1
|
Wimalawansa SJ. Vitamin D Deficiency Meets Hill's Criteria for Causation in SARS-CoV-2 Susceptibility, Complications, and Mortality: A Systematic Review. Nutrients 2025; 17:599. [PMID: 39940457 PMCID: PMC11820523 DOI: 10.3390/nu17030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Clinical trials consistently demonstrate an inverse correlation between serum 25-hydroxyvitamin D [25(OH)D; calcifediol] levels and the risk of symptomatic SARS-CoV-2 disease, complications, and mortality. This systematic review (SR), guided by Bradford Hill's causality criteria, analyzed 294 peer-reviewed manuscripts published between December 2019 and November 2024, focusing on plausibility, consistency, and biological gradient. Evidence confirms that cholecalciferol (D3) and calcifediol significantly reduce symptomatic disease, complications, hospitalizations, and mortality, with optimal effects above 50 ng/mL. While vitamin D requires 3-4 days to act, calcifediol shows effects within 24 h. Among 329 trials, only 11 (3%) showed no benefit due to flawed designs. At USD 2/patient, D3 supplementation is far cheaper than hospitalization costs and more effective than standard interventions. This SR establishes a strong inverse relationship between 25(OH)D levels and SARS-CoV-2 vulnerability, meeting Hill's criteria. Vitamin D3 and calcifediol reduce infections, complications, hospitalizations, and deaths by ~50%, outperforming all patented, FDA-approved COVID-19 therapies. With over 300 trials confirming these findings, waiting for further studies is unnecessary before incorporating them into clinical protocols. Health agencies and scientific societies must recognize the significance of these results and incorporate D3 and calcifediol for prophylaxis and early treatment protocols of SARS-CoV-2 and similar viral infections. Promoting safe sun exposure and adequate vitamin D3 supplementation within communities to maintain 25(OH)D levels above 40 ng/mL (therapeutic range: 40-80 ng/mL) strengthens immune systems, reduces hospitalizations and deaths, and significantly lowers healthcare costs. When serum 25(OH)D levels exceed 70 ng/mL, taking vitamin K2 (100 µg/day or 800 µg/week) alongside vitamin D helps direct any excess calcium to bones. The recommended vitamin D dosage (approximately 70 IU/kg of body weight for a non-obese adult) to maintain 25(OH)D levels between 50-100 ng/mL is safe and cost-effective for disease prevention, ensuring optimal health outcomes.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Endocrinology and Human Nutrition, CardioMetabolic & Endocrine Institute, North Brunswick, NJ 08902, USA
| |
Collapse
|
2
|
Pu D, Wang P, Wang X, Tian Y, Gong H, Ma X, Li M, Zhang D. Focusing on non-responders to infliximab with ulcerative colitis, what can we do first and next? Int Immunopharmacol 2024; 141:112943. [PMID: 39191122 DOI: 10.1016/j.intimp.2024.112943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic immune-mediated inflammation of the colorectum, for which infliximab (IFX) is currently the mainstay of treatment. However, one-third of patients with UC still fail to benefit from the IFX therapy, and early exposure to IFX impairs the efficacy of other subsequent biologics. Therefore, personalized therapeutic system is urgently needed to assist in clinical decision-making and precision treatment. METHODS Four microarray datasets of colonic biopsies from UC patients treated with IFX were obtained from the GEO database to form the Training Cohort and Validation Cohort. Differentially expressed genes (DEGs) in Training Cohort were identified and enriched for GO, KEGG and immune cell infiltration analysis. A prediction model for IFX efficacy was developed based on the LASSO and Logistic regression. The predictive accuracy of the model was verified by the Validation Cohort, and the model-genes/proteins were validated by immunohistochemistry. Gene-drug, gene-ncRNA interaction analysis were performed to identify drugs or non-coding RNAs (ncRNAs) that potentially interacted with the model-genes. Homology Modeling and Molecular Docking were conducted to filter the optimal candidate as the subsequent adjuvant or alternative for IFX in predicted non-responders. At last, the down-regulation of the key model-gene/protein CYP24A1 by