1
|
Wu L, Liu Y, Fu Z, Guo H, Liu K, Ren J, Huang Z, Yang F, Mao H. TRPC6-targeted dexamethasone nanobubbles with ultrasound-guided theranostics for adriamycin-induced nephropathy. J Nanobiotechnology 2025; 23:398. [PMID: 40448086 DOI: 10.1186/s12951-025-03487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Glucocorticoid (GC) intolerance and systemic toxicity pose significant challenges in the treatment of primary nephrotic syndrome (PNS), underscoring the urgent need for targeted therapies that maximize efficacy while minimizing adverse effects. To address these challenges, we developed TRPC6-targeted dexamethasone-loaded nanobubbles (Dex@NBs-TRPC6)-an innovative therapeutic platform that enables selective podocyte delivery alongside real-time monitoring capabilities. RESULTS The Dex@NBs-TRPC6 nanobubble system comprises polyethylene glycol-modified lipid vesicles encapsulating dexamethasone (Dex), conjugated with TRPC6-specific antibody for precise podocyte targeting delivery. Comprehensive in vivo and in vitro evaluations demonstrated the robust kidney and podocyte-targeting capabilities of Dex@NBs-TRPC6. Functional assays in mouse podocyte cells revealed that Dex@NBs-TRPC6 significantly outperformed free Dex and non-targeted nanobubbles (Dex@NBs) in mitigating cell apoptosis and inflammation. In an adriamycin-induced mouse nephropathy model, Dex@NBs-TRPC6, administered at half the dosage of free Dex, markedly alleviated proteinuria, glomerular and tubular damage, renal apoptosis, inflammation and fibrosis. Notably, Dex@NBs-TRPC6 attenuated the overexpression of hepatic gluconeogenic genes PCK1 and GCP6, a common adverse effect associated with Dex. Furthermore, leveraging the acoustic response properties of Dex@NBs-TRPC6, this delivery system integrates ultrasound imaging capabilities, enabling real-time visualization and therapeutic monitoring. CONCLUSIONS By simultaneously enhancing therapeutic efficacy, minimizing systemic toxicity, and enabling personalized imaging-guided treatment, Dex@NBs-TRPC6 introduces a transformative approach to GC-based renal therapy.
Collapse
Affiliation(s)
- Lin Wu
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Ziqi Fu
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Honglei Guo
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Kang Liu
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Jiafa Ren
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China
| | - Zhimin Huang
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China.
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Huijuan Mao
- Department of Nephrology, First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P.R. China.
| |
Collapse
|
2
|
Marques PL, Galac S, Mateus L, Leal RO. Bridging the gap-Rethinking the role of the adrenal gland in chronic kidney disease from the feline perspective. Domest Anim Endocrinol 2025; 93:106955. [PMID: 40412070 DOI: 10.1016/j.domaniend.2025.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Chronic kidney disease (CKD) is the most common metabolic disease in domestic cats. Unlike humans and dogs, CKD in cats seems to have a highly complex and multifactorial etiology. Despite great effort being poured into research trying to elucidate possible pathways for the pathogenesis of CKD, there is still a lack of understanding regarding its initiating and progression factors. There is also a lack of therapeutic options for these patients, with most treatment plans relying on a low-phosphate diet, dietary protein modification and medical management of complications (e.g. hypertension) as they arise. In this review, we propose the hypothalamic-pituitary-adrenal (HPA) axis plays a central role in the development, pathophysiology and progression of feline chronic kidney disease. The adrenal glands and the hormones they secrete, in particular, may act as lynchpins in chronic kidney disease, mediating virtually every aspect of the disease: from the establishment of fibrosis and kidney damage to the development of hypertension and a pro-inflammatory status. By compiling the available research regarding the influence of adrenal hormones and the HPA axis, we hope to highlight possible future areas of scientific interest regarding feline CKD as well as possible aspects in which the cat may act as a model for research in human medicine.
Collapse
Affiliation(s)
- Patricia Lunet Marques
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| | - Sara Galac
- Utrecht University - Faculty of Veterinary Medicine, Utrecht, Netherlands.
| | - Luísa Mateus
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| | - Rodolfo Oliveira Leal
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
3
|
Suglia SF, Hidalgo B, Baccarelli AA, Cardenas A, Damrauer S, Johnson A, Key K, Liang M, Magnani JW, Pate B, Sims M, Tajeu GS. Improving Cardiovascular Health Through the Consideration of Social Factors in Genetics and Genomics Research: A Scientific Statement From the American Heart Association. Circ Cardiovasc Qual Outcomes 2025; 18:e000138. [PMID: 40123498 DOI: 10.1161/hcq.0000000000000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Cardiovascular health (CVH) is affected by genetic, social, and genomic factors across the life course, yet little research has focused on the interrelationships among them. An extensive body of work has documented the impact of social determinants of health at both the structural and individual levels on CVH, highlighting pathways in which racism, housing, violence, and neighborhood environments adversely affect CVH and contribute to disparities in cardiovascular disease. Genetic factors have also been identified as contributors to risk for cardiovascular disease. Emerging evidence suggests that social factors can interact with genetic susceptibility to affect disease risk. Increasingly, social factors have been shown to affect epigenetic markers such as DNA methylation, which can regulate gene and protein expression. This is a potential biological mechanism through which exposure to poor social determinants of health becomes physically embodied at the molecular level, potentially contributing to the development of suboptimal CVH and chronic disease, thus reinforcing and propagating health disparities. The objective of this statement is to highlight and summarize key literature that has examined the joint associations between social, genetic, and genomic factors and CVH and cardiovascular disease.
Collapse
|
4
|
Ferrer A, Labad J, Salvat-Pujol N, Urretavizcaya M, Obrador-Font R, Menchón JM, Palao D, Soriano-Mas C, Costas J, Barrachina M, Carracedo Á, Soria V. Genetic and epigenetic changes to the glucocorticoid receptor gene (NR3C1) and cognition in major depressive disorder. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2025:S2950-2853(25)00018-3. [PMID: 40189105 DOI: 10.1016/j.sjpmh.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Many studies have found that hypothalamic-pituitary-adrenal (HPA) axis abnormalities are related to the pathophysiology of major depressive disorder (MDD) and cognitive functioning. Our aim was to assess the influence of genetic polymorphisms and methylation levels in three different promoter regions throughout the glucocorticoid receptor (GR) gene NR3C1 on cognitive performance in MDD. Plausible interactions with childhood adversity and mediation relationships between genetic and epigenetic variables were explored. MATERIALS AND METHODS The sample included a total of 64 MDD patients and 82 healthy controls. Child maltreatment and neurocognitive performance were assessed in all participants. HPA negative feedback was analyzed using the dexamethasone suppression test after the administration of 0.25mg of dexamethasone. A total of 23 single-nucleotide polymorphisms were genotyped, and methylation levels at several CpGs in exons 1D, 1F and 1H of the GR gene were measured. RESULTS Results show that, beyond the influence of other covariables, NR3C1 single-nucleotide polymorphisms and methylation levels predicted performance in executive functioning and working memory tasks. No significant interactions or mediation relationships were detected. CONCLUSIONS Results suggest that genetic variations and epigenetic regulation of the GR gene are relevant factors influencing cognitive performance in MDD and could emerge as significant biomarkers and therapeutic targets in mood disorders and other stress-related disorders.
