1
|
Doherty DZ, De Voss JJ, Bruning JB, Bell SG. Evolutionary insights into the selectivity of sterol oxidising cytochrome P450 enzymes based on ancestral sequence reconstruction. Chem Sci 2025:d5sc01863c. [PMID: 40417289 PMCID: PMC12100521 DOI: 10.1039/d5sc01863c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
The cytochrome P450 (CYP) enzyme CYP125A1 is a crucial enzyme for the long-term survival and pathogenicity of Mycobacterium tuberculosis. CYP125 genes are found not only in pathogenic mycobacteria but are also widely dispersed within the Actinobacteria phylum, with many species possessing multiple copies of CYP125 encoding genes. Their primary function is the catalytic hydroxylation of the terminal methyl group of cholesterol and phytosterols. We have previously shown that CYP125 enzymes from distinct mycobacteria have substrate selectivity preferences for animal versus plant steroid oxidation. An evolutionary understanding of this selectivity is not known. Here, we use Ancestral Sequence Reconstruction (ASR), to support the hypothesis that some CYP125 enzymes evolved in a manner reflective of their adaptation to a pathogenic niche. We constructed a maximum-likelihood, most-recent common ancestor of the CYP125 clade (CYP125MRCA). We were then able to produce and characterise this enzyme both functionally and structurally. We found that CYP125MRCA was able to catalyse the terminal hydroxylation of cholesterol, phytosterols, and vitamin D3 (cholecalciferol); the latter was hydroxylated at both C-25 and C-26. This is the first example to date of vitamin D3 oxidation by a CYP125 enzyme, thereby demonstrating an increased substrate range of CYP125MRCA relative to its characterised extant relatives. The X-ray crystal structures of CYP125MRCA bound with sitosterol and vitamin D3 were determined, providing important insight into the changes that enable the expanded substrate range.
Collapse
Affiliation(s)
- Daniel Z Doherty
- Department of Chemistry, University of Adelaide Adelaide South Australia 5005 Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland Brisbane Queensland 4072 Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide SA 5005 Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide Adelaide South Australia 5005 Australia
| |
Collapse
|
2
|
Kavanagh ME, McLean KJ, Gilbert SH, Amadi C, Snee M, Tunnicliffe RB, Arora K, Boshoff HI, Fanourakis A, Rebello-Lopez MJ, Ortega-Muro F, Levy CW, Munro AW, Leys D, Abell C, Coyne AG. Fragment-based development of small molecule inhibitors targeting Mycobacterium tuberculosis cholesterol metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620643. [PMID: 39803573 PMCID: PMC11722527 DOI: 10.1101/2024.10.28.620643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi- (MDR) and extensively- (XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for Mtb's long-term survival in vivo. Here, we report the development of antitubercular small molecules that inhibit the Mtb cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule 1a that can bind to the heme cofactor of both enzymes. A structure-guided fragment-linking strategy was used to optimize the binding affinity of 1a, yielding a potent dual CYP125/142 inhibitor 5m (KD CYP125/CYP142 = 0.04/0.16 μM). Compound 5m potently inhibits the catalytic activity of CYP125 and CYP142 in vitro (KI values < 0.1 μM), and rapidly depletes Mtb intracellular ATP (IC50 = 0.15 μM). The compound has antimicrobial activity against both drug susceptible and MDR Mtb (MIC99 values 0.4 - 1.5 μM) in extracellular assays, and inhibits the growth of Mtb in human macrophages (MIC = 1.7 μM) with good selectivity over mammalian cytotoxicity (LD50 ≥ 50 μM). The combination of small molecule inhibitors and structural data reported here provide useful tools to study the role of cholesterol metabolism in Mtb and are a promising step towards novel antibiotics targeting bioenergetic pathways, which could be used to help combat MDR-TB.