the drug candidate Deferasirox was verified by Western Blot and qRT-PCR Assay based on cellular experiments. RESULTS A total of 113 DEGs were identified in the Training Cohort, mainly enriched in inflammatory cell chemotaxis, migration, and response to molecules derived from intestinal microbiota. Activated pro-inflammatory innate immune cells, including neutrophils, M1 macrophages, activated dendritic cells and mast cells, were significantly enriched in colons of non-responders. The prediction model based on three model-genes (IFI44L, CYP24A1, and RGS1) exhibited strong predictive efficacy, with AUC values of 0.901 and 0.80 in the Training and Validation Cohorts, respectively. Higher expression of the three model-genes/proteins in colons of non-responders to IFX was confirmed by clinical colonic mucosal biopsies. 4 Drugs (Calcitriol, Lunacalcipol, Deferasirox, Telaprevir), 15 miRNAs and 66 corresponding lnRNAs interacting with model-genes were identified. The protein 3D structure of the key model-gene/protein (human-derived CYP24A1) was developed. Through the Molecular Docking and cellular experimental validation, Deferasirox, which significantly down-regulated both the RNA and protein expression of CYP24A1, was identified as the optimal adjuvant or alternative for IFX in predicted non-responders with UC. CONCLUSION This study developed a novel prediction model for pre-assessing the efficacy of IFX in patients with UC, as the first step towards personalized therapy. Meanwhile, drugs and non-coding RNAs were provided as potential candidates to develop the next-step precise treatment for the predicted non-responders. In particular, Defeasirox appears to hold promise as an adjuvant or alternative to IFX for the optimization of UC therapy.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Pengfei Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xiang Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yonggang Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xueni Ma
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Muyang Li
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
3
|
Kellermann L, Hansen SL, Maciag G, Granau AM, Johansen JV, Teves JM, Bressan RB, Pedersen MT, Soendergaard C, Baattrup AM, Hammerhøj A, Riis LB, Gubatan J, Jensen KB, Nielsen OH. Influence of Vitamin D Receptor Signalling and Vitamin D on Colonic Epithelial Cell Fate Decisions in Ulcerative Colitis. J Crohns Colitis 2024; 18:1672-1689. [PMID: 38747639 PMCID: PMC11479711 DOI: 10.1093/ecco-jcc/jjae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have shown that subnormal levels of vitamin D (25[OH]D) are associated with a more aggravated clinical course of ulcerative colitis [UC]. Despite an increased focus on the therapeutic importance of vitamin D and vitamin D receptor [VDR] signalling, the mechanisms underlying the effects of the vitamin D-VDR axis on UC remain elusive. Therefore, we aimed to investigate whether exposure to active vitamin D (1,25[OH]2D3/VDR) signalling in human organoids could influence the maintenance of the colonic epithelium. METHODS Intestinal VDR expression was studied by immunohistochemistry, RNA expression arrays, and single-cell RNA sequencing of colonic biopsy specimens obtained from patients with UC and healthy individuals. To characterise the functional and transcriptional effects of 1,25[OH]2D3, we used patient-derived colonic organoids. The dependency of VDR was assessed by knocking out the receptor with CRISPR/Cas9. RESULTS Our results suggest that 1,25[OH]2D3/VDR stimulation supports differentiation of the colonic epithelium and that impaired 1,25[OH]2D3/VDR signalling thereby may compromise the structure of the intestinal epithelial barrier, leading to flares of UC. Furthermore, a transcriptional response to VDR activity was observed primarily in fully differentiated cells at the top of the colonic crypt, and this response was reduced during flares of UC. CONCLUSIONS We identified an important role of vitamin D signalling in supporting differentiated cell states in the human colonic epithelium, and thereby maintenance of the intestinal barrier integrity. This makes the vitamin D-VDR signalling axis an interesting target for therapeutic efforts to achieve and maintain remission in patients with UC.
