser irradiation, ICG-Wed-GO could effectively absorb and transform optical energy to heat, generate reactive oxygen species (ROS) to ablating and damage tumor cells. The temperature of ICG-Wed-GO solution reached up to 79.4 °C in 10 min with NIR irradiation. In in vitro and in vivo study, ICG-Wed-GO showed excellent antitumor effect. After 14-day treatment of ICG-Wed-GO with NIR laser irradiation, the tumor disappeared completely on tumor-bearing mice. The low biotoxicity of ICG-Wed-GO was also proved. The system achieved the synergistic trimodal chemotherapeutic/photothermal/photodynamic treatment and demonstrated excellent antitumor effect, which is expected to have a greater potential for cancer therapy.
Collapse
|
20
|
Song W, Liu QS, Sun Z, Yang X, Zhou Q, Jiang G. Polyfluorinated iodine alkanes regulated distinct breast cancer cell progression through binding with estrogen receptor alpha or beta isoforms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:300-307. [PMID: 29665550 DOI: 10.1016/j.envpol.2018.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Polyfluorinated iodine alkanes (PFIs) are a kind of emerging chemicals with endocrine disrupting effects. Based on the different binding preferences of PFIs to estrogen receptor alpha and beta isoforms (ERα and β), two representative PFIs, dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were selected to evaluate their effects on the proliferation of two kinds of breast cancer cells with different ERα/β expression levels, MCF-7 and T47D. The cell viability assay showed PFHxDI could cause higher cellular toxicity than did PFHxI in both MCF-7 and T47D. MCF-7 with relatively higher ERα/β expression ratio was more vulnerable to the cytotoxic treatments of PFHxI and PFHxDI when compared with T47D cells with relatively lower ERα/β expression ratio. EdU incorporation and cell cycle analysis revealed that, similar to 17β-estrodiol (E2), non-cytotoxic levels of PFHxDI could significantly promote the proliferation of MCF-7 by increasing cell population at S phase (p < 0.01), while T47D proliferation was not influenced by PFHxI exposure due to cell cycle arrest at G2/M phase. The cellular responses caused by estrogenic PFIs were dominantly mediated by their preferential binding affinities for ER isoforms, which would be helpful in the accurate assessment for their potential influences on the breast cancer progression.
Collapse
Affiliation(s)
- Wenting Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Medical College, Henan Polytechnic University, Jiaozuo, 454000, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, PR China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
21
|
Panda N, Mattan I. One-pot two-step synthesis of 3-iodo-4-aryloxy coumarins and their Pd/C-catalyzed annulation to coumestans. RSC Adv 2018; 8:7716-7725. [PMID: 35539154 PMCID: PMC9078490 DOI: 10.1039/c7ra12419h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/11/2018] [Indexed: 11/21/2022] Open
Abstract
An efficient protocol for the synthesis of various coumestans from the intramolecular annulation of 3-iodo-4-aryloxy coumarins through C–H activation has been developed.
Collapse
Affiliation(s)
- Niranjan Panda
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| | - Irshad Mattan
- Department of Chemistry
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
22
|
Wei W, Ding M, Zhou K, Xie H, Zhang M, Zhang C. Protective effects of wedelolactone on dextran sodium sulfate induced murine colitis partly through inhibiting the NLRP3 inflammasome activation via AMPK signaling. Biomed Pharmacother 2017; 94:27-36. [DOI: 10.1016/j.biopha.2017.06.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
|
23
|
Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18040729. [PMID: 28353647 PMCID: PMC5412315 DOI: 10.3390/ijms18040729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.
Collapse
|
24
|
Neog K, Borah A, Gogoi P. Palladium(II)-Catalyzed C–H Bond Activation/C–C and C–O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans. J Org Chem 2016; 81:11971-11977. [DOI: 10.1021/acs.joc.6b01966] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kashmiri Neog
- Applied Organic Chemistry
Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam Jorhat 785006, India
| | - Ashwini Borah
- Applied Organic Chemistry
Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam Jorhat 785006, India
| | - Pranjal Gogoi
- Applied Organic Chemistry
Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam Jorhat 785006, India
| |
Collapse
|
25
|
Mackey K, Pardo LM, Prendergast AM, Nolan MT, Bateman LM, McGlacken GP. Cyclization of 4-Phenoxy-2-coumarins and 2-Pyrones via a Double C–H Activation. Org Lett 2016; 18:2540-3. [DOI: 10.1021/acs.orglett.6b00751] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katrina Mackey
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Leticia M. Pardo
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Aisling M. Prendergast
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Marie-T. Nolan
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Lorraine M. Bateman
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Gerard P. McGlacken
- Department of Chemistry and Analytical & Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
26
|
Nolan MT, Pardo LM, Prendergast AM, McGlacken GP. Intramolecular Direct Arylation of 3-Halo-2-pyrones and 2-Coumarins. J Org Chem 2015; 80:10904-13. [DOI: 10.1021/acs.joc.5b02027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marie-T. Nolan
- Department of Chemistry and
Analytical and Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Leticia M. Pardo
- Department of Chemistry and
Analytical and Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Aisling M. Prendergast
- Department of Chemistry and
Analytical and Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| | - Gerard P. McGlacken
- Department of Chemistry and
Analytical and Biological Chemistry Research Facility, University College Cork, College Road, Cork, Ireland
| |
Collapse
|