Collapse
Affiliation(s)
- Madeline E. Kavanagh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kirsty J. McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sophie H. Gilbert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cecilia Amadi
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew Snee
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard B. Tunnicliffe
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | - Colin W. Levy
- Manchester Protein Structure Facility (MPSF), Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Andrew W. Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anthony G. Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
3
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Middelkoop K, Stewart J, Walker N, Delport C, Jolliffe DA, Coussens AK, Nuttall J, Tang JCY, Fraser WD, Griffiths CJ, Kumar GT, Filteau S, Hooper RL, Wilkinson RJ, Bekker LG, Martineau AR. Vitamin D supplementation to prevent tuberculosis infection in South African schoolchildren: multicenter phase 3 double-blind randomized placebo-controlled trial (ViDiKids). Int J Infect Dis 2023; 134:63-70. [PMID: 37211272 DOI: 10.1016/j.ijid.2023.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVES To determine whether weekly oral supplementation with 10,000 IU vitamin D3 for 3 years reduces the risk of sensitization to M. tuberculosis in South African schoolchildren aged 6-11 years with negative QuantiFERON-tuberculosis (TB) Gold Plus (QFT-Plus) assay results at baseline. METHODS We conducted a phase 3 randomized placebo-controlled trial in 1682 children attending 23 primary schools in Cape Town. The primary outcome was a positive end-trial QFT-Plus result, analyzed using a mixed effects logistic regression model with the school of attendance included as a random effect. RESULTS 829 vs. 853 QFT-Plus-negative children were randomized to receive vitamin D3 vs. placebo, respectively. Mean end-study 25(OH)D concentrations in participants randomized to vitamin D vs. placebo were 104.3 vs 64.7 nmol/l, respectively (95% confidence interval for difference, 37.6 to 41.9 nmol/l). A total of 76/667 (11.4%) participants allocated to vitamin D vs. 89/687 (13.0%) participants allocated to placebo tested QFT-Plus positive at 3-year follow-up (adjusted odds ratio 0.86, 95% confidence interval 0.62-1.19, P = 0.35). CONCLUSION Weekly oral supplementation with 10,000 IU vitamin D3 for 3 years elevated serum 25(OH)D concentrations among QFT-Plus-negative Cape Town schoolchildren but did not reduce their risk of QFT-Plus conversion.
Collapse
Affiliation(s)
- Keren Middelkoop
- Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Justine Stewart
- Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory, South Africa; Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Neil Walker
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carmen Delport
- Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - David A Jolliffe
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Infectious Diseases and Immune Defense Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James Nuttall
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital and the Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Jonathan C Y Tang
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK; Departments of Laboratory Medicine, Clinical Biochemistry, and Departments of Diabetes and Endocrinology, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - William D Fraser
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK; Departments of Laboratory Medicine, Clinical Biochemistry, and Departments of Diabetes and Endocrinology, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Christopher J Griffiths
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Geeta Trilok Kumar
- Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, India; Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Richard L Hooper
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK; Imperial College London, London, UK
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Adrian R Martineau
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Ghith A, Bruning JB, Bell SG. The oxidation of cholesterol derivatives by the CYP124 and CYP142 enzymes from Mycobacterium marinum. J Steroid Biochem Mol Biol 2023; 231:106317. [PMID: 37141947 DOI: 10.1016/j.jsbmb.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