Collapse
Affiliation(s)
- Lauge Kellermann
- Department of Gastroenterology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Stine Lind Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Grzegorz Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Agnete Marie Granau
- Department of Gastroenterology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | | | - Joji Marie Teves
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Raul Bardini Bressan
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | | | - Christoffer Soendergaard
- Department of Gastroenterology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Astrid Moeller Baattrup
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| | - Lene Buhl Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine [reNEW], Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
4
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zeng L, Zhang X, Shen Q, He L, Liu X, Zeng X, Wu Q, Ma I, Zheng S, Cheng L, Li L, Yao P. Exposure to Progestin 17-OHPC Induces Gastrointestinal Dysfunction through Claudin-1 Suppression in Female Mice with Increased Anxiety-Like Behaviors. Neuroendocrinology 2024; 114:623-638. [PMID: 38583420 PMCID: PMC11232951 DOI: 10.1159/000538692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Progestin, commonly used in oral contraception and preventing preterm birth, elicits various off-target side effects on brain and gastrointestinal (GI) functions, yet the precise mechanisms remain elusive. This study aims to probe progestin's impact on GI function and anxiety-like behaviors in female mice. METHODS Colon stem cells were utilized to explore the mechanism underlying progestin 17-hydroxyprogesterone caproate (17-OHPC)-mediated suppression of claudin-1 (CLDN1), crucial for epithelial integrity. Chromatin immunoprecipitation and luciferase assays identified potential progestin-response elements on the CLDN1 promoter, with subsequent assessment of oxidative stress and pro-inflammatory cytokine release. Manipulation of vitamin D receptor (VDR) or estrogen receptor β (ERβ) expression elucidated their roles in 17-OHPC-mediated effects. Intestine-specific VDR deficient mice were generated to evaluate 17-OHPC's impact on GI dysfunction and anxiety-like behaviors in female mice. Additionally, gene expression was analyzed in various brain regions, including the amygdala, hypothalamus, and hippocampus. RESULTS Exposure to 17-OHPC suppressed CLDN1 expression via epigenetic modifications and VDR dissociation from the CLDN1 promoter. Furthermore, 17-OHPC intensified oxidative stress and pro-inflammatory cytokine release. VDR knockdown partly mimicked, while overexpression of either VDR or ERβ partly restored 17-OHPC-mediated effects. Intestinal VDR deficiency partly mirrored 17-OHPC-induced GI dysfunction, with minimal impact on 17-OHPC-mediated anxiety-like behaviors. CONCLUSIONS 17-OHPC suppresses CLDN1 expression through VDR, contributing to GI dysfunction in female mice, distinct from 17-OHPC-induced anxiety-like behaviors. This study reveals a new mechanism and potential negative impact of progestin exposure on the GI tract, alongside inducing anxiety-like behaviors in female mice.
Collapse
Affiliation(s)
- Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | | | - Qingjun Shen
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Li He
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Xiangyue Zeng
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Qiaozhu Wu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Irene Ma
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Shuangyun Zheng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Liqin Cheng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
| | - Ling Li
- Hainan Women and Children’s Medical Center, Haikou, PR China
| | - Paul Yao
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Guangzhou, PR China
- Hainan Women and Children’s Medical Center, Haikou, PR China
| |
Collapse
|
6
|
Becker HM, Seidler UE. Bicarbonate secretion and acid/base sensing by the intestine. Pflugers Arch 2024; 476:593-610. [PMID: 38374228 PMCID: PMC11006743 DOI: 10.1007/s00424-024-02914-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
Collapse
Affiliation(s)
- Holger M Becker
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Cheng Z, Zhou Y, Xiong X, Li L, Chen Z, Wu F, Dong R, Liu Q, Zhao Y, Jiang S, Yu Q, Chen G. Traditional herbal pair Portulacae Herba and Granati Pericarpium alleviates DSS-induced colitis in mice through IL-6/STAT3/SOCS3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155283. [PMID: 38422652 DOI: 10.1016/j.phymed.2023.155283] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingli Li
