1
|
Wang Y, Yang Z, Yuan B, He L, Han Y, Wang J, Wang X. Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz. PLANTA 2024; 260:88. [PMID: 39251530 DOI: 10.1007/s00425-024-04522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
MAIN CONCLUSION Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.
Collapse
Affiliation(s)
- Yongfei Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Zhanchao Yang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Boxuan Yuan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lixia He
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Yunyi Han
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Juanying Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xuchu Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
2
|
Nguyen TP, Wang W, Sternisha AC, Corley CD, Wang HYL, Wang X, Ortiz F, Lim SK, Abdullah KG, Parada LF, Williams NS, McBrayer SK, McDonald JG, De Brabander JK, Nijhawan D. Selective and brain-penetrant lanosterol synthase inhibitors target glioma stem-like cells by inducing 24(S),25-epoxycholesterol production. Cell Chem Biol 2023; 30:214-229.e18. [PMID: 36758549 PMCID: PMC10008516 DOI: 10.1016/j.chembiol.2023.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex C Sternisha
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase D Corley
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua-Yu Leo Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Ortiz
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang-Kyun Lim
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Luis F Parada
- Department of Development Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Hao Y, Wei L, Li L, Wang Y, Li N, Pan Y, Sun Y. New cytotoxic ergosterols from a plant-associated fungus Colletotrichum magnisporum. Nat Prod Res 2022; 36:5606-5613. [PMID: 34994267 DOI: 10.1080/14786419.2021.2022670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Three new ergosterols, colletosterols A-C (1-3), together with two known analogues 4 and 5, were isolated from the endophytic fungus Colletotrichum magnisporum associated with the leaves of Rauvolfia verticillata by a bioassay-guided fractionation method. The new structures were elucidated on the basis of extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. All the ergosterols were evaluated for their cytotoxic activities against A549 and HeLa cell lines. Compounds 1-3 exhibited notable cytotoxicity with the IC50 values of 3.76-11.18 μM.
Collapse
Affiliation(s)
- Yanqi Hao
- School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University, Shenyang, PR China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Lan Wei
- School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University, Shenyang, PR China
| | - Li Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yanlei Wang
- School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University, Shenyang, PR China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University, Shenyang, PR China
| | - Yingni Pan
- School of Traditional Chinese Materia Medica, Shengyang Pharmaceutical University, Shenyang, PR China
| | - Yi Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
4
|
Hubler Z, Friedrich RM, Sax JL, Allimuthu D, Gao F, Rivera-León AM, Pleshinger MJ, Bederman I, Adams DJ. Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation. Cell Chem Biol 2021; 28:866-875.e5. [PMID: 33636107 PMCID: PMC8217109 DOI: 10.1016/j.chembiol.2021.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Small molecules that promote the formation of new myelinating oligodendrocytes from oligodendrocyte progenitor cells (OPCs) are potential therapeutics for demyelinating diseases. We recently established inhibition of specific cholesterol biosynthesis enzymes and resulting accumulation of 8,9-unsaturated sterols as a unifying mechanism through which many such molecules act. To identify more potent sterol enhancers of oligodendrocyte formation, we synthesized a collection of 8,9-unsaturated sterol derivatives and found that 24,25-epoxylanosterol potently promoted oligodendrocyte formation. In OPCs, 24,25-epoxylanosterol was metabolized to 24,25-epoxycholesterol via the epoxycholesterol shunt pathway. Increasing flux through the epoxycholesterol shunt using genetic manipulation or small-molecule inhibition of lanosterol synthase (LSS) increased endogenous 24,25-epoxycholesterol levels and OPC differentiation. Notably, exogenously supplied 24,25-epoxycholesterol promoted oligodendrocyte formation despite lacking an 8,9-unsaturation. This work highlights epoxycholesterol shunt usage, controlled by inhibitors of LSS, as a target to promote oligodendrocyte formation. Additionally, sterols beyond the 8,9-unsaturated sterols, including 24,25-epoxycholesterol, drive oligodendrocyte formation.