The CYP124 and CYP142 families of bacterial cytochrome P450 monooxygenases (CYPs), catalyze the oxidation of methyl branched lipids, including cholesterol, as one of the initial activating steps in their catabolism. Both enzymes are reported to supplement the CYP125 family of P450 enzymes. These CYP125 enzymes are found in the same bacteria, and are the primary cholesterol/cholest-4-en-3-one metabolizing enzymes. To further understand the role of the CYP124 and CYP142 cytochrome P450s we investigated the Mycobacterium marinum enzymes, MmarCYP124A1 and CYP142A3, with various cholesterol analogues with modifications on the A and B rings of the steroid. We assessed the substrate binding and catalytic activity of each enzyme. Neither enzyme could bind or oxidize cholesteryl acetate or 3,5-cholestadiene, which have modifications at the C3 hydroxyl moiety of cholesterol. The CYP142 enzyme was better able to accommodate and oxidize cholesterol analogues which have changes on the A/B rings including cholesterol-5α,6α-epoxide and diastereomers of 5-cholestan-3-ol. The CYP124 enzyme was more tolerant of changes at C7 of the cholesterol B ring, e.g., 7-ketocholesterol than in the A ring. The selectivity for oxidation at the ω-carbon of a branched chain was observed in all steroids that were oxidized. The 7-ketocholesterol-bound MmarCYP124A1 enzyme from M. marinum, was structurally characterized by X-ray crystallography to 1.81Å resolution. The 7-ketocholesterol-bound X-ray crystal structure of the MmarCYP124A1 enzyme revealed that the substrate binding mode of this cholesterol derivative was altered compared to those observed with other non-steroidal ligands. The structure provided an explanation for the selectivity of the enzyme for terminal methyl hydroxylation.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Ghith A, Bruning JB, Bell SG. The catalytic activity and structure of the lipid metabolizing CYP124 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2023; 737:109554. [PMID: 36842492 DOI: 10.1016/j.abb.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
7
|
Bukhdruker S, Varaksa T, Orekhov P, Grabovec I, Marin E, Kapranov I, Kovalev K, Astashkin R, Kaluzhskiy L, Ivanov A, Mishin A, Rogachev A, Gordeliy V, Gilep A, Strushkevich N, Borshchevskiy V. Structural insights into the effects of glycerol on ligand binding to cytochrome P450. Acta Crystallogr D Struct Biol 2023; 79:66-77. [PMID: 36601808 DOI: 10.1107/s2059798322011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
New antitubercular drugs are vital due to the spread of resistant strains. Carbethoxyhexyl imidazole (CHImi) inhibits cytochrome P450 CYP124, which is a steroid-metabolizing enzyme that is important for the survival of Mycobacterium tuberculosis in macrophages. The available crystal structure of the CYP124-CHImi complex reveals two glycerol molecules in the active site. A 1.15 Å resolution crystal structure of the glycerol-free CYP124-CHimi complex reported here shows multiple conformations of CHImi and the CYP124 active site which were previously restricted by glycerol. Complementary molecular dynamics simulations show coherence of the ligand and enzyme conformations. Spectrophotometric titration confirmed the influence of glycerol on CHImi binding: the affinity decreases more than tenfold in glycerol-containing buffer. In addition, it also showed that glycerol has a similar effect on other azole and triazole CYP124 ligands. Together, these data show that glycerol may compromise structural-functional studies and impede rational drug-design campaigns.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Ivan Kapranov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Kirill Kovalev
- EMBL Outstation Hamburg, c/o DESY, 22607 Hamburg, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Leonid Kaluzhskiy
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexis Ivanov
- Laboratory of Intermolecular Interactions, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Andrey Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk 220084, Belarus
| | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudnyy 141701, Russian Federation
| |
Collapse
|
8
|
Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP. Long-Duration Space Travel Support Must Consider Wider Influences to Conserve Microbiota Composition and Function. Life (Basel) 2022; 12:1163. [PMID: 36013342 PMCID: PMC9409767 DOI: 10.3390/life12081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
The microbiota is important for immune modulation, nutrient acquisition, vitamin production, and other aspects for long-term human health. Isolated model organisms can lose microbial diversity over time and humans are likely the same. Decreasing microbial diversity and the subsequent loss of function may accelerate disease progression on Earth, and to an even greater degree in space. For this reason, maintaining a healthy microbiome during spaceflight has recently garnered consideration. Diet, lifestyle, and consumption of beneficial microbes can shape the microbiota, but the replenishment we attain from environmental exposure to microbes is important too. Probiotics, prebiotics, fermented foods, fecal microbiota transplantation (FMT), and other methods of microbiota modulation currently available may be of benefit for shorter trips, but may not be viable options to overcome the unique challenges faced in long-term space travel. Novel fermented food products with particular impact on gut health, immune modulation, and other space-targeted health outcomes are worthy of exploration. Further consideration of potential microbial replenishment to humans, including from environmental sources to maintain a healthy microbiome, may also be required.