Collapse
Affiliation(s)
- Alex Ferrer
- Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Catalonia, Spain; Institut de Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain; Escoles Universitàries Gimbernat, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Labad
- Institut de Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain; Department of Mental Health, Consorci Sanitari del Maresme, Mataró, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Neus Salvat-Pujol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - Mikel Urretavizcaya
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roser Obrador-Font
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain
| | - José M Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Department of Clinical Sciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Diego Palao
- Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Catalonia, Spain; Institut de Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Catalonia, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Department of Social and Quantitative Psychology, Universitat de Barcelona, Catalonia, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, A Coruña, Spain
| | - Marta Barrachina
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Instituto Carlos III, Santiago de Compostela, A Coruña, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginia Soria
- Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group - Psychiatry and Mental Health, Barcelona, Catalonia, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Zhou H, Chen X, Tao Y, Li Z, Wu H, Shi H, Wu X, Huang F. Corticosterone-Induced Myocardial Dysfunctions and the Cardioprotective Role of Tauroursodeoxycholic Acid: An Experimental Study in Mice. Clin Exp Pharmacol Physiol 2025; 52:e70027. [PMID: 39929210 DOI: 10.1111/1440-1681.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/02/2024] [Accepted: 01/11/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Major depressive disorder increases cardiovascular risk through stress-induced elevated cortisol levels. Tauroursodeoxycholic acid (TUDCA), a bile acid, has been reported to have anti-inflammatory, anti-depressive and cardioprotective effects. However, the effects of stress-induced myocardial dysfunctions remain unclear. Our study aims to investigate corticosterone-induced myocardial dysfunctions and the role of TUDCA in rescuing such dysfunctions. METHODS To achieve this, experiments were conducted on mice that had been exposed to corticosterone, with treatment involving TUDCA. We first evaluated depression-like behaviours using the open field test, forced swimming test and sucrose preference test, and assessed cardiac function using echocardiography. We then analysed the levels of norepinephrine (NE), adenosine triphosphate (ATP) and B-cell lymphoma-2 (Bcl-2)/Bcl-2 Associated X-protein (Bax) using liquid chromatography-mass spectrometry, enzyme-linked immunosorbent assay and Western blot, respectively. Finally, we investigated gene expression and signalling pathways through RNA-sequencing, which were further validated by qRT-PCR. RESULTS The results demonstrate that corticosterone administration induced depression-like behaviours in mice, including a significant increase in immobility time during the tail suspension test and a significant decrease in the sucrose preference rate. Additionally, it induced cardiac dysfunction in mice, including a decrease in ejection fraction and fractional shortening. Furthermore, corticosterone administration resulted in an increase in left ventricular volume-systolic and left ventricular end-systolic volume index in the mouse left ventricular myocardium. Moreover, it elevated the NE concentration in mouse serum and decreased ATP levels and the Bcl-2/Bax protein expression ratio in the mouse left ventricular tissue. Notably, these detrimental changes were rescued by TUDCA treatment. Additionally, corticosterone affected genes related to cardiac muscle contraction and mitochondrial function, while TUDCA countered this impact by modulating genes associated with muscle processes and ion transport, potentially alleviating myocardial contractile dysfunction. CONCLUSION Overall, our results suggest that corticosterone induces depression-like behaviours, cardiac dysfunction, elevated serum NE levels, reduced ATP and a decreased Bcl-2/Bax ratio, disrupting myocardial contraction and mitochondrial function. TUDCA effectively reversed these effects and modulated genes linked to muscle contraction and ion transport, highlighting its potential in mitigating corticosterone-induced behavioural and cardiac impairments.
Collapse
Affiliation(s)
- Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiaoying Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
6
|
Shen Y, Yang P, Lu Y. Expression and prognosis of NR3C1 in uterine corpus endometrial carcinoma based on multiple datasets. Discov Oncol 2025; 16:370. [PMID: 40113641 PMCID: PMC11926321 DOI: 10.1007/s12672-025-02086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC), a prevalent malignancy in the female reproductive system, has witnessed a 30% increase in recent year. Recognizing the significance of early treatment in reducing patient mortality, the identification of potential biomarkers for UCEC plays a crucial role in early diagnosis. This study was to identify key genes associated with UCEC utilizing the Gene Expression Omnibus database, followed by validating their prognostic value across multiple databases. Analysis of four UCEC databases (GSE17025, GSE36389, GSE63678, GSE115810) yielded 72 co-expressed genes. KEGG and GO enrichment analyses revealed their involvement in physiological processes such as transcriptional misregulation in cancer. Constructing a protein-protein interaction network for these 72 genes, the top 10 genes with significant interactions were identified. Survival regression analysis highlighted NR3C1 as the gene with a substantial impact on UCEC prognostic outcomes. Differential expression analysis indicated lower expression of NR3C1 in UCEC compared to normal endometrial tissue. Cox regression analysis, performed on clinical datasets of UCEC patients, identified clinical stage III, clinical stage IV, age, and NR3C1 as independent prognostic factors influencing UCEC outcomes. The LinkedOmics online database revealed the top 50 positively and negatively correlated genes with NR3C1 in UCEC. Subsequent investigations into the relationship between NR3C1 and tumor-infiltrating immune cells were conducted using R software. Gene set enrichment analysis provided insights into NR3C1-related genes, showing enrichment in processes such as Ribosome, Oxidative phosphorylation in UCEC. Collectively, these comprehensive analyses suggest that NR3C1 may serve as a potential biomarker indicating the prognosis of UCEC.