- Department of Traditional Chinese Medicine, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Zekai Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shujun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Zheng X, Xu X, Liu M, Yang J, Yuan M, Sun C, Zhou Q, Chen J, Liu B. Bile acid and short chain fatty acid metabolism of gut microbiota mediate high-fat diet induced intestinal barrier damage in Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109376. [PMID: 38218421 DOI: 10.1016/j.fsi.2024.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The limited tolerance of crustacean tissue physiology to a high-fat diet has captured the attention of researchers. Yet, investigations into the physiological response mechanisms of the crustacean intestinal barrier system to a high-fat diet are progressing slowly. Elucidating potential physiological mechanisms and determining the precise regulatory targets would be of great physiological and nutritional significance. This study established a high-fat diet-induced intestinal barrier damage model in Macrobrachium rosenbergii, and systematically investigated the functions of gut microbiota and its functional metabolites. The study achieved this by monitoring phenotypic indicators, conducting 16S rDNA sequencing, targeted metabolomics, and in vitro anaerobic fermentation of intestinal contents. Feeding prawns with control and high-fat diets for 8 weeks, the lipid level of 7 % in the CON diet and 12 % in the HF diet. Results showed that high-fat intake impaired the intestinal epithelial cells, intestinal barrier structure, and permeability of M. rosenbergii, activated the tight junction signaling pathway inhibiting factor NF-κB transcription factor Relish/myosin light chain kinase (MLCK), and suppressed the expression of downstream tight junction proteins zona occludens protein 1 (ZO-1) and Claudin. High-fat intake resulted in a significant increase in abundance of Aeromonas, Enterobacter, and Clostridium sensu stricto 3 genera, while Lactobacillus, Lactococcus, Bacteroides, and Ruminococcaceae UCG-010 genera were significantly decreased. Targeted metabolomics results of bile acids and short-chain fatty acids in intestinal contents and in vitro anaerobic fermentation products showed a marked rise in the abundance of DCA, 12-KetoLCA, 7,12-diketoLCA, and Isovaleric acid, and a significant reduction in the abundance of HDCA, CDCA, and Acetate in the HF group. Pearson correlation analysis revealed a substantial correlation between various genera (Clostridium sensu stricto 3, Lactobacillus, Bacteroides) and secondary metabolites (DCA, HDCA, 12-KetoLCA, Acetate), and the latter was significantly correlated with intestinal barrier function related genes (Relish, ZO-1, MLCK, vitamin D receptor, and ecdysone receptor). These findings indicate that gut microorganisms and their specific bile acids and short-chain fatty acid secondary metabolites play a crucial role in the process of high-fat-induced intestinal barrier damage of M. rosenbergii. Moreover, identifying and targeting these factors could facilitate precise regulation of high-fat nutrition for crustaceans.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Meng Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jianming Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
9
|
Guo Y, Li Y, Tang Z, Geng C, Xie X, Song S, Wang C, Li X. Compromised NHE8 Expression Is Responsible for Vitamin D-Deficiency Induced Intestinal Barrier Dysfunction. Nutrients 2023; 15:4834. [PMID: 38004229 PMCID: PMC10674576 DOI: 10.3390/nu15224834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Objectives: Vitamin D (VitD) and Vitamin D receptor (VDR) are suggested to play protective roles in the intestinal barrier in ulcerative colitis (UC). However, the underlying mechanisms remain elusive. Evidence demonstrates that Na+/H+ exchanger isoform 8 (NHE8, SLC9A8) is essential in maintaining intestinal homeostasis, regarded as a promising target for UC therapy. Thus, this study aims to investigate the effects of VitD/VDR on NHE8 in intestinal protection. Methods: VitD-deficient mice, VDR-/- mice and NHE8-/- mice were employed in this study. Colitis mice were established by supplementing DSS-containing water. Caco-2 cells and 3D-enteroids were used for in vitro studies. VDR siRNA (siVDR), VDR over-expression plasmid (pVDR), TNF-α and NF-κb p65 inhibitor QNZ were used for mechanical studies. The expression of interested proteins was detected by multiple techniques. Results: In colitis mice, paricalcitol upregulated NHE8 expression was accompanied by restoring colonic mucosal injury. In VitD-deficient and VDR-/- colitis mice, NHE8 expression was compromised with more serious mucosal damage. Noteworthily, paricalcitol could not prevent intestinal barrier dysfunction and histological destruction in NHE8-/- mice. In Caco-2 cells and enteroids, siVDR downregulated NHE8 expression, further promoted TNF-α-induced NHE8 downregulation and stimulated TNF-α-induced NF-κb p65 phosphorylation. Conversely, QNZ blocked TNF-α-induced NHE8 downregulation in the absence or presence of siVDR. Conclusions: Our study indicates depressed NHE8 expression is responsible for VitD-deficient-induced colitis aggravation. These findings provide novel insights into the molecular mechanisms of VitD/VDR in intestine protection in UC.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Yanni Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Zeya Tang
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Xiaoxi Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Shuailing Song
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Chunhui Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| | - Xiao Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.G.); (Y.L.); (X.X.); (S.S.)