Collapse
Affiliation(s)
- Kait F. Al
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - John A. Chmiel
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gerrit A. Stuivenberg
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
| | - Gregor Reid
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (K.F.A.); (J.A.C.); (G.A.S.); (G.R.)
- Department of Surgery, University of Western Ontario, London, ON N6A 4V2, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| |
Collapse
|
9
|
Ghith A, Doherty DZ, Bruning JB, Russell RA, De Voss JJ, Bell SG. The Structures of the Steroid Binding CYP142 Cytochrome P450 Enzymes from Mycobacterium ulcerans and Mycobacterium marinum. ACS Infect Dis 2022; 8:1606-1617. [PMID: 35881654 DOI: 10.1021/acsinfecdis.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The steroid binding CYP142 cytochrome P450 enzymes of Mycobacterium species are involved in the metabolism of cholesterol and its derivatives. The equivalent enzyme from Mycobacterium ulcerans was studied to compare the degree of functional conservation between members of this CYP family. We compared substrate binding of the CYP142A3 enzymes of M. ulcerans and M. marinum and CYP142A1 from M. tuberculosis using UV-vis spectroscopy. The catalytic oxidation of cholesterol derivatives by all three enzymes was undertaken. Both CYP142A3 enzymes were structurally characterized by X-ray crystallography. The amino acid sequences of the CYP142A3 enzymes are more similar to CYP142A1 from M. tuberculosis than CYP142A2 from Mycolicibacterium smegmatis. Both CYP142A3 enzymes have substrate binding properties, which are more resemblant to CYP142A1 than CYP142A2. The cholest-4-en-3-one-bound X-ray crystal structure of both CYP142A3 enzymes were determined at a resolution of <1.8 Å, revealing the substrate binding mode at a high level of detail. The structures of the cholest-4-en-3-one binding CYP142 enzymes from M. ulcerans and M. marinum demonstrate how the steroid binds in the active site of these enzymes. They provide an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation to form 26-hydroxy derivatives. These enzymes in pathogenic Mycobacterium species are candidates for inhibition. The work here demonstrates that similar drug molecules could target these CYP142 enzymes from different species in order to combat Buruli ulcer or tuberculosis.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2234, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Cai L, Hou S, Huang Y, Liu S, Huang X, Yin X, Jiang N, Tong Y. The Potential Role of Vitamin D in the Development of Tuberculosis in Chinese Han Population: One Case-Control Study. Front Med (Lausanne) 2022; 9:849651. [PMID: 35957850 PMCID: PMC9358990 DOI: 10.3389/fmed.2022.849651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims:Spinal serum 25-hydroxyvitamin D [25[OH]D] status plays an important role in mediating innate immune responses by acting as a cofactor for induction of antimycobacterial activity and is thus involved in the development of Tuberculosis (TB). Results reported regarding the association of vitamin D with TB remained controversial. We aimed to identify any common association between 25[OH]D status and TB in the Chinese Han population.Methods280 subjects (70 TB patients and 210 matched controls) were recruited. TB cases were diagnosed based on the presence of acid-fast bacilli on smears from sputum and MTB isolation. Healthy controls were randomly selected from four local community-based populations. 25[OH]D was detected by electrochemiluminescence immunoassay (ECLIA) on Roche Elecsys before the initial treatment. Multivariable logistic regression analysis was used to examine the association of Vitamin D with TB.ResultsThere was no significant difference in the serum vitamin D level between total cases and controls, but we found a strong tendency toward a higher serum vitamin D level in male population (P < 0.05) with TB but not in females. High serum vitamin D increased the risk of TB in the Chinese Han population (OR = 1.035, 95%CI: 1.001–1.070, P < 0.05). The serum vitamin D level was significantly decreased with age increasing in cases and controls (all P < 0.001).ConclusionsHigh serum vitamin D may be an independent risk factor for TB in the Chinese Han population.