Collapse
Affiliation(s)
- Yahui Shen
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| | - Peihan Yang
- Westa College, Southwest University, Chongqing, 400712, China
| | - Yanping Lu
- Department of Obstetrics and Gynecology, The First Medical Center of PLA General Hospital, 28 Fuxing Road, Haidian District, 100191, Beijing, China.
| |
Collapse
|
7
|
Zhou L, Mu S, Zhang Y, Song H. USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 expression. Biochem Pharmacol 2024; 229:116519. [PMID: 39236936 DOI: 10.1016/j.bcp.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Dysregulated bone homeostasis contributes to multiple diseases including osteoporosis (OP). In this study, osteoporotic mice were successfully generated using ovariectomy to investigate the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in OP. NR3C1, identified as a significantly upregulated gene in OP using bioinformatic tools, was artificially downregulated in osteoporotic mice. NR3C1 expression was significantly elevated in the femoral tissues of osteoporotic patients, and downregulation of NR3C1 alleviated bone loss and restored bone homeostasis in osteoporotic mice, as manifested by increased ALP- and OCN-positive cells and reduced RANKL/OPG ratio. Downregulation of NR3C1 inhibited osteoclastic differentiation of RAW264.7 cells and mouse bone marrow-derived macrophages (BMDM) and promoted osteogenic differentiation of MC3T3-E1 cells. The transcription factor NR3C1 bound to the cystatin-3 (CST3) promoter to repress its transcription in both RAW264.7 and MC3T3-E1 cells. The downregulation of CST3 reversed the protective effect of NR3C1 downregulation against OP. Ubiquitin-specific-processing protease 10 (USP10)-mediated deubiquitination of NR3C1 improved NR3C1 stability. Downregulation of USP10 inhibited osteoclastic differentiation of RAW264.7 cells and BMDM while promoting osteogenic differentiation of MC3T3-E1 cells. Taken together, USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 transcription, providing an attractive therapeutic strategy to alleviate OP.
Collapse
Affiliation(s)
- Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
8
|
Trandafir AI, Ghemigian A, Ciobica ML, Nistor C, Gurzun MM, Nistor TVI, Petrova E, Carsote M. Diabetes Mellitus in Non-Functioning Adrenal Incidentalomas: Analysis of the Mild Autonomous Cortisol Secretion (MACS) Impact on Glucose Profile. Biomedicines 2024; 12:1606. [PMID: 39062179 PMCID: PMC11274780 DOI: 10.3390/biomedicines12071606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Non-functioning adrenal incidentalomas (NFAIs) have been placed in relationship with a higher risk of glucose profile anomalies, while the full-blown typical picture of Cushing's syndrome (CS) and associated secondary (glucocorticoid-induced) diabetes mellitus is not explicitly confirmed in this instance. Our objective was to highlight the most recent data concerning the glucose profile, particularly, type 2 diabetes mellitus (T2DM) in NFAIs with/without mild autonomous cortisol secretion (MACS). This was a comprehensive review of the literature; the search was conducted according to various combinations of key terms. We included English-published, original studies across a 5-year window of publication time (from January 2020 until 1 April 2024) on PubMed. We excluded case reports, reviews, studies on T1DM or secondary diabetes, and experimental data. We identified 37 studies of various designs (14 retrospective studies as well 13 cross-sectional, 4 cohorts, 3 prospective, and 2 case-control studies) that analysed 17,391 individuals, with a female-to-male ratio of 1.47 (aged between 14 and 96 years). T2DM prevalence in MACS (affecting 10 to 30% of NFAIs) ranged from 12% to 44%. The highest T2DM prevalence in NFAI was 45.2% in one study. MACS versus (non-MACS) NFAIs (n = 16) showed an increased risk of T2DM and even of prediabetes or higher fasting plasma glucose or HbA1c (no unanimous results). T2DM prevalence was analysed in NFAI (N = 1243, female-to-male ratio of 1.11, mean age of 60.42) versus (non-tumour) controls (N = 1548, female-to-male ratio of 0.91, average age of 60.22) amid four studies, and two of them were confirmatory with respect to a higher rate in NFAIs. Four studies included a sub-group of CS compared to NFAI/MACS, and two of them did not confirm an increased rate of glucose profile anomalies in CS versus NFAIs/ACS. The longest period of follow-up with concern to the glycaemic profile was 10.5 years, and one cohort showed a significant increase in the T2DM rate at 17.9% compared to the baseline value of 0.03%. Additionally, inconsistent data from six studies enrolling 1039 individuals that underwent adrenalectomy (N = 674) and conservative management (N = 365) pinpointed the impact of the surgery in NFAIs. The regulation of the glucose metabolism after adrenalectomy versus baseline versus conservative management (n = 3) was improved. To our knowledge, this comprehensive review included one of the largest recent analyses in the field of glucose profile amid the confirmation of MACS/NFAI. In light of the rising incidence of NFAI/AIs due to easier access to imagery scans and endocrine evaluation across the spectrum of modern medicine, it is critical to assess if these patients have an increased frequency of cardio-metabolic disorders that worsen their overall comorbidity and mortality profile, including via the confirmation of T2DM.
Collapse
Affiliation(s)
- Alexandra-Ioana Trandafir
- PhD Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
| | - Adina Ghemigian
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, “Dr. Carol Davila” Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Thoracic Surgery Department, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Maria-Magdalena Gurzun
- Cardiology Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Laboratory of Non-Invasive Cardiovascular Exploration, “Dr. Carol Davila” Central Military University Emergency Hospital, 010242 Bucharest, Romania
| | - Tiberiu Vasile Ioan Nistor
- Medical Biochemistry Discipline, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Eugenia Petrova
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Clinical Endocrinology V, “C.I. Parhon” National Institute of Endocrinology, 011863 Bucharest, Romania; (A.G.); (E.P.); (M.C.)
- Department of Endocrinology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Birtolo MF, Armignacco R, Benanteur N, Baussart B, Villa C, De Murat D, Guignat L, Groussin L, Libé R, Zennaro MC, Saidi M, Perlemoine K, Letourneur F, Amar L, Bertherat J, Jouinot A, Assié G. Whole blood transcriptomic signature of Cushing's syndrome. Eur J Endocrinol 2024; 191:55-63. [PMID: 38970559 DOI: 10.1093/ejendo/lvae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVE Cushing's syndrome is characterized by high morbidity and mortality with high interindividual variability. Easily measurable biomarkers, in addition to the hormone assays currently used for diagnosis, could reflect the individual biological impact of glucocorticoids. The aim of this study is to identify such biomarkers through the analysis of whole blood transcriptome. DESIGN Whole blood transcriptome was evaluated in 57 samples from patients with overt Cushing's syndrome, mild Cushing's syndrome, eucortisolism, and adrenal insufficiency. Samples were randomly split into a training cohort to set up a Cushing's transcriptomic signature and a validation cohort to assess this signature. METHODS Total RNA was obtained from whole blood samples and sequenced on a NovaSeq 6000 System (Illumina). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore the transcriptome profile. Ridge regression was used to build a Cushing's transcriptome predictor. RESULTS The transcriptomic profile discriminated samples with overt Cushing's syndrome. Genes mostly associated with overt Cushing's syndrome were enriched in pathways related to immunity, particularly neutrophil activation. A prediction model of 1500 genes built on the training cohort demonstrated its discriminating value in the validation cohort (accuracy .82) and remained significant in a multivariate model including the neutrophil proportion (P = .002). Expression of FKBP5, a single gene both overexpressed in Cushing's syndrome and implied in the glucocorticoid receptor signaling, could also predict Cushing's syndrome (accuracy .76). CONCLUSIONS Whole blood transcriptome reflects the circulating levels of glucocorticoids. FKBP5 expression could be a nonhormonal marker of Cushing's syndrome.