Collapse
Affiliation(s)
- Zita Hubler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ryan M Friedrich
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joel L Sax
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Farrah Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Adrianna M Rivera-León
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthew J Pleshinger
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Yin J, Yang J, Ma H, Liang T, Li Y, Xiao J, Tian H, Xu Z, Zhan Y. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110433. [PMID: 32234222 DOI: 10.1016/j.plantsci.2020.110433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Triterpenoids produced by the secondary metabolism of Betula platyphylla Suk. exhibit important pharmacological activities, such as tumor inhibition, anti-HIV, and defense against pathogens, but the yield of natural synthesis is low, which is insufficient to meet people's needs. In this study, we identified two OSC genes of birch, named as BpCAS and Bpβ-AS, respectively. The expression of BpCAS and Bpβ-AS were higher levels in roots and in stems, respectively, and they induced expression in response to methyl jasmonate (MeJA), gibberellin (GA3), abscisic acid (ABA), ethylene and mechanical damage. The function of the two genes in the triterpene synthesis of birch was identified by reverse genetics. The inhibition of Bpβ-AS gene positively regulates synthesis of betulinic acid. BpCAS interference can significantly promote the upregulation of lupeol synthase gene (BPW) and β-amyrin synthase gene(BPY), and conversion of 2,3-oxidosqualene to the downstream products betulinic acid and oleanolic acid. This study provided a basis for the genetic improvement of triterpenoid synthesis in birch through genetic engineering. The obtained transgenic birch and suspension cells served as material resources for birch triterpenoid applications in further.
Collapse
Affiliation(s)
- Jing Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Jie Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongsi Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tian Liang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ying Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jialei Xiao
- College of Life Science, Northeast Agricultural University, Harbin, 150010, China
| | - Hongmei Tian
- Forest Botanical Garden of Heilongjiang Province, Harbin, China
| | - Zhiqiang Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yaguang Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
6
|
In silico identification of natural products with anticancer activity using a chemo-structural database of Brazilian biodiversity. Comput Biol Chem 2019; 83:107102. [PMID: 31487609 DOI: 10.1016/j.compbiolchem.2019.107102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
Cancer is one of the leading causes of death worldwide, and the number of patients has only increased each year, despite the considerable efforts and investments in scientific research. Since natural products (NPs) may serve as suitable sources for drug development, the cytotoxicity against cancer cells of 2221 compounds from the Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBEDB) was predicted using CDRUG algorithm. Molecular modeling, chemoinformatics, and chemometric tools were then used to analyze the structural and physicochemical properties of these compounds. We compared the positive NPs with FDA-approved anticancer drugs and predicted the molecular targets involved in the anticancer activity. In the present study, 46 families comprising potential anticancer compounds and at least 19 molecular targets involved in oncogenesis. To the best of our knowledge, this is the first large-scale study conducted to evaluate the potentiality of NPs sourced from Brazilian biodiversity as anticancer agents, using in silico approaches. Our results provided interesting insights about the mechanism of action of these compounds, and also suggested that their structural diversity may aid structure-based optimization strategies for developing novel drugs for cancer therapy.
Collapse
|
7
|
Teixeira TR, Santos GS, Turatti ICC, Paziani MH, von Zeska Kress MR, Colepicolo P, Debonsi HM. Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography–mass spectrometry (GC–MS). Polar Biol 2019. [DOI: 10.1007/s00300-019-02529-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Jamison MT, Wang X, Cheng T, Molinski TF. Synergistic Anti- Candida Activity of Bengazole A in the Presence of Bengamide A †. Mar Drugs 2019; 17:E102. [PMID: 30736491 PMCID: PMC6410253 DOI: 10.3390/md17020102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 01/26/2023] Open
Abstract
Bengazoles A⁻G from the marine sponge Jaspis sp. exhibit potent in vitro antifungal activity against Candida spp. and other pathogenic fungi. The mechanism of action (MOA) of bengazole A was explored in Candida albicans under both liquid culture and surface culture on Mueller-Hinton agar. Pronounced dose-dependent synergistic antifungal activity was observed with bengazole A in the presence of bengamide A, which is also a natural product from Jaspis sp. The MOA of bengazole A was further explored by monitoring the sterol composition of C. albicans in the presence of sub-lethal concentrations of bengazole A. The GCMS of solvent extracts prepared from liquid cultures of C. albicans in the presence of clotrimazole-a clinically approved azole antifungal drug that suppresses ergosterol biosynthesis by the inhibition of 14α-demethylase-showed reduced cellular ergosterol content and increased concentrations of lanosterol and 24-methylenedihydrolanosterol (a shunt metabolite of ergosterol biosynthesis). No change in relative sterol composition was observed when C. albicans was cultured with bengazole A. These results eliminate an azole-like MOA for the bengazoles, and suggest that another as-yet unidentified mechanism is operative.