Collapse
Affiliation(s)
- Li Cai
- Wuhan Center for Disease Control and Prevention, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Shuangyi Hou
- Center for Disease Control and Prevention, Wuhan, China
| | - Yadong Huang
- Center for Disease Control and Prevention, Wuhan, China
| | - Shuang Liu
- Center for Disease Control and Prevention, Wuhan, China
| | - Xibao Huang
- Center for Disease Control and Prevention, Wuhan, China
| | - Xiaoxv Yin
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Nan Jiang
| | - Yeqing Tong
- Center for Disease Control and Prevention, Wuhan, China
- *Correspondence: Yeqing Tong
| |
Collapse
|
11
|
Mohamed H, Child SA, Bruning JB, Bell SG. A comparison of the bacterial CYP51 cytochrome P450 enzymes from Mycobacterium marinum and Mycobacterium tuberculosis. J Steroid Biochem Mol Biol 2022; 221:106097. [PMID: 35346833 DOI: 10.1016/j.jsbmb.2022.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Members of the CYP51 family of cytochrome P450 enzymes are classified as sterol demethylases involved in the metabolic formation of cholesterol and related derivatives. The CYP51 enzyme from Mycobacterium marinum was studied and compared to its counterpart from Mycobacterium tuberculosis to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding of the purified CYP51 enzymes from M. marinum and M. tuberculosis were performed. The catalytic oxidation of lanosterol and related steroids was investigated. M. marinum CYP51 was structurally characterized by X-ray crystallography. The CYP51 enzyme of M. marinum is sequentially closely related to CYP51B1 from M. tuberculosis. However, differences in the heme spin state of each enzyme were observed upon the addition of steroids and other ligands. Both enzymes displayed different binding properties to those reported for the CYP51-Fdx fusion protein from the bacterium Methylococcus capsulatus. The enzymes were able to oxidatively demethylate lanosterol to generate 14-demethylanosterol, but no products were detected for the related species dihydrolanosterol and eburicol. The crystal structure of CYP51 from M. marinum in the absence of added substrate but with a Bis-Tris molecule within the active site was resolved. The CYP51 enzyme of M. marinum displays differences in how steroids and other ligands bind compared to the M. tuberculosis enzyme. This was related to structural differences between the two enzymes. Overall, both of these CYP51 enzymes from mycobacterial species displayed significant differences to the CYP51 enzymes of eukaryotic species and the bacterial CYP51-Fdx enzyme of Me. capsulatus.
Collapse
Affiliation(s)
| | - Stella A Child
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
12
|
Díaz-Storani L, Clary AA, Moreno DM, Ballari MS, Porta EOJ, Bracca ABJ, Johnston JB, Labadie GR. Synthesis and interaction of terminal unsaturated chemical probes with Mycobacterium tuberculosis CYP124A1. Bioorg Med Chem 2021; 44:116304. [PMID: 34289431 DOI: 10.1016/j.bmc.2021.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022]
Abstract
A series of C15-C20 isoprenyl derivatives bearing terminal alkenyl and alkynyl groups were synthesized as possible substrates of the methyl-branched lipid ω-hydroxylase CYP124A1 from Mycobacterium tuberculosis. The interactions of each compound with the enzyme active site were characterized using UV-vis spectroscopy. We found that C10 and C15 analogs bind with similar affinity to the corresponding parent C10 and C15 substrates geraniol and farnesol, respectively. Three analogs (C10-ω-ene, C10-ω-yne, C15-ω-yne) interact with the proximal side of the heme iron by coordinating to the oxygen atom of the ferric heme, as judged by the appearance of typical Type-IA binding spectra. On the other hand, the C15-ω-ene analog interacts with the ferric heme by displacing the bound water that generates a typical Type I binding spectrum. We were unable to detect P450-mediated oxidation of these probes following extended incubations with CYP124A1 in our reconstituted assay system, whereas a control reaction containing farnesol was converted to ω-hydroxy farnesol under the same conditions. To understand the lack of detectable oxidation, we explored the possibility that the analogs were acting as mechanism-based inhibitors, but we were unable to detect time-dependent loss of enzymatic activity. In order to gain insight into the lack of detectable turnover or time-dependent inhibition, we examined the interaction of each compound with the CYP124A1 active site using molecular docking simulations. The docking studies revealed a binding mode where the terminal unsaturated functional groups were sequestered within the methyl-binding pocket, rather than positioned close to the heme iron for oxidation. These results aid in the design of specific inhibitors of Mtb-CYP124A1, an interesting enzyme that is implicated in the oxidation of methyl-branched lipids, including cholesterol, within a deadly human pathogen.