Collapse
Affiliation(s)
- Maria Francesca Birtolo
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele Milan, Italy
| | - Roberta Armignacco
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Nesrine Benanteur
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Bertrand Baussart
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Department of Neurosurgery, Hôpital Universitaire Pitié-Salpêtrière, APHP, Sorbonne Université, 75013 Paris, France
| | - Chiara Villa
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Department of Neuropathology, Hôpital Universitaire Pitié-Salpêtrière, APHP, Sorbonne Université, 75013 Paris, France
| | - Daniel De Murat
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Laurence Guignat
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Lionel Groussin
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Rossella Libé
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Maria-Christina Zennaro
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Service de Génétique, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Meriama Saidi
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Karine Perlemoine
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Franck Letourneur
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Laurence Amar
- Hypertension Unit, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Anne Jouinot
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Guillaume Assié
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
- Service d'Endocrinologie, Center for Rare Adrenal Diseases, AP-HP, Hôpital Cochin, F-75014 Paris, France
| |
Collapse
|
10
|
Skerrett-Byrne DA, Stanger SJ, Trigg NA, Anderson AL, Sipilä P, Bernstein IR, Lord T, Schjenken JE, Murray HC, Verrills NM, Dun MD, Pang TY, Nixon B. Phosphoproteomic analysis of the adaption of epididymal epithelial cells to corticosterone challenge. Andrology 2024; 12:1038-1057. [PMID: 38576152 DOI: 10.1111/andr.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The epididymis has long been of interest owing to its role in promoting the functional maturation of the male germline. More recent evidence has also implicated the epididymis as an important sensory tissue responsible for remodeling of the sperm epigenome, both under physiological conditions and in response to diverse forms of environmental stress. Despite this knowledge, the intricacies of the molecular pathways involved in regulating the adaptation of epididymal tissue to paternal stressors remains to be fully resolved. OBJECTIVE The overall objective of this study was to investigate the direct impact of corticosterone challenge on a tractable epididymal epithelial cell line (i.e., mECap18 cells), in terms of driving adaptation of the cellular proteome and phosphoproteome signaling networks. MATERIALS AND METHODS The newly developed phosphoproteomic platform EasyPhos coupled with sequencing via an Orbitrap Exploris 480 mass spectrometer, was applied to survey global changes in the mECap18 cell (phospho)proteome resulting from sub-chronic (10-day) corticosterone challenge. RESULTS The imposed corticosterone exposure regimen elicited relatively subtle modifications of the global mECap18 proteome (i.e., only 73 out of 4171 [∼1.8%] proteins displayed altered abundance). By contrast, ∼15% of the mECap18 phosphoproteome was substantially altered following corticosterone challenge. In silico analysis of the corresponding parent proteins revealed an activation of pathways linked to DNA damage repair and oxidative stress responses as well as a reciprocal inhibition of pathways associated with organismal death. Corticosterone challenge also induced the phosphorylation of several proteins linked to the biogenesis of microRNAs. Accordingly, orthogonal validation strategies confirmed an increase in DNA damage, which was ameliorated upon selective kinase inhibition, and an altered abundance profile of a subset of microRNAs in corticosterone-treated cells. CONCLUSIONS Together, these data confirm that epididymal epithelial cells are reactive to corticosterone challenge, and that their response is tightly coupled to the opposing action of cellular kinases and phosphatases.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New Lambton, NSW, Australia
| |
Collapse
|
11
|
Singh M, Jassal R, Khetarpal P. Diagnostic and therapeutic approaches for endometriosis: a patent landscape. Arch Gynecol Obstet 2024; 309:831-842. [PMID: 37626175 DOI: 10.1007/s00404-023-07151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVE The aim of this review is to analyze the patent filings and to systematize the main technological trends in patent protection for the diagnosis and therapeutics for endometriosis. Patent literature has also been explored to identify active inventors and applicants in this field. METHODOLOGY Patent search was carried out in the freely accessible patent search databases namely, patentscope using various combinations of the keywords "Endometriosis OR Adenomyosis" AND "Diagnostic OR Therapeutics" were used along with wildcard search queries in the "Title", "Abstract" and "Descriptions" fields. RESULTS A patent search revealed 144 patents describing inventions for diagnostic and therapeutic purposes of endometriosis. These patents include 26 patent applications in the diagnostic utility and 116 patent applications under the therapeutic approaches. Out of these 116 patent applications, 43 describe traditional medicines for endometriosis. Two patent applications describe inventions that can fall into both categories. CONCLUSION Efforts are being made to improve current diagnostic instruments. Hormonal alteration methods is the most common field of invention, followed by surgical interventions for therapeutics. A general trend of increase in patent application filings has been observed with a slight decrease in recent years.
Collapse
Affiliation(s)
- Maninder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Reena Jassal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Preeti Khetarpal
- Human Genetics and Molecular Medicine Department, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
12
|
Basarrate S, Monzel AS, Smith J, Marsland A, Trumpff C, Picard M. Glucocorticoid and Adrenergic Receptor Distribution Across Human Organs and Tissues: A Map for Stress Transduction. Psychosom Med 2024; 86:89-98. [PMID: 38193786 PMCID: PMC10922488 DOI: 10.1097/psy.0000000000001275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Psychosocial stress is transduced into disease risk through energy-dependent release of hormones from the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes. The levels of glucocorticoid and adrenergic hormones, together with the sensitivity of tissues to their signaling, define stress responses. To understand existing pathways responsible for the psychobiological transduction of stressful experiences, we provide a quantitative whole-body map of glucocorticoid and adrenergic receptor (AR) expression. METHODS We systematically examined gene expression levels for the glucocorticoid receptor (GR), α- and β-ARs (AR-α1B, AR-α2B AR-β2, and AR-β3), across 55 different organs using the Human Protein Atlas and Human Proteome Map datasets. Given that mitochondria produce the energy required to respond to stress, we leveraged the Human Protein Atlas and MitoCarta3.0 data to examine the link between stress hormone receptor density and mitochondrial gene expression. Finally, we tested the functional interplay between GR activation and AR expression in human fibroblast cells. RESULTS The GR was expressed ubiquitously across all investigated organ systems, whereas AR subtypes showed lower and more localized expression patterns. Receptor co-regulation, meaning the correlated gene expression of multiple stress hormone receptors, was found between GR and AR-α1B, as well as between AR-α1B and AR-α2B. In cultured human fibroblasts, activating the GR selectively increased AR-β2 and AR-α1B expression. Consistent with the known energetic cost of stress responses, GR and AR expressions were positively associated with the expression of specific mitochondrial pathways. CONCLUSIONS Our results provide a cartography of GR and AR expression across the human body. Because stress-induced GR and AR signaling triggers energetically expensive cellular pathways involving energy-transforming mitochondria, the tissue-specific expression and co-expression patterns of hormone receptor subtypes may in part determine the resilience or vulnerability of different organ systems.