| |
Collapse
|
10
|
Li D, Zhang T, Yang H, Yang W, Zhang C, Gao G. Effect of Vitamin D on the Proliferation and Barrier of Atrophic Vaginal Epithelial Cells. Molecules 2023; 28:6605. [PMID: 37764381 PMCID: PMC10535479 DOI: 10.3390/molecules28186605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Atrophic vaginitis is very common in postmenopausal women due to declining estrogen levels. Vitamin D plays an important role in promoting epithelial cell proliferation, migration and adhesion. We established a rat model of ovariectomy (OVX) induced atrophic vaginitis with the aim of investigating the effects of Vitamin D supplementation on the vaginal epithelial barrier. The results showed that ovariectomised rats had significantly higher vaginal pH, reduced Lactobacillus, significantly lower uterine and vaginal weights, and lower vaginal epithelial PCNA, occludin, and E-cadherin mRNA expression compared with sham-operated rats. Vitamin D supplementation could reduce the vaginal pH, promote the proliferation and keratinization of vaginal epithelial cells, enhance the expression of PCNA mRNA in vaginal tissues, and improve the vaginal and uterine atrophy. Vitamin D can also increase the expression of E-cadherin and occludin proteins in vaginal tissues, maintain the integrity of the vaginal epithelium, increase the number of Lactobacillus, and reduce pathogenic bacterial infections. In vitro experiments demonstrated that 1,25(OH)2D3 could promote the proliferation and migration of VK2/E6E7 vaginal epithelial cells and increase the expression of E-cadherin protein. In conclusion, we demonstrated that Vitamin D can regulate the expression of vaginal epithelial tight junction proteins, promotes cell proliferation, and improves vaginal atrophy due to estrogen deficiency.
Collapse
Affiliation(s)
- Dandan Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Zhang
- School of Clinical Medicine, Gannan Medical University, Ganzhou 341004, China
| | - He Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenlan Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing 102200, China
- Biomedical Engineering Department, Peking University, Beijing 100871, China
| | - Guolan Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
11
|
Munem F, Thianhlun PCK, Anderson PH, Stringer AM. Vitamin D is a potential treatment for the management of gastrointestinal mucositis. Curr Opin Support Palliat Care 2023; 17:247-252. [PMID: 37276064 DOI: 10.1097/spc.0000000000000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE OF THE REVIEW Gastrointestinal mucositis (GM) is a severe side effect of cancer treatments, negatively impacting the patient's quality of life, and has limited treatment. GM consists of complex biological processes involving apoptosis and inflammation, leading to damage and ulceration of the gastrointestinal system. Recently, vitamin D has been shown to have multiple roles in the gut, including immunomodulation, epithelial barrier regulation and microbiome regulation. Hence, this review aims to put forth vitamin D as a potential therapeutic due to its protective role in the intestine. RECENT FINDINGS Recent studies have shown that vitamin D can reduce intestinal inflammation by reducing NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. Vitamin D also targets and maintains the intestinal epithelial barrier via the tight junction protein expression and the inhibition of microbiome translocation. Significant evidence also suggests that vitamin D exerts multiple therapeutic effects through binding to vitamin D receptors (VDRs), and the downregulation of VDR has been associated with the severity of the disease. Additionally, vitamin D deficiency is reported in cancer patients. SUMMARY There is a dire need for effective treatment for GM, and recent animal and human studies show that vitamin D may be a potential therapy to prevent or treat GM.
Collapse
Affiliation(s)
- Fizza Munem
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
12
|
Sharma A, Yu Y, Lu J, Lu L, Zhang YG, Xia Y, Sun J, Claud EC. The Impact of Maternal Probiotics on Intestinal Vitamin D Receptor Expression in Early Life. Biomolecules 2023; 13:847. [PMID: 37238716 PMCID: PMC10216467 DOI: 10.3390/biom13050847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D signaling via the Vitamin D Receptor (VDR) has been shown to protect against intestinal inflammation. Previous studies have also reported the mutual interactions of intestinal VDR and the microbiome, indicating a potential role of probiotics in modulating VDR expression. In preterm infants, although probiotics have been shown to reduce the incidence of necrotizing enterocolitis (NEC), they are not currently recommended by the FDA due to potential risks in this population. No previous studies have delved into the effect of maternally administered probiotics on intestinal VDR expression in early life. Using an infancy mouse model, we found that young mice exposed to maternally administered probiotics (SPF/LB) maintained higher colonic VDR expression than our unexposed mice (SPF) in the face of a systemic inflammatory stimulus. These findings indicate a potential role for microbiome-modulating therapies in preventing diseases such as NEC through the enhancement of VDR signaling.
Collapse
Affiliation(s)
- Anita Sharma
- Division of Pediatric Gastroenterology, C.S. Mott Children’s Hospital, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yueyue Yu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Lei Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Erika C. Claud
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|