Collapse
Affiliation(s)
- Luz Díaz-Storani
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Anaelle A Clary
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, United States
| | - Diego M Moreno
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María Sol Ballari
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Jonathan B Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, United States.
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
13
|
Potency boost of a Mycobacterium tuberculosis dihydrofolate reductase inhibitor by multienzyme F 420H 2-dependent reduction. Proc Natl Acad Sci U S A 2021; 118:2025172118. [PMID: 34161270 PMCID: PMC8237569 DOI: 10.1073/pnas.2025172118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial metabolism can cause intrinsic drug resistance but can also convert inactive parent drugs into bioactive derivatives, as is the case for several antimycobacterial prodrugs. Here, we show that the intrabacterial metabolism of a Mtb dihydrofolate reductase (DHFR) inhibitor with moderate affinity for its target boosts its on-target activity by two orders of magnitude. This is a “prodrug-like” antimycobacterial that possesses baseline activity in the absence of intracellular bioactivation. By elucidating the metabolic enhancement mechanism, we have provided the basis for the rational optimization of a class of DHFR inhibitors and uncovered an antibacterial drug discovery concept. Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420. Thus, we hypothesized that TA-C may be metabolized by Mtb F420–dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active “prodrug,” into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.
Collapse
|
14
|
Sushko T, Kavaleuski A, Grabovec I, Kavaleuskaya A, Vakhrameev D, Bukhdruker S, Marin E, Kuzikov A, Masamrekh R, Shumyantseva V, Tsumoto K, Borshchevskiy V, Gilep A, Strushkevich N. A new twist of rubredoxin function in M. tuberculosis. Bioorg Chem 2021; 109:104721. [PMID: 33618255 DOI: 10.1016/j.bioorg.2021.104721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.
Collapse
Affiliation(s)
- Tatsiana Sushko
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Kavaleuskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Daniil Vakhrameev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; ESRF - The European Synchrotron, 38000 Grenoble, France
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Alexey Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rami Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Victoria Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Kouhei Tsumoto
- The Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Bioengineering, School of Engineering, the University of Tokyo, Tokyo, Japan
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow, Institute of Physics and Technology (MIPT), Dolgoprudny, Russia; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus; Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
15
|
Metabolic Fate of Human Immunoactive Sterols in Mycobacterium tuberculosis. J Mol Biol 2020; 433:166763. [PMID: 33359098 DOI: 10.1016/j.jmb.2020.166763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 - the most potent among them - can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.
Collapse
|
16
|
Bukhdruker S, Varaksa T, Grabovec I, Marin E, Shabunya P, Kadukova M, Grudinin S, Kavaleuski A, Gusach A, Gilep A, Borshchevskiy V, Strushkevich N. Hydroxylation of Antitubercular Drug Candidate, SQ109, by Mycobacterial Cytochrome P450. Int J Mol Sci 2020; 21:E7683. [PMID: 33081390 PMCID: PMC7589583 DOI: 10.3390/ijms21207683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Spreading of the multidrug-resistant (MDR) strains of the one of the most harmful pathogen Mycobacterium tuberculosis (Mtb) generates the need for new effective drugs. SQ109 showed activity against resistant Mtb and already advanced to Phase II/III clinical trials. Fast SQ109 degradation is attributed to the human liver Cytochrome P450s (CYPs). However, no information is available about interactions of the drug with Mtb CYPs. Here, we show that Mtb CYP124, previously assigned as a methyl-branched lipid monooxygenase, binds and hydroxylates SQ109 in vitro. A 1.25 Å-resolution crystal structure of the CYP124-SQ109 complex unambiguously shows two conformations of the drug, both positioned for hydroxylation of the ω-methyl group in the trans position. The hydroxylated SQ109 presumably forms stabilizing H-bonds with its target, Mycobacterial membrane protein Large 3 (MmpL3). We anticipate that Mtb CYPs could function as analogs of drug-metabolizing human CYPs affecting pharmacokinetics and pharmacodynamics of antitubercular (anti-TB) drugs.
