1
|
Bushinsky DA, Krieger NS. Effects of Acid on Bone. Kidney Int 2022; 101:1160-1170. [DOI: 10.1016/j.kint.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
2
|
Krieger NS, Chen L, Becker J, Chan MR, Bushinsky DA. Deletion of the proton receptor OGR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption. Kidney Int 2020; 99:609-619. [PMID: 33159961 DOI: 10.1016/j.kint.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
Metabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice). We studied bones from three-month old female mice and the differentiated osteoclasts derived from bone marrow of femurs from these knockout and wild type mice. MicroCT demonstrated increased density in tibiae and femurs but not in vertebrae of the knockout mice. Tartrate resistant acid phosphatase staining of tibia indicated a decrease in osteoclast number and surface area/bone surface from knockout compared to wild type mice. Osteoclasts derived from the marrow of knockout mice demonstrated decreased pit formation, osteoclast staining and osteoclast-specific gene expression compared to those from wild type mice. In response to metabolic acidosis, osteoclasts from knockout mice had decreased nuclear translocation of NFATc1, a transcriptional regulator of differentiation, and no increase in size or number compared to osteoclasts from wild type mice. Thus, loss of osteoclast OGR1 decreased both basal and metabolic acidosis-induced osteoclast activity indicating osteoclast OGR1 is important in mediating metabolic acidosis-induced bone resorption. Understanding the role of OGR1 in metabolic acidosis-induced bone resorption will provide insight into bone loss in acidotic patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA.
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Jennifer Becker
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michaela R Chan
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
3
|
Misof BM, Blouin S, Hofstaetter JG, Roschger P, Zwerina J, Erben RG. No Role of Osteocytic Osteolysis in the Development and Recovery of the Bone Phenotype Induced by Severe Secondary Hyperparathyroidism in Vitamin D Receptor Deficient Mice. Int J Mol Sci 2020; 21:E7989. [PMID: 33121142 PMCID: PMC7662929 DOI: 10.3390/ijms21217989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Osteocytic osteolysis/perilacunar remodeling is thought to contribute to the maintenance of mineral homeostasis. Here, we utilized a reversible, adult-onset model of secondary hyperparathyroidism to study femoral bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging. Male mice with a non-functioning vitamin D receptor (VDRΔ/Δ) or wild-type mice were exposed to a rescue diet (RD) (baseline) and subsequently to a low calcium challenge diet (CD). Thereafter, VDRΔ/Δ mice received either the CD, a normal diet (ND), or the RD. At baseline, BMDD and OLS characteristics were similar in VDRΔ/Δ and wild-type mice. The CD induced large cortical pores, osteomalacia, and a reduced epiphyseal average degree of mineralization in the VDRΔ/Δ mice relative to the baseline (-9.5%, p < 0.05 after two months and -10.3%, p < 0.01 after five months of the CD). Switching VDRΔ/Δ mice on the CD back to the RD fully restored BMDD to baseline values. However, OLS remained unchanged in all groups of mice, independent of diet. We conclude that adult VDRΔ/Δ animals on an RD lack any skeletal abnormalities, suggesting that VDR signaling is dispensable for normal bone mineralization as long as mineral homeostasis is normal. Our findings also indicate that VDRΔ/Δ mice attempt to correct a calcium challenge by enhanced osteoclastic resorption rather than by osteocytic osteolysis.
Collapse
Affiliation(s)
- Barbara M. Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Jochen G. Hofstaetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
- Michael Ogon Laboratory for Orthopaedic Research, Orthopaedic Hospital Vienna Speising, 1130 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Deptartment, Hanusch Hospital, 11140 Vienna, Austria; (S.B.); (J.G.H.); (P.R.); (J.Z.)