Collapse
Affiliation(s)
- Sophia Basarrate
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anna S. Monzel
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Janell Smith
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anna Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
13
|
Kolb KL, Mira ALS, Auer ED, Bucco ID, de Lima e Silva CE, dos Santos PI, Hoch VBB, Oliveira LC, Hauser AB, Hundt JE, Shuldiner AR, Lopes FL, Boysen TJ, Franke A, Pinto LFR, Soares-Lima SC, Kretzschmar GC, Boldt ABW. Glucocorticoid Receptor Gene ( NR3C1) Polymorphisms and Metabolic Syndrome: Insights from the Mennonite Population. Genes (Basel) 2023; 14:1805. [PMID: 37761945 PMCID: PMC10530687 DOI: 10.3390/genes14091805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with polymorphisms and the methylation degree of the glucocorticoid receptor gene (NR3C1) and is potentially involved in the development of metabolic syndrome (MetS). In order to evaluate the association between MetS with the polymorphisms, methylation, and gene expression of the NR3C1 in the genetically isolated Brazilian Mennonite population, we genotyped 20 NR3C1 polymorphisms in 74 affected (MetS) and 138 unaffected individuals without affected first-degree relatives (Co), using exome sequencing, as well as five variants from non-exonic regions, in 70 MetS and 166 Co, using mass spectrometry. The methylation levels of 11 1F CpG sites were quantified using pyrosequencing (66 MetS and 141 Co), and the NR3C1 expression was evaluated via RT-qPCR (14 MetS and 25 Co). Age, physical activity, and family environment during childhood were associated with MetS. Susceptibility to MetS, independent of these factors, was associated with homozygosity for rs10482605*C (OR = 4.74, pcorr = 0.024) and the haplotype containing TTCGTTGATT (rs3806855*T_ rs3806854*T_rs10482605*C_rs10482614*G_rs6188*T_rs258813*T_rs33944801*G_rs34176759*A_rs17209258*T_rs6196*T, OR = 4.74, pcorr = 0.048), as well as for the CCT haplotype (rs41423247*C_ rs6877893*C_rs258763*T), OR = 6.02, pcorr = 0.030), but not to the differences in methylation or gene expression. Thus, NR3C1 polymorphisms seem to modulate the susceptibility to MetS in Mennonites, independently of lifestyle and early childhood events, and their role seems to be unrelated to DNA methylation and gene expression.
Collapse
Affiliation(s)
- Kathleen Liedtke Kolb
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Ana Luiza Sprotte Mira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Eduardo Delabio Auer
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| | - Isabela Dall’Oglio Bucco
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Carla Eduarda de Lima e Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Priscila Ianzen dos Santos
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Internal Medicine, Medical Clinic Department, UFPR, Rua General Carneiro, 181, 11th Floor, Alto da Glória, Curitiba 80210-170, PR, Brazil
| | - Valéria Bumiller-Bini Hoch
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Luana Caroline Oliveira
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
| | - Aline Borsato Hauser
- Laboratory School of Clinical Analysis, Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Jardim Botânico, Curitiba 80210-170, PR, Brazil;
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee, 160, Haus 32, 23562 Lübeck, Germany;
| | - Alan R. Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA;
| | - Fabiana Leão Lopes
- Human Genetics Branch, National Institute of Mental Health, 35 Convent Drive, Bethesda, MD 20892, USA;
- Institute of Psychiatry, Federal University Rio de Janeiro, Av. Venceslau Brás, 71, Rio de Janeiro 22290-140, RJ, Brazil
| | - Teide-Jens Boysen
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; (T.-J.B.); (A.F.)
| | - Luis Felipe Ribeiro Pinto
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Sheila Coelho Soares-Lima
- Brazilian National Cancer Institute, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, RJ, Brazil; (L.F.R.P.); (S.C.S.-L.)
| | - Gabriela Canalli Kretzschmar
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil; (K.L.K.); (A.L.S.M.); (E.D.A.); (I.D.B.); (C.E.d.L.e.S.); (P.I.d.S.); (V.B.-B.H.); (L.C.O.); (G.C.K.)
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81531-990, PR, Brazil
| |
Collapse
|
14
|
Azadi S, Azarpira N, Roozbeh J, Ezzatzadegan-Jahromi S, Raees-Jalali GA, Foroughinia F, Karimzadeh I. Genetic polymorphisms of glucocorticoid receptor and their association with new-onset diabetes mellitus in kidney transplant recipients. Gene 2023; 856:147138. [PMID: 36574937 DOI: 10.1016/j.gene.2022.147138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The variability in developing New-onset Diabetes Mellitus After Transplantation (NODAT), together with previously well-established interindividual variation in glucocorticoid sensitivity, led us to hypothesize that polymorphisms in the NR3C1 gene encoding glucocorticoid receptor may alter glucose balance in kidney transplant recipients. This study aimed to evaluate the association of three functional polymorphisms, BclI, N363S, and ER22/23EK, on the NR3C1 gene with NODAT in kidney allograft recipients. METHODS From Jun 2020 to July 2022 in Shiraz, 52 patients with NODAT (case group) and 52 non-diabetic kidney transplant recipients (control group) were randomly screened and recruited in this case-control study. The PCR-RFLP technique determined the genotypes of BclI, N363S, and ER22/23EK polymorphisms. RESULTS The allelic frequencies of the mutant alleles of BclI, N363S, and ER22/23EK polymorphisms in all patients were 0.36, 0.03, and 0.009, respectively. BclI mutant genotypes (CG and GG) were significantly associated with an increased risk of NODAT (P = 0.016), while the two other polymorphisms disclosed no significant association with NODAT development. In the case group, no significant association was detected between the onset time of NODAT and studied polymorphisms, including BclI (P = 0.43), N363S (P = 0.30), and ER22/23EK. P value was not reported for the last polymorphism because all patients with NODAT had the wild-type genotype (GG/GG) and performing statistical analysis was not feasible. Among studied demographic/clinical/paraclinical variables, factors such as higher mean trough level of tacrolimus during the first month after transplantation and higher mean daily dose of prednisolone significantly linked with NODAT development. CONCLUSION Our data suggested that BclI polymorphism significantly affects NODAT development among Iranian kidney allograft recipients.