Collapse
Affiliation(s)
- Matthew T Jamison
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| | - Xiao Wang
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| | - Tina Cheng
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| | - Tadeusz F Molinski
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC0358, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Rabelo VWH, Viegas DDJ, Tucci EMN, Romeiro NC, Abreu PA. Virtual screening and drug repositioning as strategies for the discovery of new antifungal inhibitors of oxidosqualene cyclase. J Steroid Biochem Mol Biol 2019; 185:189-199. [PMID: 30193921 DOI: 10.1016/j.jsbmb.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 01/11/2023]
Abstract
Candidiasis is the most common fungal infection in immunocompromised patients, and Candida albicans is the fourth leading agent of nosocomial infections. Mortality from this infection is significant; however, the therapeutic treatment is limited, which demands the search for new drugs and new targets. In this context, oxidosqualene cyclase (OSC) catalyzes the cyclization of the 2,3-oxidosqualene to form lanosterol, an intermediate of ergosterol biosynthesis. Therefore, this enzyme constitutes an attractive therapeutic target. Thus, the aim of this study is to identify potential inhibitors of C. albicans OSC (CaOSC) from a marketed drugs database in order to discover new antifungal agents. The CaOSC 3D model was constructed using the Swiss-Model server and important features for CaOSC inhibition were identified by molecular docking of known inhibitors using Autodock Vina 1.1.2. Subsequently, virtual screening helped to identify calcitriol, the active form of vitamin D, and other four drugs, as potential inhibitors of CaOSC. The selected drugs presented an interesting pattern of interactions with this enzyme, including hydrogen bond with Asp450, a key residue in the active site. Thus, the antifungal activity of calcitriol was evaluated in vitro against Candida spp strains. Calcitriol showed antifungal activity against C. albicans and C. tropicalis, which reinforces the potential of this compound as candidate of CaOSC inhibitor. In short, the present study provides important insights for the development of new oxidosqualene cyclase inhibitors as antifungals.
Collapse
Affiliation(s)
- Vitor Won-Held Rabelo
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Daiane de Jesus Viegas
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus Macaé Professor Aloísio Teixeira, Macaé, RJ, Brazil
| | - Erline Machado Neves Tucci
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, LICC, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, 27965-045, Brazil
| | - Paula Alvarez Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, LaMCiFar, Universidade Federal do Rio de Janeiro - Campus Macaé, Av. São José do Barreto, Macaé, 27965-045, RJ, Brazil.
| |
Collapse
|
10
|
Bi-allelic Mutations in LSS, Encoding Lanosterol Synthase, Cause Autosomal-Recessive Hypotrichosis Simplex. Am J Hum Genet 2018; 103:777-785. [PMID: 30401459 DOI: 10.1016/j.ajhg.2018.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 12/25/2022] Open
Abstract
Hypotrichosis simplex (HS) is a rare form of hereditary alopecia characterized by childhood onset of diffuse and progressive scalp and body hair loss. Although research has identified a number of causal genes, genetic etiology in about 50% of HS cases remains unknown. The present report describes the identification via whole-exome sequencing of five different mutations in the gene LSS in three unrelated families with unexplained, potentially autosomal-recessive HS. Affected individuals showed sparse to absent lanugo-like scalp hair, sparse and brittle eyebrows, and sparse eyelashes and body hair. LSS encodes lanosterol synthase (LSS), which is a key enzyme in the cholesterol biosynthetic pathway. This pathway plays an important role in hair follicle biology. After localizing LSS protein expression in the hair shaft and bulb of the hair follicle, the impact of the mutations on keratinocytes was analyzed using immunoblotting and immunofluorescence. Interestingly, wild-type LSS was localized in the endoplasmic reticulum (ER), whereas mutant LSS proteins were localized in part outside of the ER. A plausible hypothesis is that this mislocalization has potential deleterious implications for hair follicle cells. Immunoblotting revealed no differences in the overall level of wild-type and mutant protein. Analyses of blood cholesterol levels revealed no decrease in cholesterol or cholesterol intermediates, thus supporting the previously proposed hypothesis of an alternative cholesterol pathway. The identification of LSS as causal gene for autosomal-recessive HS highlights the importance of the cholesterol pathway in hair follicle biology and may facilitate novel therapeutic approaches for hair loss disorders in general.