| | - Reinhold G. Erben
- Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
4
|
Dole NS, Yee CS, Mazur CM, Acevedo C, Alliston T. TGFβ Regulation of Perilacunar/Canalicular Remodeling Is Sexually Dimorphic. J Bone Miner Res 2020; 35:1549-1561. [PMID: 32282961 PMCID: PMC9126317 DOI: 10.1002/jbmr.4023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Bone fragility is the product of defects in bone mass and bone quality, both of which show sex-specific differences. Despite this, the cellular and molecular mechanisms underpinning the sexually dimorphic control of bone quality remain unclear, limiting our ability to effectively prevent fractures, especially in postmenopausal osteoporosis. Recently, using male mice, we found that systemic or osteocyte-intrinsic inhibition of TGFβ signaling, achieved using the 9.6-kb DMP1 promoter-driven Cre recombinase (TβRIIocy-/- mice), suppresses osteocyte perilacunar/canalicular remodeling (PLR) and compromises bone quality. Because systemic TGFβ inhibition more robustly increases bone mass in female than male mice, we postulated that sex-specific differences in bone quality could likewise result, in part, from dimorphic regulation of PLR by TGFβ. Moreover, because lactation induces PLR, we examined the effect of TGFβ inhibition on the female skeleton during lactation. In contrast to males, female mice that possess an osteocyte-intrinsic defect in TGFβ signaling were protected from TGFβ-dependent defects in PLR and bone quality. The expression of requisite PLR enzymes, the lacunocanalicular network (LCN), and the flexural strength of female TβRIIocy-/- bone was intact. With lactation, however, bone loss and induction in PLR and osteocytic parathyroid hormone type I receptor (PTHR1) expression, were suppressed in TβRIIocy-/- bone, relative to the control littermates. Indeed, differential control of PTHR1 expression, by TGFβ and other factors, may contribute to dimorphism in PLR regulation in male and female TβRIIocy-/- mice. These findings provide key insights into the sex-based differences in osteocyte PLR that underlie bone quality and highlight TGFβ signaling as a crucial regulator of lactation-induced PLR. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neha S Dole
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Cristal S Yee
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Courtney M Mazur
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA.,University of California (UC) Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
5
|
Ishizawa M, Akagi D, Makishima M. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Int J Mol Sci 2018; 19:ijms19071975. [PMID: 29986424 PMCID: PMC6073204 DOI: 10.3390/ijms19071975] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria, acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1 expression effectively in the duodenum and jejunum, the LCA increased target gene expression in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA administration was not effective in the VDR target gene induction in the kidney. No effect of LCA on the ileal Cyp24a1 expression was observed in the VDR-null mice. Thus, the results indicate that LCA is a selective VDR ligand acting in the lower intestine, particularly the ileum. LCA may be a signaling molecule, which links intestinal bacteria and host VDR function.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Daisuke Akagi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
6
|
Christensen ME, Beck-Nielsen SS, Dalgård C, Larsen SD, Lykkedegn S, Kyhl HB, Husby S, Christesen HT. A novel inverse association between cord 25-hydroxyvitamin D and leg length in boys up to three years. An Odense Child Cohort study. PLoS One 2018; 13:e0198724. [PMID: 29889866 PMCID: PMC5995352 DOI: 10.1371/journal.pone.0198724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 05/24/2018] [Indexed: 01/15/2023] Open
Abstract
Background and aim Long standing vitamin D deficiency in children causes rickets with growth impairment. We investigated whether sub-ischial leg length (SLL) is shorter, and cephalo-caudal length:length (CCL:L) ratio and sitting height:height (SH:H) ratio larger, with lower cord s-25-hydroxyvitamin D (25OHD) in the population-based prospective Odense Child Cohort, Denmark. Methods We included healthy singletons born to term with available measures of cord 25OHD and anthropometrics up to three years’ age. Linear regression was stratified by sex a priori and adjusted for maternal ethnicity, pre-pregnancy body mass index and smoking during pregnancy, season of blood sampling and child age. Results Median (IQR) cord 25OHD was 48.0 (34.0–62.4) nmol/L. At mean age 19.1 months, n = 504, mean (SD) SLL was 31.7 (1.7) cm; CCL:L-ratio 0.62 (0.01). At 36.3 months, n = 956, mean SLL was 42.9 (2.0) cm; SH:H-ratio 0.56 (0.01). No participants had rickets. In adjusted analyses, 19-months-old boys had 0.1 cm shorter SLL (p = 0.009) and 0.1% higher CCL:L-ratio (p = 0.04) with every 10 nmol/L increase in cord 25OHD. Similar findings were seen for late pregnancy 25OHD. In the highest cord 25OHD quartile (>60.7 nmol/L), SLL was 0.8 cm shorter (95% C.I.: 1.36;-0.29, linear trend, p = 0.004), and CCL:L-ratio 0.8% higher (95% C.I. 8.0x10-05;0.01, linear trend, p = 0.01), compared to lowest quartile (<30.7 nmol/L). Similar associations with cord 25OHD were observed in 3-year-old boys. No consistent associations between 25OHD and anthropometrics were seen in girls at either age. Conclusion No leg shortening was found with decreasing cord s-25OHD in a healthy population of infants. A small, yet significant inverse association between cord 25OHD and SLL in boys 1½-3 years warrants further investigations.