Collapse
Affiliation(s)
- Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamshid Roozbeh
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Nephro-urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahrokh Ezzatzadegan-Jahromi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Nephro-urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghanbar Ali Raees-Jalali
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzaneh Foroughinia
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Бровкина СС, Джериева ИС, Волкова НИ, Шкурат ТП, Гончарова ЗА, Машкина ЕВ, Решетников ИБ. [Association of the structure of the glucocorticoid receptor and single nucleotide NR3C1 gene polymorphisms with metabolic disorders]. PROBLEMY ENDOKRINOLOGII 2023; 69:50-58. [PMID: 36842077 PMCID: PMC9978877 DOI: 10.14341/probl13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 02/27/2023]
Abstract
Glucocorticoid therapy is widely used in the treatment of various pathologies. Sensitivity to glucocorticoids (GC) has a serious impact not only on the effectiveness of their action, but also on the severity of side effects, the formation of risk factors and the development of cardiovascular diseases (CVD). Variability of sensitivity to GC causes different phenotypes and severity of metabolic disorders underlying CVD. Among them, one can distinguish a decrease in muscle mass and strength, obesity, glucose and lipid metabolism impairment, and others. Glucocorticoids carry out their effects by binding to the glucocorticoid receptor (GR), and therefore this is considered a critical point in their action. This review presents data on the significance of the glucocorticoid receptor structure, examines the main single nucleotide polymorphisms (SNP) of the NR3C1 gene associated with hypersensitivity or relative resistance to glucocorticoids in the context of metabolic disorders and the development of CVD. The association of the four most studied SNP of the GR gene with metabolic risks is described in detail: BclI (rs41423247), N363S (rs56149945), ER22/23EK (rs6189/rs6190), GR-9ß (rs6198). Their determination can contribute to clarifying the prognosis of both the effectiveness of GC and the development of metabolic disorders, and subsequent early correction of CVD risk factors.
Collapse
|
16
|
Gultig KD, de Rooij SR, Hilberdink CE, Olff M, Roseboom TJ, van Zuiden M. Effects of prenatal exposure to the 1944-45 Dutch famine and glucocorticoid receptor polymorphisms on later life PTSD susceptibility. Eur J Psychotraumatol 2023; 14:2219075. [PMID: 37335018 PMCID: PMC10281402 DOI: 10.1080/20008066.2023.2219075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023] Open
Abstract
Background: Exposure to adversity in utero is thought to increase susceptibility to develop posttraumatic stress disorder (PTSD) following later life trauma, due to neurobiological programming effects during critical developmental periods. It remains unknown whether effects of prenatal adversity on PTSD susceptibility are modulated by genetic variations in neurobiological pathways implicated in PTSD susceptibility.Objective: We investigated whether genetic variation in the glucocorticoid receptor (GR) modulated effects of prenatal famine exposure on late adulthood PTSD symptom severity after trauma exposure in childhood and mid-to-late adulthood.Method: We included N = 439 term-born singleton adults (mean age: 72 years, 54.2% women) from the Dutch Famine Birth Cohort, born around the time of the Dutch Famine of 1944/1945, divided into exposure and control groups based on timing of the famine during gestation. Participants filled out self-report questionnaires on childhood (Childhood Trauma Questionnaire) and mid-to-late adulthood (Life Events Checklist for DSM-5) trauma, and current PTSD symptom severity (PTSD Checklist for DSM-5). GR haplotypes were determined from four functional GR single nucleotide polymorphisms (ER22/23EK, N363S, BclI and exon 9β) in previously collected DNA. Linear regression analyses were performed to investigate associations of GR haplotype and prenatal famine exposure in conjunction with later life trauma on PTSD symptom severity.Results: We observed a significant three-way interaction between the GR Bcll haplotype, famine exposure during early gestation, and adulthood trauma exposure on PTSD symptom severity in late adulthood. Only participants exposed to famine during early gestation without the GR Bcll haplotype showed a significantly stronger positive association between adulthood trauma and PTSD symptom severity than non-exposed participants, indicating increased PTSD susceptibility.Conclusions: Our results illustrate the importance of integrated approaches considering genetics and environmental contexts throughout various life periods, including the rarely investigated prenatal environment, to elucidate how PTSD susceptibility evolves throughout life.HIGHLIGHTS Adversity during pregnancy is thought to increase offspring's PTSD risk following later life trauma, but exact neurobiological mechanisms underlying this process remain unknown.We found that effects of prenatal famine exposure on PTSD symptom severity were influenced by genetic variation in the glucocorticoid receptor, which signals effects of the stress hormone cortisol.Integrated approaches considering genetics and environmental contexts throughout both early and later life are important to understand how PTSD risk evolves throughout life.
Collapse
Affiliation(s)
- Kayleigh D. Gultig
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Susanne R. de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Charlotte E. Hilberdink
- Departments of Psychiatry and Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
- ARQ National Psychotrauma Centre, Diemen, the Netherlands
| | - Tessa J. Roseboom
- Departments of Epidemiology and Data Science and Obstetrics and Gynaecology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
17
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
18
|
Qin Y, Chen ZH, Wu JJ, Zhang ZY, Yuan ZD, Guo DY, Chen MN, Li X, Yuan FL. Circadian clock genes as promising therapeutic targets for bone loss. Biomed Pharmacother 2023; 157:114019. [PMID: 36423544 DOI: 10.1016/j.biopha.2022.114019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
The circadian clock regulates many key physiological processes such as the sleep-wake cycle, hormone release, cardiovascular health, glucose metabolism and body temperature. Recent evidence has suggested a critical role of the circadian system in controlling bone metabolism. Here we review the connection between bone metabolism and the biological clock, and the roles of these mechanisms in bone loss. We also analyze the regulatory effects of clock-related genes on signaling pathways and transcription factors in osteoblasts and osteoclasts. Additionally, osteocytes and endothelial cells (ECs) regulated by the circadian clock are also discussed in our review. Furthermore, we also summarize the regulation of circadian clock genes by some novel modulators, which provides us with a new insight into a potential strategy to prevent and treat bone diseases such as osteoporosis by targeting circadian genes.