Collapse
Affiliation(s)
- Sergey Bukhdruker
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.B.); (E.M.); (M.K.); (A.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Research Center Jülich, 52428 Jülich, Germany
| | - Tatsiana Varaksa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
| | - Irina Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.B.); (E.M.); (M.K.); (A.G.)
| | - Polina Shabunya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
| | - Maria Kadukova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.B.); (E.M.); (M.K.); (A.G.)
- Grenoble Alpes University, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France;
| | - Sergei Grudinin
- Grenoble Alpes University, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France;
| | - Anton Kavaleuski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.B.); (E.M.); (M.K.); (A.G.)
| | - Andrei Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 119435 Moscow, Russia
- R&D Department, MT-Medicals LLC, 121205 Moscow, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (S.B.); (E.M.); (M.K.); (A.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Research Center Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Research Center Jülich, 52428 Jülich, Germany
| | - Natallia Strushkevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.V.); (I.G.); (P.S.); (A.K.); (A.G.)
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
17
|
A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. J Inorg Biochem 2020; 209:111116. [PMID: 32473484 DOI: 10.1016/j.jinorgbio.2020.111116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
The steroid lipid binding cytochrome P450 (CYP) enzymes of Mycobacterium tuberculosis are essential for organism survival through metabolism of cholesterol and its derivatives. The counterparts to these enzymes from Mycobacterium marinum were studied to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding for the four M. marinum enzymes CYP125A6, CYP125A7, CYP142A3 and CYP124A1 were performed and compared to the equivalent enzymes of M. tuberculosis. The sequence of CYP125A7 from M. marinum was more similar to CYP125A1 from M. tuberculosis than CYP125A6 but both showed differences in the resting heme spin state and in the binding modes and affinities of certain azole inhibitors. CYP125A7 did not show a significant Type II inhibitor-like shift with any of the azoles tested. CYP142A3 bound a similar range of steroids and inhibitors to CYP142A1. However, there were some differences in the extent of the Type I shifts to the high-spin form with steroids and a higher affinity for the azole inhibitors compared to CYP142A1. The two CYP124 enzymes had similar substrate binding properties. M. marinum CYP124 was characterised by X-ray crystallography and displayed strong conservation of active site residues, except near the region where the carboxylate terminus of the phytanic acid substrate would be bound. As these enzymes in M. tuberculosis have been identified as candidates for inhibition the data here demonstrates that alternative strategies for inhibitor design may be required to target CYP family members from distinct pathogenic Mycobacterium species or other bacteria.
Collapse
|
18
|
Si D, Xiong Y, Yang Z, Zhang J, Ma L, Li J, Wang Y. Whole genome sequencing analysis of a dexamethasone-degrading Burkholderia strain CQ001. Medicine (Baltimore) 2019; 98:e16749. [PMID: 31415371 PMCID: PMC6831421 DOI: 10.1097/md.0000000000016749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study is to analyze the functional genes and metabolic pathways of dexamethasone degradation in Burkholderia through genome sequencing.A new Burkholderia sp. CQQ001 (B. CQ001) with dexamethasone degrading activity was isolated from the hospital wastewater and sequenced using Illumina Hiseq4000 combined with the third-generation sequencing technology. The genomes were assembled, annotated, and genomically mapped. Compared with six Burkholderia strains with typical features and four Burkholderia strains with special metabolic ability, the functional genes and metabolic pathways of dexamethasone degradation were analyzed and confirmed by RT-qPCR.Genome of B. CQ001 was 7,660,596 bp long with 6 ring chromosomes. The genes related to material metabolism accounted for 80.15%. These metabolism related genes could participate in 117 metabolic pathways and cover various microbial metabolic pathways in different environments and decomposition pathways of secondary metabolites, especially the degradation of aromatic compounds. The steroidal metabolic pathway containing 1 ABC transporter and 9 key metabolic enzymes related genes were scattered in the genome. Among them, the ABC transporter, KshA, and KshB increased significantly under the culture conditions of dexamethasone sodium phosphate as carbon source.B. CQ001 is a bacterium with strong metabolic function and rich metabolic pathways. It has the potential to degrade aromatics and other exogenous chemicals and contains genes for steroid metabolism. Our study enriches the genetic information of Burkholderia and provides information for the application of Burkholderia in bioremediation and steroid medicine production.