Collapse
Affiliation(s)
- Mathilde Egelund Christensen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Signe Sparre Beck-Nielsen
- Department of Pediatrics, Kolding Hospital a part of Lillebaelt Hospital, Kolding, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christine Dalgård
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Public Health, Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Søs Dragsbæk Larsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Sine Lykkedegn
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Henriette Boye Kyhl
- Odense Child Cohort, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), University of Southern Denmark, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Child Cohort, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Child Cohort, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- * E-mail:
| |
Collapse
|
7
|
Reinke DC, Starczak Y, Kogawa M, Barratt KR, Morris HA, Anderson PH, Atkins GJ. Evidence for altered osteoclastogenesis in splenocyte cultures from VDR knockout mice. J Steroid Biochem Mol Biol 2018; 177:96-102. [PMID: 28765041 DOI: 10.1016/j.jsbmb.2017.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
The indirect action of 1α,25(OH)2-vitamin-D3 (1,25D) on the osteoclast through stromal signalling is well established. The role of vitamin D in osteoclasts through direct 1,25D-VDR signalling is less well known. We showed previously that local 1,25D synthesis in osteoclasts modified osteoclastogenesis and osteoclastic resorptive activity. In this study, we hypothesised that osteoclasts lacking VDR expression would display an enhanced resorptive capacity due to the loss of 1,25D signalling. Splenocytes were cultured under osteoclast-differentiating conditions from mice with global deletion of the Vdr gene (VDRKO) and this was compared with age-matched wild-type littermate controls (WT). In VDRKO cultures, osteoclastogenesis was reduced, as indicated by fewer TRAP-positive multinucleated cells at all time points measured (p<0.05) compared to WT levels. However, VDRKO osteoclasts demonstrated greater resorption on a per cell basis than their WT counterparts. VDRKO cultures expressed greatly increased c-Fos mRNA compared to WT. In addition, the ratio of expression of the pro-apoptotic gene Bax to the pro-survival gene Bcl-2 was decreased in VDRKO cultures, implying that these osteoclasts may survive longer than WT osteoclasts. Our data indicate abnormal osteoclastogenesis due to the absence of Vdr expression, consistent with direct effects of vitamin D signalling being important for regulating the maturation and resorptive activities of osteoclasts.
Collapse
Affiliation(s)
- Daniel C Reinke
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Yolandi Starczak
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Masakazu Kogawa
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Kate R Barratt
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW In addition to the actions of the endocrine hormone, 1alpha,25-dihydroxyvitamin D (1,25(OH)2D) in stimulating intestinal calcium absorption, the regulation of bone mineral metabolism by 1,25(OH)2D is also considered an important contributor to calcium homeostasis. However, recent evidence suggest that 1,25(OH)2D acting either via endocrine or autocrine pathways plays varied roles in bone, which suggests that vitamin D contributes to the maintenance of bone mineral in addition to its catabolic roles. This review highlights the contrasting evidence for the direct action for vitamin D metabolism and activity in bone. RECENT FINDINGS Numerous cells within bone express vitamin D receptor (VDR), synthesise and catabolise 1,25(OH)2D via 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1), and 25-hydroxyvitamin D 24-hydroxylase (CYP24A1) enzymes, respectively. Recent evidence suggests that all three genes are required to regulate processes of bone resorption, mineralization and fracture repair. The actions of vitamin D in bone appear to negatively or positively regulate bone mineral depending on the physiological and pathological circumstances, suggesting that vitamin D plays pleiotropic roles in bone.
Collapse
Affiliation(s)
- Paul H Anderson
- Musculoskeletal Biology Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
9
|
Sanghera DK, Sapkota BR, Aston CE, Blackett PR. Vitamin D Status, Gender Differences, and Cardiometabolic Health Disparities. ANNALS OF NUTRITION AND METABOLISM 2017; 70:79-87. [PMID: 28315864 DOI: 10.1159/000458765] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vitamin D deficiency is an unrecognized epidemic found in India and also worldwide. Despite the high prevalence of diabetes among Indians, there is a paucity of data showing the relationship between vitamin D status and cardiometabolic disparities. In this study, we have examined the relationship between vitamin D and cardiometabolic traits in a population from India. METHODS Circulating 25(OH)D levels were measured in 3,879 participants from the Asian Indian Diabetic Heart Study using ELISA kits. RESULTS Vitamin D levels were significantly reduced (p < 0.0001) in both men and women with obesity. However, compared to women, serum vitamin D was consistently lower in men (p < 0.02), irrespective of the presence of obesity and type 2 diabetes. Multivariate regression revealed strong interaction of vitamin D with body mass index that resulted in increased fasting glucose (p = 0.001) and reduced homeostasis model assessment of β-cell function (HOMA-B; p = 0.01) in normoglycemic individuals. However, in gender-stratified analysis, this association was restricted to men for both fasting glucose (p = 2.4 × 10-4) and HOMA-B (p = 0.001). CONCLUSIONS Our findings suggest that vitamin D deficiency may significantly enhance the risk of cardiometabolic disease among Asian Indians. Future randomized trials and genetic studies are expected to clarify the underlying mechanisms for gender differences in vitamin D deficiency, and whether vitamin D-driven improvement in testosterone may contribute to beneficial cardiometabolic outcomes in men.
Collapse
Affiliation(s)
- Dharambir K Sanghera
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|