Collapse
|
11
|
Byler KG, Setzer WN. Protein Targets of Frankincense: A Reverse Docking Analysis of Terpenoids from Boswellia Oleo-Gum Resins. MEDICINES 2018; 5:medicines5030096. [PMID: 30200355 PMCID: PMC6163972 DOI: 10.3390/medicines5030096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Background: Frankincense, the oleo-gum resin of Boswellia trees, has been used in traditional medicine since ancient times. Frankincense has been used to treat wounds and skin infections, inflammatory diseases, dementia, and various other conditions. However, in many cases, the biomolecular targets for frankincense components are not well established. Methods: In this work, we have carried out a reverse docking study of Boswellia diterpenoids and triterpenoids with a library of 16034 potential druggable target proteins. Results:Boswellia diterpenoids showed selective docking to acetylcholinesterase, several bacterial target proteins, and HIV-1 reverse transcriptase. Boswellia triterpenoids targeted the cancer-relevant proteins (poly(ADP-ribose) polymerase-1, tankyrase, and folate receptor β), inflammation-relevant proteins (phospholipase A2, epoxide hydrolase, and fibroblast collagenase), and the diabetes target 11β-hydroxysteroid dehydrogenase. Conclusions: The preferential docking of Boswellia terpenoids is consistent with the traditional uses and the established biological activities of frankincense.
Collapse
Affiliation(s)
- Kendall G Byler
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
12
|
Tani O, Akutsu Y, Ito S, Suzuki T, Tateishi Y, Yamaguchi T, Niimi T, Namatame I, Chiba Y, Sakashita H, Kubota T, Yanagi T, Mizukami S, Hirayama K, Furukawa K, Yamasaki K. NMR Biochemical Assay for Oxidosqualene Cyclase: Evaluation of Inhibitor Activities on Trypanosoma cruzi and Human Enzymes. J Med Chem 2018; 61:5047-5053. [PMID: 29771525 DOI: 10.1021/acs.jmedchem.8b00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidosqualene cyclase (OSC), a membrane-associated protein, is a key enzyme of sterol biosynthesis. Here we report a novel assay for OSC, involving reaction in aqueous solution, NMR quantification in organic solvent, and factor analysis of spectra. We evaluated one known and three novel inhibitors on OSC of Trypanosoma cruzi, a parasite causative of Chagas disease, and compared their effects on human OSC for selectivity. Among them, one novel inhibitor showed a significant parasiticidal activity.
Collapse
Affiliation(s)
- Osamu Tani
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Yukie Akutsu
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Shinji Ito
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Takayuki Suzuki
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yukihiro Tateishi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tomohiko Yamaguchi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Tatsuya Niimi
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Ichiji Namatame
- Drug Discovery Research , Astellas Pharma Inc. , 21 Miyukigaoka , Tsukuba 305-8585 , Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Hitoshi Sakashita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tomomi Kubota
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Tetsuo Yanagi
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Koji Furukawa
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba 305-8566 , Japan
| |
Collapse
|
13
|
Alves TB, Souza-Moreira TM, Valentini SR, Zanelli CF, Furlan M. Friedelin in Maytenus ilicifolia Is Produced by Friedelin Synthase Isoforms. Molecules 2018; 23:E700. [PMID: 29558378 PMCID: PMC6017009 DOI: 10.3390/molecules23030700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
Triterpenes are interesting compounds because they play an important role in cell homeostasis and a wide variety exhibiting defense functions is produced by plant secondary metabolism. Those same plant secondary metabolites also exhibit biological properties with promising therapeutic potential as anti-inflammatory and antitumor agents. Friedelin is a triterpene ketone with anti-inflammatory and gastroprotective activities and it is a precursor of relevant antitumor quinonemethides. Although many triterpene synthases have been described, only two friedelin synthases were characterized and there is no information about their genomic features and alleles. In the present work, we aimed to identify the gene and new isoforms of friedelin synthase in Maytenus ilicifolia leaves to be functionally characterized in Saccharomyces cerevisiae. The gene sequence analysis elucidated the exon/intron structure and confirmed the presence of single nucleotide polymorphisms with four non-synonymous mutations outside the active site of the enzyme. Therefore, two new isoforms were observed and the heterologous production of the enzymes in yeast showed similar production of friedelin. This first description of different alleles of the gene of friedelin synthase in M. ilicifolia can guide their validation as markers for friedelin-producer specimens.
Collapse
Affiliation(s)
- Thaís B Alves
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
| | - Tatiana M Souza-Moreira
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-903, Brazil.
| | - Sandro R Valentini
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-903, Brazil.
| | - Cleslei F Zanelli
- Faculdade de Ciências Farmacêuticas, Univ. Estadual Paulista-UNESP, Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-903, Brazil.
| | - Maysa Furlan
- Instituto de Química, Univ. Estadual Paulista-UNESP, Rua Prof. Francisco Degni, 55, Quitandinha, Araraquara, SP 14800-060, Brazil.
| |
Collapse
|