Collapse
Affiliation(s)
- Dan Si
- The Third People's Hospital of Suining, Suining,
| | - Yuxia Xiong
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Zhibang Yang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Jin Zhang
- Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University,
| | - Lianju Ma
- Pharmaceutical Experimental Teaching Center, Chongqing Medical University,
| | - Jinyang Li
- Class of 2016, Clinical Medicine, Chongqing Medical University,
| | - Yi Wang
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
19
|
Structural and functional characterisation of the cytochrome P450 enzyme CYP268A2 from Mycobacterium marinum. Biochem J 2018; 475:705-722. [DOI: 10.1042/bcj20170946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Members of the cytochrome P450 monooxygenase family CYP268 are found across a broad range of Mycobacterium species including the pathogens Mycobacterium avium, M. colombiense, M. kansasii, and M. marinum. CYP268A2, from M. marinum, which is the first member of this family to be studied, was purified and characterised. CYP268A2 was found to bind a variety of substrates with high affinity, including branched and straight chain fatty acids (C10–C12), acetate esters, and aromatic compounds. The enzyme was also found to bind phenylimidazole inhibitors but not larger azoles, such as ketoconazole. The monooxygenase activity of CYP268A2 was efficiently reconstituted using heterologous electron transfer partner proteins. CYP268A2 hydroxylated geranyl acetate and trans-pseudoionone at a terminal methyl group to yield (2E,6E)-8-hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate and (3E,5E,9E)-11-hydroxy-6,10-dimethylundeca-3,5,9-trien-2-one, respectively. The X-ray crystal structure of CYP268A2 was solved to a resolution of 2.0 Å with trans-pseudoionone bound in the active site. The overall structure was similar to that of the related phytanic acid monooxygenase CYP124A1 enzyme from Mycobacterium tuberculosis, which shares 41% sequence identity. The active site is predominantly hydrophobic, but includes the Ser99 and Gln209 residues which form hydrogen bonds with the terminal carbonyl group of the pseudoionone. The structure provided an explanation on why CYP268A2 shows a preference for shorter substrates over the longer chain fatty acids which bind to CYP124A1 and the selective nature of the catalysed monooxygenase activity.
Collapse
|
20
|
Potential drug targets in the Mycobacterium tuberculosis cytochrome P450 system. J Inorg Biochem 2018; 180:235-245. [PMID: 29352597 DOI: 10.1016/j.jinorgbio.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023]
Abstract
The Mycobacterium tuberculosis genome encodes twenty cytochrome P450 enzymes, most or all of which appear to have specific physiological functions rather than being devoted to the removal of xenobiotics. However, in many cases their specific functions remain obscure. Considerable spectroscopic, biophysical, crystallographic, and catalytic information is available on nine of these cytochrome P450 enzymes, although gaps exist in our knowledge of even these enzymes. The available evidence indicates that at least three of the better-characterized enzymes are promising targets for antituberculosis drug discovery. This review summarizes the information on the nine relatively well-characterized cytochrome P450 enzymes, with a particular emphasis on CYP121, CYP125, and CYP142 from Mycobacterium tuberculosis and Mycobacterium smegmatis.
Collapse
|