Collapse
Affiliation(s)
- Yi Qin
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Hua Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| |
Collapse
|
19
|
Kawa MP, Sobuś A, Pius-Sadowska E, Łuczkowska K, Rogińska D, Wnęk S, Paczkowska E, Walczak M, Syrenicz A, Machaliński B. Apoptosis Evaluation in Circulating CD34+-Enriched Hematopoietic Stem and Progenitor Cells in Patients with Abnormally Increased Production of Endogenous Glucocorticoids in Course of Cushing's Syndrome. Int J Mol Sci 2022; 23:ijms232415794. [PMID: 36555435 PMCID: PMC9779045 DOI: 10.3390/ijms232415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Abnormalities in hematological parameters of peripheral blood have been noted in patients with endogenous Cushing's Syndrome (CS) in the corticotropin (ACTH)-dependent and ACTH-independent forms. Nevertheless, the exact mechanism of glucocorticoids (GCs) action on human hematopoiesis is still not entirely clear. The aim of the study was to determine whether endogenous excessive production of GCs could affect apoptosis of CD34+ cells enriched in hematopoietic stem and progenitor cells (HSPCs) collected from the peripheral blood of newly diagnosed CS patients. Flow cytometry, Annexin-V enzyme-linked immunosorbent assay, TUNEL assay, real-time quantitative PCR, and microarray RNA/miRNA techniques were used to characterize CS patients' HSPCs. We found that the glucocorticoid receptor (GR) protein expression levels in CS were higher than in healthy controls. A complex analysis of apoptotic status of CS patients' HSPC cells showed that GCs significantly augmented apoptosis in peripheral blood-derived CD34+ cells and results obtained using different methods to detect early and late apoptosis in analyzed cell population were consistent. CS was also associated with significant upregulation in several members of the BCL-2 superfamily and other genes associated with apoptosis control. Furthermore, global gene expression analysis revealed significantly higher expression of genes associated with programmed cell death control in HSPCs from CS patients. These findings suggest that human endogenous GCs have a direct pro-apoptotic activity in hematopoietic CD34+ cells derived from CS subjects before treatment.
Collapse
Affiliation(s)
- Miłosz P. Kawa
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Szymon Wnęk
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 72 Powstancow Wlkp. Street, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661-546; Fax: +48-91-4661-548
| |
Collapse
|
20
|
Peripheral mRNA Expression and Prognostic Significance of Emotional Stress Biomarkers in Metastatic Breast Cancer Patients. Int J Mol Sci 2022; 23:ijms232214097. [PMID: 36430579 PMCID: PMC9694977 DOI: 10.3390/ijms232214097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Emotional stress is believed to be associated with increased tumor progression. Stress-induced epigenetic modifications can contribute to the severity of disease and poor prognosis in cancer patients. The current study aimed to investigate the expression profiles along with the prognostic significance of psychological stress-related genes in metastatic breast cancer patients, to rationalize the molecular link between emotional stress and cancer progression. We profiled the expression of selected stress-associated genes (5-HTT, NR3C1, OXTR, and FKBP5) in breast cancer including the stress evaluation of all participants using the Questionnaire on Distress in Cancer Patients-short form (QSC-R10). A survival database, the Kaplan-Meier Plotter, was used to explore the prognostic significance of these genes in breast cancer. Our results showed relatively low expressions of 5-HTT (p = 0.02) and OXTR (p = 0.0387) in metastatic breast cancer patients as compared to the non-metastatic group of patients. The expression of NR3C1 was low in tumor grade III as compared to grade II (p = 0.04). Additionally, the expression of NR3C1 was significantly higher in patients with positive estrogen receptor status. However, no significant difference was found regarding FKBP5 expression in breast cancer. The results suggest a potential implication of these genes in breast cancer pathology and prognosis.
Collapse
|
21
|
Expression patterns of AMPK and genes associated with lipid metabolism in newly hatched chicks during the metabolic perturbation of fasting and refeeding. Poult Sci 2022; 101:102231. [PMID: 36334428 PMCID: PMC9630794 DOI: 10.1016/j.psj.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
Fasting–refeeding perturbation has been extensively used to reveal specific genes and metabolic pathways that control energy metabolism in chickens. In this study, 200 chickens were randomly assigned to 2 groups after hatching: the control group (C, fed ad libitum) and the fasting–refeeding group (T, water ad libitum). The chicks in Group T were fasted for 72 h, and then fed for another 48 h. Liver, hypothalamus, and adipose samples were collected at 0 (F0), 24 (F24), 48 (F48), and 72 h (F72) after fasting and 4 (FR4), 12 (FR12), 24 (FR24), and 48 h (FR48) after refeeding, respectively. Results showed that Group T had a significantly higher number of liver vacuoles (P < 0.05 or P < 0.01) and a significantly lower gray value of Sudan IIIstained sections (P < 0.05 or P < 0.01) than Group C at F48–FR48. In addition, compared with the Group C, fasting and refeeding reduced the expression of stearoyl CoA desaturase (SCD) mRNA (P < 0.05 or P < 0.01) in the liver and adipose tissues, the expression of glucocorticoid receptor (GR) mRNA (P < 0.05 or P < 0.01) in the liver, adipose, and hypothalamus tissues, and the expression of fatty acid synthase (FAS) mRNA (P < 0.05 or P < 0.01) in the liver at F24–FR24. Moreover, relative to those in Group C, fasting and refeeding increased the mRNA expression levels of adenosine monophosphate-activated protein kinase (AMPK) α, AMPKβ, and AMPKγ in the hypothalamus (P < 0.05 or P < 0.01) at F24–FR24. In conclusion, fasting and refeeding increased the fat content of the liver, and the expression of lipolytic genes in the hypothalamus (e.g., AMPKα, AMPKβ, and AMPKγ) but decreased the expression of fat synthesis genes in the liver (e.g., SCD, GR, and FAS), adipose (SCD and GR), and hypothalamus (GR).
Collapse
|
22
|
Immunosuppressive drugs and associated complications in abdominal organ transplantation. Curr Opin Crit Care 2022; 28:208-215. [PMID: 35142726 DOI: 10.1097/mcc.0000000000000927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Intensive care management of patients who have undergone organ transplantation of liver, small bowel, pancreas, and/or kidney requires a basic knowledge of immunosuppression principles and the management of immunosuppressive medications. This review highlights the core principles of immunosuppression management in abdominal organ transplantation with a focus on complications arising from immunosuppressive drugs, both in the immediate postoperative period and in long-term usage. RECENT FINDINGS The general principles of management of immunosuppression in the abdominal organ transplant population have remained largely unchanged. Improvements in drug monitoring coupled with improvements in knowledge of pathways involved in allograft rejection have further refined immunosuppressive therapy. Infectious and central nervous system complications remain prevalent and are common complications of immunosuppressive drug therapy. SUMMARY For the intensive care professional who cares for abdominal organ transplant recipients, a foundational knowledge of the core principles of immunosuppression management is essential. In addition, an understanding of the common immunosuppressive drug regimens and the complications associated with these regimens is required for optimal management, risk assessment, and outcomes.
Collapse
|
23
|
Merabet N, Lucassen PJ, Crielaard L, Stronks K, Quax R, Sloot PMA, la Fleur SE, Nicolaou M. How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Front Neuroendocrinol 2022; 65:100972. [PMID: 34929260 DOI: 10.1016/j.yfrne.2021.100972] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Chronic stress contributes to the onset of type 2 diabetes (T2D), yet the underlying etiological mechanisms are not fully understood. Responses to stress are influenced by earlier experiences, sex, emotions and cognition, and involve a complex network of neurotransmitters and hormones, that affect multiple biological systems. In addition, the systems activated by stress can be altered by behavioral, metabolic and environmental factors. The impact of stress on metabolic health can thus be considered an emergent process, involving different types of interactions between multiple variables, that are driven by non-linear dynamics at different spatiotemporal scales. To obtain a more comprehensive picture of the links between chronic stress and T2D, we followed a complexity science approach to build a causal loop diagram (CLD) connecting the various mediators and processes involved in stress responses relevant for T2D pathogenesis. This CLD could help develop novel computational models and formulate new hypotheses regarding disease etiology.
Collapse
Affiliation(s)
- Nadège Merabet
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Paul J Lucassen
- Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Loes Crielaard
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Karien Stronks
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands
| | - Rick Quax
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Computational Science Lab, University of Amsterdam, Amsterdam 1098 XH, the Netherlands; National Centre of Cognitive Research, ITMO University, St. Petersburg, Russian Federation
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism & Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, the Netherlands.
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health Research Institute, Meibergdreef 9, Amsterdam, the Netherlands; Institute for Advanced Study, University of Amsterdam, Amsterdam 1012 GC, the Netherlands; Centre for Urban Mental Health, University of Amsterdam, Amsterdam 1012 GC, the Netherlands.
| |
Collapse
|
24
|
Pathophysiology of Mild Hypercortisolism: From the Bench to the Bedside. Int J Mol Sci 2022; 23:ijms23020673. [PMID: 35054858 PMCID: PMC8775422 DOI: 10.3390/ijms23020673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Mild hypercortisolism is defined as biochemical evidence of abnormal cortisol secretion without the classical detectable manifestations of overt Cushing’s syndrome and, above all, lacking catabolic characteristics such as central muscle weakness, adipose tissue redistribution, skin fragility and unusual infections. Mild hypercortisolism is frequently discovered in patients with adrenal incidentalomas, with a prevalence ranging between 5 and 50%. This high variability is mainly due to the different criteria used for defining this condition. This subtle cortisol excess has also been described in patients with incidentally discovered pituitary tumors with an estimated prevalence of 5%. To date, the mechanisms responsible for the pathogenesis of mild hypercortisolism of pituitary origin are still not well clarified. At variance, recent advances have been made in understanding the genetic background of bilateral and unilateral adrenal adenomas causing mild hypercortisolism. Some recent data suggest that the clinical effects of glucocorticoid (GC) exposure on peripheral tissues are determined not only by the amount of the adrenal GC production but also by the peripheral GC metabolism and by the GC sensitivity. Indeed, in subjects with normal cortisol secretion, the combined estimate of cortisol secretion, cortisone-to-cortisol peripheral activation by the 11 beta-hydroxysteroid dehydrogenase enzyme and GC receptor sensitizing variants have been suggested to be associated with the presence of hypertension, diabetes and bone fragility, which are three well-known consequences of hypercortisolism. This review focuses on the pathophysiologic mechanism underlying both the different sources of mild hypercortisolism and their clinical consequences (bone fragility, arterial hypertension, subclinical atherosclerosis, cardiovascular remodeling, dyslipidemia, glucose metabolism impairment, visceral adiposity, infections, muscle damage, mood disorders and coagulation).
Collapse
|
25
|
Petruk A, Kamyshna I, Shkilna M, Kamyshnyi A. Glucocorticoid-induced Changes in the Transcriptional Activity of Genes of the Innate and Adaptive Immune System in the Blood of Patients with Acute Urticaria. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: A number of the main effects of glucocorticoids (GCs) are their direct action on T cells, mainly through the transcriptional regulation: elevated expression of immune-regulatory proteins, inhibitory receptors, and reduced expression of pro-inflammatory cytokines, co-stimulatory molecules, and cell cycle mediators. But controversies arise due to the clinical effectiveness of GCs in the treatment of acute urticaria.
Methods: In our research, we applied a pathway-specific PCR array (Human Innate & Adaptive Immune Responses RT2 Profiler PCR Array, QIAGEN, Germany) to detect and verify innate & adaptive immune responses pathway-focused genes expression in the blood of patients with acute urticaria who received treatment with glucocorticoids in addition to standard therapy.
Results: Adding glucocorticoids to standard therapy did not notably affect the nature of the clinical presentation of acute urticaria, which was assessed according to the UAS scale (urticaria activity score). Analysis of the transcriptional profile of peripheral blood mononuclear cells in patients with acute urticaria against the background of glucocorticoid therapy showed the induction expression of the FOXP3 and IL10 genes against the background of repression of the transcriptional activity of the genes for chemokines and cytokines CCL5, CXCL8, IFNG, IL2, IL5, IL17A, IL1B, and TNF. Glucocorticoid-induced changes in the transcriptome also manifested by pronounced repression in genes of CD40 and CD80 (B7-1) co-stimulatory molecules, transcriptional regulators of Th1-cells differentiation - TBX21 and STAT1, Th17 cells - RORC, NLRP3-inflammasome genes, and the transcription factor NFKB1 compared with the control group.
Conclusions: Adding glucocorticoids to the standard therapy of acute urticaria has a pronounced immunosuppressive potential at the transcriptome level of immune response genes in the blood; however, it does not have any noticeable clinical effect.
Collapse
|
26
|
Morishita M, Arimoto-Matsuzaki K, Kitamura M, Niimura K, Iwasa H, Maruyama J, Hiraoka Y, Yamamoto K, Kitagawa M, Miyamura N, Nishina H, Hata Y. Characterization of mouse embryonic fibroblasts derived from Rassf6 knockout mice shows the implication of Rassf6 in the regulation of NF-κB signaling. Genes Cells 2021; 26:999-1013. [PMID: 34652874 DOI: 10.1111/gtc.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. We have reported using human cancer cell lines that RASSF6 induces apoptosis and cell cycle arrest via p53 and plays tumor suppressive roles. In this study, we generated Rassf6 knockout mice by CRISPR/Cas technology. Contrary to our expectation, Rassf6 knockout mice were apparently healthy. However, Rassf6-null mouse embryonic fibroblasts (MEF) were resistant against ultraviolet (UV)-induced apoptosis/cell cycle arrest and senescence. UV-induced p53-target gene expression was compromised, and DNA repair was delayed in Rassf6-null MEF. More importantly, KRAS active mutant promoted the colony formation of Rassf6-null MEF but not the wild-type MEF. RNA sequencing analysis showed that NF-κB signaling was enhanced in Rassf6-null MEF. Consistently, 7,12-dimethylbenz(a)anthracene (DMBA) induced skin inflammation in Rassf6 knockout mice more remarkably than in the wild-type mice. Hence, Rassf6 deficiency not only compromises p53 function but also enhances NF-κB signaling to lead to oncogenesis.
Collapse
Affiliation(s)
- Mayu Morishita
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masami Kitamura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyohei Niimura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Molecular Biology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|